Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,7 +1,6 @@ 1 1 (% style="text-align:center" %) 2 2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]] 3 3 4 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]] 5 5 6 6 7 7 ... ... @@ -9,44 +9,40 @@ 9 9 10 10 11 11 11 += 1. Introduction = 12 12 13 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 13 13 15 +((( 16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 +))) 14 14 19 +((( 20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 +))) 15 15 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 -1. Introduction 24 -11. What is LoRaWAN Soil Moisture & EC Sensor 25 - 26 -The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 27 - 28 - 29 -It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server. 30 - 31 - 23 +((( 32 32 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 +))) 33 33 27 +((( 28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 +))) 34 34 35 -LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years. 36 - 37 - 31 +((( 38 38 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 +))) 39 39 40 40 41 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]36 +[[image:1654503236291-817.png]] 42 42 43 43 44 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]39 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 - *49 - *1. Features43 +== 1.2 Features == 44 + 50 50 * LoRaWAN 1.0.3 Class A 51 51 * Ultra low power consumption 52 52 * Monitor Soil Moisture ... ... @@ -59,67 +59,50 @@ 59 59 * IP66 Waterproof Enclosure 60 60 * 4000mAh or 8500mAh Battery for long term use 61 61 62 -1. 63 -11. Specification 57 +== 1.3 Specification == 64 64 65 65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature** 68 -|**Range**|**0-100.00%**|((( 69 -**0-20000uS/cm** 61 +[[image:image-20220606162220-5.png]] 70 70 71 -**(25℃)(0-20.0EC)** 72 -)))|**-40.00℃~85.00℃** 73 -|**Unit**|**V/V %,**|**uS/cm,**|**℃** 74 -|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃** 75 -|**Accuracy**|((( 76 -**±3% (0-53%)** 77 77 78 -**±5% (>53%)** 79 -)))|**2%FS,**|((( 80 -**-10℃~50℃:<0.3℃** 81 81 82 -**All other: <0.6℃** 83 -))) 84 -|((( 85 -**Measure** 65 +== 1.4 Applications == 86 86 87 -**Method** 88 -)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate** 67 +* Smart Agriculture 89 89 90 90 70 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 + 91 91 92 -* 93 -*1. Applications 94 -* Smart Agriculture 73 +(% class="wikigeneratedid" %) 74 +== 1.5 Firmware Change log == 95 95 96 -1. 97 -11. Firmware Change log 98 98 99 -**LSE01 v1.0:** 77 +**LSE01 v1.0 :** Release 100 100 101 -* Release 102 102 103 103 81 += 2. Configure LSE01 to connect to LoRaWAN network = 104 104 105 -1. Configure LSE01 to connect to LoRaWAN network 106 -11. How it works 83 +== 2.1 How it works == 107 107 85 +((( 108 108 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 +))) 109 109 89 +((( 90 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 +))) 110 110 111 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 112 112 113 113 95 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 114 114 115 - 116 -1. 117 -11. Quick guide to connect to LoRaWAN server (OTAA) 118 - 119 119 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 120 120 121 121 122 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]100 +[[image:1654503992078-669.png]] 123 123 124 124 125 125 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. ... ... @@ -151,9 +151,6 @@ 151 151 152 152 ))) 153 153 154 - 155 - 156 - 157 157 **Step 2**: Power on LSE01 158 158 159 159 ... ... @@ -207,7 +207,7 @@ 207 207 208 208 209 209 1. 210 -11. 185 +11. 211 211 111. MOD=1(Original value) 212 212 213 213 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). ... ... @@ -230,7 +230,7 @@ 230 230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 231 231 232 232 1. 233 -11. 208 +11. 234 234 111. Battery Info 235 235 236 236 Check the battery voltage for LSE01. ... ... @@ -241,8 +241,8 @@ 241 241 242 242 243 243 244 -1. 245 -11. 219 +1. 220 +11. 246 246 111. Soil Moisture 247 247 248 248 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. ... ... @@ -252,8 +252,8 @@ 252 252 **05DC(H) = 1500(D) /100 = 15%.** 253 253 254 254 255 -1. 256 -11. 230 +1. 231 +11. 257 257 111. Soil Temperature 258 258 259 259 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is ... ... @@ -265,8 +265,8 @@ 265 265 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 266 266 267 267 268 -1. 269 -11. 243 +1. 244 +11. 270 270 111. Soil Conductivity (EC) 271 271 272 272 Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). ... ... @@ -276,8 +276,8 @@ 276 276 277 277 Generally, the EC value of irrigation water is less than 800uS / cm. 278 278 279 -1. 280 -11. 254 +1. 255 +11. 281 281 111. MOD 282 282 283 283 Firmware version at least v2.1 supports changing mode. ... ... @@ -294,8 +294,8 @@ 294 294 If** **payload =** **0x0A01, workmode=1 295 295 296 296 297 -1. 298 -11. 272 +1. 273 +11. 299 299 111. Decode payload in The Things Network 300 300 301 301 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -308,7 +308,7 @@ 308 308 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 309 309 310 310 311 -1. 286 +1. 312 312 11. Uplink Interval 313 313 314 314 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: ... ... @@ -315,7 +315,7 @@ 315 315 316 316 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 317 317 318 -1. 293 +1. 319 319 11. Downlink Payload 320 320 321 321 By default, LSE50 prints the downlink payload to console port. ... ... @@ -348,7 +348,7 @@ 348 348 349 349 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 350 350 351 -1. 326 +1. 352 352 11. Show Data in DataCake IoT Server 353 353 354 354 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: ... ... @@ -389,8 +389,8 @@ 389 389 390 390 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 391 391 392 -1. 393 -11. 367 +1. 368 +11. 394 394 111. EU863-870 (EU868) 395 395 396 396 Uplink: ... ... @@ -421,8 +421,8 @@ 421 421 869.525 - SF9BW125 (RX2 downlink only) 422 422 423 423 424 -1. 425 -11. 399 +1. 400 +11. 426 426 111. US902-928(US915) 427 427 428 428 Used in USA, Canada and South America. Default use CHE=2 ... ... @@ -467,8 +467,8 @@ 467 467 923.3 - SF12BW500(RX2 downlink only) 468 468 469 469 470 -1. 471 -11. 445 +1. 446 +11. 472 472 111. CN470-510 (CN470) 473 473 474 474 Used in China, Default use CHE=1 ... ... @@ -513,8 +513,8 @@ 513 513 505.3 - SF12BW125 (RX2 downlink only) 514 514 515 515 516 -1. 517 -11. 491 +1. 492 +11. 518 518 111. AU915-928(AU915) 519 519 520 520 Default use CHE=2 ... ... @@ -558,8 +558,8 @@ 558 558 559 559 923.3 - SF12BW500(RX2 downlink only) 560 560 561 -1. 562 -11. 536 +1. 537 +11. 563 563 111. AS920-923 & AS923-925 (AS923) 564 564 565 565 **Default Uplink channel:** ... ... @@ -611,8 +611,8 @@ 611 611 923.2 - SF10BW125 (RX2) 612 612 613 613 614 -1. 615 -11. 589 +1. 590 +11. 616 616 111. KR920-923 (KR920) 617 617 618 618 Default channel: ... ... @@ -648,8 +648,8 @@ 648 648 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 649 649 650 650 651 -1. 652 -11. 626 +1. 627 +11. 653 653 111. IN865-867 (IN865) 654 654 655 655 Uplink: ... ... @@ -668,7 +668,7 @@ 668 668 866.550 - SF10BW125 (RX2) 669 669 670 670 671 -1. 646 +1. 672 672 11. LED Indicator 673 673 674 674 The LSE01 has an internal LED which is to show the status of different state. ... ... @@ -678,7 +678,7 @@ 678 678 * Solid ON for 5 seconds once device successful Join the network. 679 679 * Blink once when device transmit a packet. 680 680 681 -1. 656 +1. 682 682 11. Installation in Soil 683 683 684 684 **Measurement the soil surface** ... ... @@ -705,7 +705,7 @@ 705 705 706 706 707 707 708 -1. 683 +1. 709 709 11. Firmware Change Log 710 710 711 711 **Firmware download link:** ... ... @@ -724,7 +724,7 @@ 724 724 725 725 726 726 727 -1. 702 +1. 728 728 11. Battery Analysis 729 729 111. Battery Type 730 730 ... ... @@ -740,7 +740,6 @@ 740 740 * [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 741 741 * [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 742 742 743 - 744 744 |((( 745 745 JST-XH-2P connector 746 746 ))) ... ... @@ -749,15 +749,15 @@ 749 749 750 750 751 751 752 -1. 753 -11. 726 +1. 727 +11. 754 754 111. Battery Note 755 755 756 756 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 757 757 758 758 759 -1. 760 -11. 733 +1. 734 +11. 761 761 111. Replace the battery 762 762 763 763 If Battery is lower than 2.7v, user should replace the battery of LSE01. ... ... @@ -773,173 +773,155 @@ 773 773 774 774 775 775 776 -1. Using the AT Commands 777 -11. Access AT Commands 750 += 3. Using the AT Commands = 778 778 752 +== 3.1 Access AT Commands == 753 + 754 + 779 779 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 780 780 781 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]757 +[[image:1654501986557-872.png]] 782 782 783 783 784 784 Or if you have below board, use below connection: 785 785 786 786 787 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]763 +[[image:1654502005655-729.png]] 788 788 789 789 790 790 791 -In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below: 767 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 792 792 793 793 794 - [[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]770 + [[image:1654502050864-459.png]] 795 795 796 796 797 797 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 798 798 799 799 800 -AT+<CMD>? 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 801 801 802 -AT+<CMD> 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 803 803 804 -AT+<CMD>=<value> : Set the value 780 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 805 805 806 -AT+<CMD>=? 782 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 807 807 808 808 809 -**General Commands** 785 +(% style="color:#037691" %)**General Commands**(%%) 810 810 811 -AT 787 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 812 812 813 -AT? 789 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 814 814 815 -ATZ 791 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 816 816 817 -AT+TDC 793 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 818 818 819 819 820 -**Keys, IDs and EUIs management** 796 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 821 821 822 -AT+APPEUI : Application EUI 798 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 823 823 824 -AT+APPKEY : Application Key 800 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 825 825 826 -AT+APPSKEY : Application Session Key 802 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 827 827 828 -AT+DADDR : Device Address 804 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 829 829 830 -AT+DEUI : Device EUI 806 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 831 831 832 -AT+NWKID : Network ID (You can enter this command change only after 808 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 833 833 834 -AT+NWKSKEY : Network Session Key Joining and sending date on LoRa network 810 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 835 835 836 -AT+CFM 812 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 837 837 838 -AT+CFS : Confirm Status 814 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 839 839 840 -AT+JOIN 816 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 841 841 842 -AT+NJM 818 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 843 843 844 -AT+NJS : LoRa? Network Join Status 820 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 845 845 846 -AT+RECV : Print Last Received Data in Raw Format 822 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 847 847 848 -AT+RECVB : Print Last Received Data in Binary Format 824 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 849 849 850 -AT+SEND : Send Text Data 826 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 851 851 852 -AT+SENB : Send Hexadecimal Data 828 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 853 853 854 854 855 -**LoRa Network Management** 831 +(% style="color:#037691" %)**LoRa Network Management** 856 856 857 -AT+ADR : Adaptive Rate 833 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 858 858 859 -AT+CLASS 835 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 860 860 861 -AT+DCS 837 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 862 862 863 -AT+DR 839 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 864 864 865 -AT+FCD 841 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 866 866 867 -AT+FCU 843 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 868 868 869 -AT+JN1DL 845 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 870 870 871 -AT+JN2DL 847 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 872 872 873 -AT+PNM 849 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 874 874 875 -AT+RX1DL 851 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 876 876 877 -AT+RX2DL 853 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 878 878 879 -AT+RX2DR 855 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 880 880 881 -AT+RX2FQ 857 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 882 882 883 -AT+TXP 859 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 884 884 885 -AT+ MOD 861 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 886 886 887 887 888 -**Information** 864 +(% style="color:#037691" %)**Information** 889 889 890 -AT+RSSI : RSSI of the Last Received Packet 866 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 891 891 892 -AT+SNR : SNR of the Last Received Packet 868 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 893 893 894 -AT+VER : Image Version and Frequency Band 870 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 895 895 896 -AT+FDR : Factory Data Reset 872 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 897 897 898 -AT+PORT 874 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 899 899 900 -AT+CHS 876 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 901 901 902 - AT+CHE 878 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 903 903 904 904 881 += 4. FAQ = 905 905 883 +== 4.1 How to change the LoRa Frequency Bands/Region? == 906 906 907 - 908 - 909 - 910 -1. FAQ 911 -11. How to change the LoRa Frequency Bands/Region? 912 - 913 913 You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 914 914 When downloading the images, choose the required image file for download. 915 915 916 916 889 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 917 917 918 -How to set up LSE01 to work in 8 channel mode 919 919 920 -By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 921 - 922 - 923 923 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 924 924 925 925 926 - 927 927 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 928 928 897 +[[image:image-20220606154726-3.png]] 929 929 930 -|CHE|(% colspan="9" %)US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0) 931 -|0|(% colspan="9" %)ENABLE Channel 0-63 932 -|1|902.3|902.5|902.7|902.9|903.1|903.3|903.5|903.7|Channel 0-7 933 -|2|903.9|904.1|904.3|904.5|904.7|904.9|905.1|905.3|Channel 8-15 934 -|3|905.5|905.7|905.9|906.1|906.3|906.5|906.7|906.9|Channel 16-23 935 -|4|907.1|907.3|907.5|907.7|907.9|908.1|908.3|908.5|Channel 24-31 936 -|5|908.7|908.9|909.1|909.3|909.5|909.7|909.9|910.1|Channel 32-39 937 -|6|910.3|910.5|910.7|910.9|911.1|911.3|911.5|911.7|Channel 40-47 938 -|7|911.9|912.1|912.3|912.5|912.7|912.9|913.1|913.3|Channel 48-55 939 -|8|913.5|913.7|913.9|914.1|914.3|914.5|914.7|914.9|Channel 56-63 940 -|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0) 941 -| |903|904.6|906.2|907.8|909.4|911|912.6|914.2|Channel 64-71 942 - 943 943 When you use the TTN network, the US915 frequency bands use are: 944 944 945 945 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -954,9 +954,15 @@ 954 954 955 955 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 956 956 913 +(% class="box infomessage" %) 914 +((( 957 957 **AT+CHE=2** 916 +))) 958 958 918 +(% class="box infomessage" %) 919 +((( 959 959 **ATZ** 921 +))) 960 960 961 961 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 962 962 ... ... @@ -963,27 +963,12 @@ 963 963 964 964 The **AU915** band is similar. Below are the AU915 Uplink Channels. 965 965 928 +[[image:image-20220606154825-4.png]] 966 966 967 -|CHE|(% colspan="9" %)AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0) 968 -|0|(% colspan="9" %)ENABLE Channel 0-63 969 -|1|915.2|915.4|915.6|915.8|916|916.2|916.4|916.6|Channel 0-7 970 -|2|916.8|917|917.2|917.4|917.6|917.8|918|918.2|Channel 8-15 971 -|3|918.4|918.6|918.8|919|919.2|919.4|919.6|919.8|Channel 16-23 972 -|4|920|920.2|920.4|920.6|920.8|921|921.2|921.4|Channel 24-31 973 -|5|921.6|921.8|922|922.2|922.4|922.6|922.8|923|Channel 32-39 974 -|6|923.2|923.4|923.6|923.8|924|924.2|924.4|924.6|Channel 40-47 975 -|7|924.8|925|925.2|925.4|925.6|925.8|926|926.2|Channel 48-55 976 -|8|926.4|926.6|926.8|927|927.2|927.4|927.6|927.8|Channel 56-63 977 -|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0) 978 -| |915.9|917.5|919.1|920.7|922.3|923.9|925.5|927.1|Channel 64-71 979 979 980 980 981 - 982 - 983 - 984 984 = 5. Trouble Shooting = 985 985 986 - 987 987 == 5.1 Why I can’t join TTN in US915 / AU915 bands? == 988 988 989 989 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. ... ... @@ -991,26 +991,26 @@ 991 991 992 992 == 5.2 AT Command input doesn’t work == 993 993 994 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn’t send **ENTER** while press the send key, user need to add ENTER in their string. 941 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 995 995 996 996 997 997 == 5.3 Device rejoin in at the second uplink packet == 998 998 999 -**Issue describe as below:** 946 +(% style="color:#4f81bd" %)**Issue describe as below:** 1000 1000 1001 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]948 +[[image:1654500909990-784.png]] 1002 1002 1003 1003 1004 -**Cause for this issue:** 951 +(% style="color:#4f81bd" %)**Cause for this issue:** 1005 1005 1006 1006 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1007 1007 1008 1008 1009 -**Solution: ** 956 +(% style="color:#4f81bd" %)**Solution: ** 1010 1010 1011 1011 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1012 1012 1013 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]960 +[[image:1654500929571-736.png]] 1014 1014 1015 1015 1016 1016 = 6. Order Info = ... ... @@ -1035,7 +1035,6 @@ 1035 1035 * (% style="color:red" %)**4**(%%): 4000mAh battery 1036 1036 * (% style="color:red" %)**8**(%%): 8500mAh battery 1037 1037 1038 - 1039 1039 = 7. Packing Info = 1040 1040 1041 1041 (((
- 1654500929571-736.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +991.8 KB - Content
- 1654501986557-872.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +767.2 KB - Content
- 1654502005655-729.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +915.0 KB - Content
- 1654502050864-459.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +174.6 KB - Content
- 1654503236291-817.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +685.6 KB - Content
- 1654503265560-120.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- image-20220606154726-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.1 KB - Content
- image-20220606154825-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.3 KB - Content
- image-20220606162220-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.0 KB - Content