Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Content
-
... ... @@ -59,8 +59,6 @@ 59 59 * Micro SIM card slot for NB-IoT SIM 60 60 * 8500mAh Battery for long term use 61 61 62 - 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -69,7 +69,6 @@ 69 69 * Supply Voltage: 2.1v ~~ 3.6v 70 70 * Operating Temperature: -40 ~~ 85°C 71 71 72 - 73 73 (% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 75 * - B1 @H-FDD: 2100MHz ... ... @@ -79,7 +79,6 @@ 79 79 * - B20 @H-FDD: 800MHz 80 80 * - B28 @H-FDD: 700MHz 81 81 82 - 83 83 (% style="color:#037691" %)**Probe Specification:** 84 84 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. ... ... @@ -124,101 +124,226 @@ 124 124 125 125 126 126 127 -== 2.2 Quickguide to connectto LoRaWANserver (OTAA)==123 +== 2.2 Configure the NSE01 == 128 128 129 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 130 130 126 +=== 2.2.1 Test Requirement === 131 131 132 -[[image:1654503992078-669.png]] 133 133 129 +To use NSE01 in your city, make sure meet below requirements: 134 134 135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 136 136 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 137 137 138 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 139 139 140 - Each LSE01is shipped withasticker with the default device EUI as below:140 +[[image:1657249419225-449.png]] 141 141 142 -[[image:image-20220606163732-6.jpeg]] 143 143 144 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 145 145 146 - **AddAPPEUIintheapplication**144 +=== 2.2.2 Insert SIM card === 147 147 146 +Insert the NB-IoT Card get from your provider. 148 148 149 - [[image:1654504596150-405.png]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 150 150 151 151 151 +[[image:1657249468462-536.png]] 152 152 153 -**Add APP KEY and DEV EUI** 154 154 155 -[[image:1654504683289-357.png]] 156 156 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 157 157 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 158 158 159 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 160 160 164 +**Connection:** 161 161 162 - PutaJumperJP2 topowernthedevice. (TheJumpermustbe in FLASH position).166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 163 163 164 - [[image:image-20220606163915-7.png]]168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 165 165 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 166 166 167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 168 169 - [[image:1654504778294-788.png]]173 +In the PC, use below serial tool settings: 170 170 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 171 171 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 172 172 173 - ==2.3Uplink Payload ==185 +[[image:image-20220708110657-3.png]] 174 174 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 175 175 176 -=== 2.3.1 MOD~=0(Default Mode) === 177 177 178 -LSE01 will uplink payload via LoRaWAN with below payload format: 179 179 191 +=== 2.2.4 Use CoAP protocol to uplink data === 192 + 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 194 + 195 + 196 +**Use below commands:** 197 + 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 201 + 202 +For parameter description, please refer to AT command set 203 + 204 +[[image:1657249793983-486.png]] 205 + 206 + 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 208 + 209 +[[image:1657249831934-534.png]] 210 + 211 + 212 + 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 214 + 215 +This feature is supported since firmware version v1.0.1 216 + 217 + 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 221 + 222 +[[image:1657249864775-321.png]] 223 + 224 + 225 +[[image:1657249930215-289.png]] 226 + 227 + 228 + 229 +=== 2.2.6 Use MQTT protocol to uplink data === 230 + 231 +This feature is supported since firmware version v110 232 + 233 + 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 241 + 242 +[[image:1657249978444-674.png]] 243 + 244 + 245 +[[image:1657249990869-686.png]] 246 + 247 + 180 180 ((( 181 - Uplinkpayloadincludes in total11 bytes.249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 182 182 ))) 183 183 184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 -|((( 186 -**Size** 187 187 188 -**(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 -Temperature 192 192 193 -(Reserve, Ignore now) 194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 195 -MOD & Digital Interrupt 254 +=== 2.2.7 Use TCP protocol to uplink data === 196 196 197 -(Optional) 198 -))) 256 +This feature is supported since firmware version v110 199 199 200 -=== 2.3.2 MOD~=1(Original value) === 201 201 202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 203 203 204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 205 -|((( 206 -**Size** 262 +[[image:1657250217799-140.png]] 207 207 208 -**(bytes)** 209 -)))|**2**|**2**|**2**|**2**|**2**|**1** 210 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 211 -Temperature 212 212 213 -(Reserve, Ignore now) 214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 215 -MOD & Digital Interrupt 265 +[[image:1657250255956-604.png]] 216 216 217 -(Optional) 267 + 268 + 269 +=== 2.2.8 Change Update Interval === 270 + 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 272 + 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 274 + 275 +((( 276 +(% style="color:red" %)**NOTE:** 218 218 ))) 219 219 220 -=== 2.3.3 Battery Info === 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 221 221 283 + 284 + 285 +== 2.3 Uplink Payload == 286 + 287 +In this mode, uplink payload includes in total 18 bytes 288 + 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 294 + 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 296 + 297 + 298 +[[image:image-20220708111918-4.png]] 299 + 300 + 301 +The payload is ASCII string, representative same HEX: 302 + 303 +0x72403155615900640c7817075e0a8c02f900 where: 304 + 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 307 + 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 314 + 315 + 316 +== 2.4 Payload Explanation and Sensor Interface == 317 + 318 + 319 +=== 2.4.1 Device ID === 320 + 321 +By default, the Device ID equal to the last 6 bytes of IMEI. 322 + 323 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 324 + 325 +**Example:** 326 + 327 +AT+DEUI=A84041F15612 328 + 329 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 330 + 331 + 332 + 333 +=== 2.4.2 Version Info === 334 + 335 +Specify the software version: 0x64=100, means firmware version 1.00. 336 + 337 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 338 + 339 + 340 + 341 +=== 2.4.3 Battery Info === 342 + 222 222 ((( 223 223 Check the battery voltage for LSE01. 224 224 ))) ... ... @@ -233,14 +233,32 @@ 233 233 234 234 235 235 236 -=== 2. 3.4 SoilMoisture ===357 +=== 2.4.4 Signal Strength === 237 237 359 +NB-IoT Network signal Strength. 360 + 361 +**Ex1: 0x1d = 29** 362 + 363 +(% style="color:blue" %)**0**(%%) -113dBm or less 364 + 365 +(% style="color:blue" %)**1**(%%) -111dBm 366 + 367 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 368 + 369 +(% style="color:blue" %)**31** (%%) -51dBm or greater 370 + 371 +(% style="color:blue" %)**99** (%%) Not known or not detectable 372 + 373 + 374 + 375 +=== 2.4.5 Soil Moisture === 376 + 238 238 ((( 239 239 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 240 240 ))) 241 241 242 242 ((( 243 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 382 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 244 244 ))) 245 245 246 246 ((( ... ... @@ -253,10 +253,10 @@ 253 253 254 254 255 255 256 -=== 2. 3.5Soil Temperature ===395 +=== 2.4.6 Soil Temperature === 257 257 258 258 ((( 259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 398 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 260 260 ))) 261 261 262 262 ((( ... ... @@ -273,7 +273,7 @@ 273 273 274 274 275 275 276 -=== 2. 3.6Soil Conductivity (EC) ===415 +=== 2.4.7 Soil Conductivity (EC) === 277 277 278 278 ((( 279 279 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). ... ... @@ -280,7 +280,7 @@ 280 280 ))) 281 281 282 282 ((( 283 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 284 284 ))) 285 285 286 286 ((( ... ... @@ -295,52 +295,47 @@ 295 295 296 296 ))) 297 297 298 -=== 2. 3.7MOD ===437 +=== 2.4.8 Digital Interrupt === 299 299 300 - Firmwareversionatleastv2.1supportschangingmode.439 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 301 301 302 - Forexample,bytes[10]=90441 +The command is: 303 303 304 - mod=(bytes[10]>>7)&0x01=1.443 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 305 305 306 306 307 - **Downlink Command:**446 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 308 308 309 -If payload = 0x0A00, workmode=0 310 310 311 - If** **payload =** **0x0A01, workmode=1449 +Example: 312 312 451 +0x(00): Normal uplink packet. 313 313 453 +0x(01): Interrupt Uplink Packet. 314 314 315 -=== 2.3.8 Decode payload in The Things Network === 316 316 317 -While using TTN network, you can add the payload format to decode the payload. 318 318 457 +=== 2.4.9 +5V Output === 319 319 320 - [[image:1654505570700-128.png]]459 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 321 321 322 -((( 323 -The payload decoder function for TTN is here: 324 -))) 325 325 326 -((( 327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 328 -))) 462 +The 5V output time can be controlled by AT Command. 329 329 464 +(% style="color:blue" %)**AT+5VT=1000** 330 330 331 - ==2.4UplinkInterval==466 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 332 332 333 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 334 334 335 335 470 +== 2.5 Downlink Payload == 336 336 337 -== 2.5 Downlink Payload == 338 - 339 339 By default, LSE50 prints the downlink payload to console port. 340 340 341 -[[image:image-20220 606165544-8.png]]474 +[[image:image-20220708133731-5.png]] 342 342 343 343 477 + 344 344 ((( 345 345 (% style="color:blue" %)**Examples:** 346 346 )))
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content