Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -13,82 +13,70 @@ 13 13 14 14 **Table of Contents:** 15 15 16 +{{toc/}} 16 16 17 17 18 18 19 19 20 20 21 -= 1. Introduction = 22 22 23 -= =1.1 Whatis LoRaWAN Soil Moisture & EC Sensor==23 += 1. Introduction = 24 24 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 + 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 29 29 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 33 +((( 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 +))) 31 31 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 +))) 33 33 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 35 35 36 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 49 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 61 61 71 +== 1.3 Specification == 62 62 63 - 64 -== 1.3 Specification == 65 - 66 - 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 - 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 - 72 - 73 -(% style="color:#037691" %)**NB-IoT Spec:** 74 - 75 -* - B1 @H-FDD: 2100MHz 76 -* - B3 @H-FDD: 1800MHz 77 -* - B8 @H-FDD: 900MHz 78 -* - B5 @H-FDD: 850MHz 79 -* - B20 @H-FDD: 800MHz 80 -* - B28 @H-FDD: 700MHz 81 - 82 - 83 -(% style="color:#037691" %)**Probe Specification:** 84 - 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -[[image:image-20220 708101224-1.png]]75 +[[image:image-20220606162220-5.png]] 88 88 89 89 90 90 91 -== 1.4 79 +== 1.4 Applications == 92 92 93 93 * Smart Agriculture 94 94 ... ... @@ -95,214 +95,73 @@ 95 95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 96 97 97 98 -== 1.5 Pin Definitions==86 +== 1.5 Firmware Change log == 99 99 100 100 101 - [[image:1657246476176-652.png]]89 +**LSE01 v1.0 :** Release 102 102 103 103 104 104 105 -= 2. UseNSE01 to communicatewithIoTServer=93 += 2. Configure LSE01 to connect to LoRaWAN network = 106 106 107 -== 2.1 95 +== 2.1 How it works == 108 108 109 - 110 110 ((( 111 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 - 115 115 ((( 116 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 117 117 ))) 118 118 119 -[[image:image-20220708101605-2.png]] 120 120 121 -((( 122 - 123 -))) 124 124 107 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 125 125 109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 126 126 127 -== 2.2 Configure the NSE01 == 128 128 129 - === 2.2.1 Test Requirement ===112 +[[image:1654503992078-669.png]] 130 130 131 131 132 -T o useNSE01inyourcity,make suremeetbelowrequirements:115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 133 133 134 -* Your local operator has already distributed a NB-IoT Network there. 135 -* The local NB-IoT network used the band that NSE01 supports. 136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 137 137 118 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 138 138 139 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage by ChinaMobile, the band they use is B8. The NSE01will useCoAP((%style="color:red"%)120.24.4.116:5683)(%%) or rawUDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((%style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to senddatato thetestserver120 +Each LSE01 is shipped with a sticker with the default device EUI as below: 140 140 122 +[[image:image-20220606163732-6.jpeg]] 141 141 142 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 143 143 126 +**Add APP EUI in the application** 144 144 145 145 146 -1. 147 -11. 148 -111. Insert SIM card 129 +[[image:1654504596150-405.png]] 149 149 150 -Insert the NB-IoT Card get from your provider. 151 151 152 152 153 - User needtotakeout the NB-IoT moduleandinsertthe SIM card like below:133 +**Add APP KEY and DEV EUI** 154 154 135 +[[image:1654504683289-357.png]] 155 155 156 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 157 157 158 158 159 -1. 160 -11. 161 -111. Connect USB – TTL to NSE01 to configure it 139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 162 162 163 163 164 - User needtoconfigure NSE01 viaserialport to set the **ServerAddress** / **UplinkTopic**todefinewhereandhow-touplink packets.NSE01support ATCommands,usercanuse a USBtoTTL adapterto connectto NSE01and use AT Commandsto configure it, as below.142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 165 165 144 +[[image:image-20220606163915-7.png]] 166 166 167 167 147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 168 169 - Connection:149 +[[image:1654504778294-788.png]] 170 170 171 -USB TTL GND <~-~-~-~-> GND 172 172 173 -USB TTL TXD <~-~-~-~-> UART_RXD 174 174 175 -USB TTL RXD <~-~-~-~-> UART_TXD 176 - 177 - 178 - 179 -In the PC, use below serial tool settings: 180 - 181 -* Baud: **9600** 182 -* Data bits:** 8** 183 -* Stop bits: **1** 184 -* Parity: **None** 185 -* Flow Control: **None** 186 - 187 - 188 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 189 - 190 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 191 - 192 -Note: the valid AT Commands can be found at: 193 - 194 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 195 - 196 - 197 -1. 198 -11. 199 -111. Use CoAP protocol to uplink data 200 - 201 - 202 -Note: if you don’t have CoAP server, you can refer this link to set up one: 203 - 204 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 205 - 206 - 207 -Use below commands: 208 - 209 -* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 210 -* **AT+SERVADDR=120.24.4.116,5683 **~/~/ to set CoAP server address and port 211 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" **~/~/Set COAP resource path 212 - 213 - 214 -For parameter description, please refer to AT command set 215 - 216 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 217 - 218 - 219 -After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 220 - 221 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 222 - 223 -1. 224 -11. 225 -111. Use UDP protocol to uplink data(Default protocol) 226 - 227 - 228 -This feature is supported since firmware version v1.0.1 229 - 230 - 231 -* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 232 -* **AT+SERVADDR=120.24.4.116,5601 **~/~/ to set UDP server address and port 233 -* **AT+CFM=1 **~/~/If the server does not respond, this command is unnecessary 234 - 235 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 236 - 237 - 238 - 239 - 240 - 241 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 242 - 243 - 244 -1. 245 -11. 246 -111. Use MQTT protocol to uplink data 247 - 248 - 249 -This feature is supported since firmware version v110 250 - 251 - 252 -* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 253 -* **AT+SERVADDR=120.24.4.116,1883 **~/~/Set MQTT server address and port 254 -* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT 255 -* **AT+UNAME=UNAME **~/~/Set the username of MQTT 256 -* **AT+PWD=PWD **~/~/Set the password of MQTT 257 -* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 258 -* **AT+SUBTOPIC=NSE01_SUB **~/~/Set the subscription topic of MQTT 259 - 260 - 261 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 262 - 263 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 264 - 265 - 266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 - 268 - 269 -1. 270 -11. 271 -111. Use TCP protocol to uplink data 272 - 273 - 274 -This feature is supported since firmware version v110 275 - 276 - 277 -* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 278 -* **AT+SERVADDR=120.24.4.116,5600 **~/~/ to set TCP server address and port 279 - 280 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 281 - 282 - 283 - 284 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 285 - 286 - 287 -1. 288 -11. 289 -111. Change Update Interval 290 - 291 -User can use below command to change the **uplink interval**. 292 - 293 -**~ AT+TDC=600 **~/~/ Set Update Interval to 600s 294 - 295 - 296 -**NOTE:** 297 - 298 -1. By default, the device will send an uplink message every 1 hour. 299 - 300 - 301 - 302 - 303 - 304 - 305 - 306 306 == 2.3 Uplink Payload == 307 307 308 308 ... ... @@ -842,6 +842,7 @@ 842 842 * Solid ON for 5 seconds once device successful Join the network. 843 843 * Blink once when device transmit a packet. 844 844 692 + 845 845 == 2.9 Installation in Soil == 846 846 847 847 **Measurement the soil surface**
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content