Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Content
-
... ... @@ -59,8 +59,6 @@ 59 59 * Micro SIM card slot for NB-IoT SIM 60 60 * 8500mAh Battery for long term use 61 61 62 - 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -69,7 +69,6 @@ 69 69 * Supply Voltage: 2.1v ~~ 3.6v 70 70 * Operating Temperature: -40 ~~ 85°C 71 71 72 - 73 73 (% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 75 * - B1 @H-FDD: 2100MHz ... ... @@ -79,7 +79,6 @@ 79 79 * - B20 @H-FDD: 800MHz 80 80 * - B28 @H-FDD: 700MHz 81 81 82 - 83 83 (% style="color:#037691" %)**Probe Specification:** 84 84 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. ... ... @@ -102,718 +102,540 @@ 102 102 103 103 104 104 105 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 106 106 107 -== 2.1 How it works == 103 +== 2.1 How it works == 108 108 105 + 109 109 ((( 110 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 111 111 ))) 112 112 110 + 113 113 ((( 114 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 115 115 ))) 116 116 115 +[[image:image-20220708101605-2.png]] 117 117 117 +((( 118 + 119 +))) 118 118 119 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 120 120 121 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 122 122 123 +== 2.2 Configure the NSE01 == 123 123 124 -[[image:1654503992078-669.png]] 125 125 126 +=== 2.2.1 Test Requirement === 126 126 127 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 128 128 129 +To use NSE01 in your city, make sure meet below requirements: 129 129 130 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 131 131 132 -Each LSE01 is shipped with a sticker with the default device EUI as below: 133 - 134 -[[image:image-20220606163732-6.jpeg]] 135 - 136 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 137 - 138 -**Add APP EUI in the application** 139 - 140 - 141 -[[image:1654504596150-405.png]] 142 - 143 - 144 - 145 -**Add APP KEY and DEV EUI** 146 - 147 -[[image:1654504683289-357.png]] 148 - 149 - 150 - 151 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 152 - 153 - 154 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 155 - 156 -[[image:image-20220606163915-7.png]] 157 - 158 - 159 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 160 - 161 -[[image:1654504778294-788.png]] 162 - 163 - 164 - 165 -== 2.3 Uplink Payload == 166 - 167 - 168 -=== 2.3.1 MOD~=0(Default Mode) === 169 - 170 -LSE01 will uplink payload via LoRaWAN with below payload format: 171 - 172 172 ((( 173 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 174 174 ))) 175 175 176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 -|((( 178 -**Size** 179 179 180 -**(bytes)** 181 -)))|**2**|**2**|**2**|**2**|**2**|**1** 182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 -Temperature 140 +[[image:1657249419225-449.png]] 184 184 185 -(Reserve, Ignore now) 186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 187 -MOD & Digital Interrupt 188 188 189 -(Optional) 190 -))) 191 191 192 -=== 2. 3.2MOD~=1(Originalvalue)===144 +=== 2.2.2 Insert SIM card === 193 193 194 - Thismodecan get the originalAD valueofistureand original conductivity (with temperaturedrift compensation).146 +Insert the NB-IoT Card get from your provider. 195 195 196 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 197 -|((( 198 -**Size** 148 +User need to take out the NB-IoT module and insert the SIM card like below: 199 199 200 -**(bytes)** 201 -)))|**2**|**2**|**2**|**2**|**2**|**1** 202 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 203 -Temperature 204 204 205 -(Reserve, Ignore now) 206 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 207 -MOD & Digital Interrupt 151 +[[image:1657249468462-536.png]] 208 208 209 -(Optional) 210 -))) 211 211 212 -=== 2.3.3 Battery Info === 213 213 214 -((( 215 -Check the battery voltage for LSE01. 216 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 217 217 218 218 ((( 219 -Ex1: 0x0B45 = 2885mV 220 -))) 221 - 222 222 ((( 223 -E x2: 0x0B49=2889mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 224 224 ))) 225 - 226 - 227 - 228 -=== 2.3.4 Soil Moisture === 229 - 230 -((( 231 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 232 232 ))) 233 233 234 -((( 235 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 236 -))) 237 237 238 -((( 239 - 240 -))) 164 +**Connection:** 241 241 242 -((( 243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 -))) 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 245 245 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 246 246 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 247 247 248 -=== 2.3.5 Soil Temperature === 249 249 250 -((( 251 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 252 -))) 173 +In the PC, use below serial tool settings: 253 253 254 -((( 255 -**Example**: 256 -))) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 257 257 258 258 ((( 259 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp =0105(H)/100=2.61°C182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 260 260 ))) 261 261 262 -((( 263 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 264 -))) 185 +[[image:image-20220708110657-3.png]] 265 265 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 266 266 267 267 268 -=== 2.3.6 Soil Conductivity (EC) === 269 269 270 -((( 271 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 272 -))) 191 +=== 2.2.4 Use CoAP protocol to uplink data === 273 273 274 -((( 275 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 276 -))) 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 277 277 278 -((( 279 -Generally, the EC value of irrigation water is less than 800uS / cm. 280 -))) 281 281 282 -((( 283 - 284 -))) 196 +**Use below commands:** 285 285 286 -(( (287 - 288 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 289 289 290 - ===2.3.7MOD===202 +For parameter description, please refer to AT command set 291 291 292 - Firmwareversion at least v2.1 supports changing mode.204 +[[image:1657249793983-486.png]] 293 293 294 -For example, bytes[10]=90 295 295 296 - mod=(bytes[10]>>7)&0x01=1.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 297 297 209 +[[image:1657249831934-534.png]] 298 298 299 -**Downlink Command:** 300 300 301 -If payload = 0x0A00, workmode=0 302 302 303 - If****payload=****0x0A01,workmode=1213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 304 304 215 +This feature is supported since firmware version v1.0.1 305 305 306 306 307 -=== 2.3.8 Decode payload in The Things Network === 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 308 308 309 - While using TTN network, you can add the payload format to decode the payload.222 +[[image:1657249864775-321.png]] 310 310 311 311 312 -[[image:1654 505570700-128.png]]225 +[[image:1657249930215-289.png]] 313 313 314 -((( 315 -The payload decoder function for TTN is here: 316 -))) 317 317 318 -((( 319 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 320 -))) 321 321 229 +=== 2.2.6 Use MQTT protocol to uplink data === 322 322 323 - ==2.4UplinkInterval==231 +This feature is supported since firmware version v110 324 324 325 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 326 326 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 327 327 242 +[[image:1657249978444-674.png]] 328 328 329 -== 2.5 Downlink Payload == 330 330 331 - By default, LSE50rints the downlink payload to console port.245 +[[image:1657249990869-686.png]] 332 332 333 -[[image:image-20220606165544-8.png]] 334 334 335 - 336 336 ((( 337 - (%style="color:blue"%)**Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 338 338 ))) 339 339 340 -((( 341 - 342 -))) 343 343 344 -* ((( 345 -(% style="color:blue" %)**Set TDC** 346 -))) 347 347 348 -((( 349 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 350 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 351 351 352 -((( 353 -Payload: 01 00 00 1E TDC=30S 354 -))) 256 +This feature is supported since firmware version v110 355 355 356 -((( 357 -Payload: 01 00 00 3C TDC=60S 358 -))) 359 359 360 -((( 361 - 362 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 363 363 364 -* ((( 365 -(% style="color:blue" %)**Reset** 366 -))) 262 +[[image:1657250217799-140.png]] 367 367 368 -((( 369 -If payload = 0x04FF, it will reset the LSE01 370 -))) 371 371 265 +[[image:1657250255956-604.png]] 372 372 373 -* (% style="color:blue" %)**CFM** 374 374 375 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 376 376 269 +=== 2.2.8 Change Update Interval === 377 377 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 378 378 379 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 380 380 381 381 ((( 382 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 383 383 ))) 384 384 385 385 ((( 386 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 387 387 ))) 388 388 389 -((( 390 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 391 -))) 392 392 393 -((( 394 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 395 -))) 396 396 285 +== 2.3 Uplink Payload == 397 397 398 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 399 399 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 400 400 401 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 402 402 403 403 404 - (% style="color:blue" %)**Step 3**(%%)**:** Create an account or logn Datacake.298 +[[image:image-20220708111918-4.png]] 405 405 406 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 407 407 301 +The payload is ASCII string, representative same HEX: 408 408 409 - [[image:1654505905236-553.png]]303 +0x72403155615900640c7817075e0a8c02f900 where: 410 410 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 411 411 412 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 413 413 414 - [[image:1654505925508-181.png]]315 +== 2.4 Payload Explanation and Sensor Interface == 415 415 416 416 318 +=== 2.4.1 Device ID === 417 417 418 - ==2.7FrequencyPlans==320 +By default, the Device ID equal to the last 6 bytes of IMEI. 419 419 420 - TheLSE01usesOTAAmode and below frequency plansby default. Ifuserwanttouseitwith different frequency plan, pleaserefer the AT command sets.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 421 421 324 +**Example:** 422 422 423 - === 2.7.1EU863-870(EU868) ===326 +AT+DEUI=A84041F15612 424 424 425 - (%style="color:#037691"%)**Uplink:**328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 426 426 427 -868.1 - SF7BW125 to SF12BW125 428 428 429 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 430 430 431 - 868.5- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 432 432 433 - 867.1-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 434 434 435 - 867.3-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 436 436 437 -867.5 - SF7BW125 to SF12BW125 438 438 439 -867.7 - SF7BW125 to SF12BW125 440 440 441 - 867.9- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 442 442 443 -868.8 - FSK 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 444 444 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 445 445 446 -(% style="color:#037691" %)** Downlink:** 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 447 447 448 -Uplink channels 1-9 (RX1) 449 449 450 -869.525 - SF9BW125 (RX2 downlink only) 451 451 356 +=== 2.4.4 Signal Strength === 452 452 358 +NB-IoT Network signal Strength. 453 453 454 - ===2.7.2 US902-928(US915)===360 +**Ex1: 0x1d = 29** 455 455 456 - UsedinUSA,CanadaandSouthAmerica.Default useCHE=2362 +(% style="color:blue" %)**0**(%%) -113dBm or less 457 457 458 -(% style="color: #037691" %)**Uplink:**364 +(% style="color:blue" %)**1**(%%) -111dBm 459 459 460 - 903.9- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 461 461 462 - 904.1-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 463 463 464 -9 04.3-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 465 465 466 -904.5 - SF7BW125 to SF10BW125 467 467 468 -904.7 - SF7BW125 to SF10BW125 469 469 470 - 904.9-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 471 471 472 -905.1 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 473 473 474 -905.3 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 475 475 384 +((( 385 + 386 +))) 476 476 477 -(% style="color:#037691" %)**Downlink:** 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 478 478 479 -923.3 - SF7BW500 to SF12BW500 480 480 481 -923.9 - SF7BW500 to SF12BW500 482 482 483 - 924.5-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 484 484 485 -925.1 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 486 486 487 -925.7 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 488 488 489 -926.3 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 490 490 491 -926.9 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 492 492 493 -927.5 - SF7BW500 to SF12BW500 494 494 495 -923.3 - SF12BW500(RX2 downlink only) 496 496 414 +=== 2.4.7 Soil Conductivity (EC) === 497 497 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 498 498 499 -=== 2.7.3 CN470-510 (CN470) === 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 500 500 501 -Used in China, Default use CHE=1 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 502 502 503 -(% style="color:#037691" %)**Uplink:** 428 +((( 429 + 430 +))) 504 504 505 -486.3 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 506 506 507 -4 86.5-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 508 508 509 - 486.7-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 510 510 511 - 486.9- SF7BW125 toSF12BW125440 +The command is: 512 512 513 - 487.1-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 514 514 515 -487.3 - SF7BW125 to SF12BW125 516 516 517 - 487.5-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 518 518 519 -487.7 - SF7BW125 to SF12BW125 520 520 448 +Example: 521 521 522 -( %style="color:#037691"%)**Downlink:**450 +0x(00): Normal uplink packet. 523 523 524 - 506.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 525 525 526 -506.9 - SF7BW125 to SF12BW125 527 527 528 -507.1 - SF7BW125 to SF12BW125 529 529 530 - 507.3- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 531 531 532 - 507.5-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 533 533 534 -507.7 - SF7BW125 to SF12BW125 535 535 536 -5 07.9-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 537 537 538 - 508.1- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 539 539 540 -50 5.3-SF12BW125(RX2downlinkonly)465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 541 542 542 543 543 544 -== =2.7.4 AU915-928(AU915)===469 +== 2.5 Downlink Payload == 545 545 546 - DefaultuseCHE=2471 +By default, NSE01 prints the downlink payload to console port. 547 547 548 - (% style="color:#037691" %)**Uplink:**473 +[[image:image-20220708133731-5.png]] 549 549 550 -916.8 - SF7BW125 to SF12BW125 551 551 552 -917.0 - SF7BW125 to SF12BW125 553 553 554 -917.2 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 555 555 556 -917.4 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 557 557 558 -917.6 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 559 559 560 -917.8 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 561 561 562 -918.0 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 563 563 564 -918.2 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 565 565 501 +((( 502 + 503 +))) 566 566 567 -(% style="color:#037691" %)**Downlink:** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 568 568 569 -923.3 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 570 570 571 -923.9 - SF7BW500 to SF12BW500 572 572 573 - 924.5-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 574 574 575 - 925.1-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 576 576 577 -925.7 - SF7BW500 to SF12BW500 578 578 579 -926.3 - SF7BW500 to SF12BW500 580 580 581 - 926.9-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 582 582 583 -927.5 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 584 584 585 -923.3 - SF12BW500(RX2 downlink only) 586 586 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 587 587 588 588 589 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 590 590 591 -(% style="color:#037691" %)**Default Uplink channel:** 592 592 593 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 594 594 595 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 596 596 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 597 597 598 - (% style="color:#037691" %)**Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 599 599 600 -(OTAA mode, channel added by JoinAccept message) 601 601 602 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 603 603 604 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 605 605 606 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 607 607 608 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 609 609 610 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 611 611 612 -923.0 - SF7BW125 to SF10BW125 613 613 614 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 615 615 616 616 617 - (% style="color:#037691"%)**AS923~~AS925 forBrunei,Cambodia, HongKong, Indonesia,Laos, Taiwan, Thailand, Vietnam**:566 +Download URL & Firmware Change log 618 618 619 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 620 620 621 -923.8 - SF7BW125 to SF10BW125 622 622 623 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 624 624 625 -924.2 - SF7BW125 to SF10BW125 626 626 627 -924.4 - SF7BW125 to SF10BW125 628 628 629 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 630 630 577 +=== 2.9.1 Battery Type === 631 631 632 -(% style="color:#037691" %)** Downlink:** 633 633 634 - Uplinkchannels1-8(RX1)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 635 635 636 -923.2 - SF10BW125 (RX2) 637 637 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 638 638 639 639 640 - ===2.7.6KR920-923(KR920)===586 +The battery related documents as below: 641 641 642 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 643 643 644 -922.1 - SF7BW125 to SF12BW125 645 - 646 -922.3 - SF7BW125 to SF12BW125 647 - 648 -922.5 - SF7BW125 to SF12BW125 649 - 650 - 651 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 652 - 653 -922.1 - SF7BW125 to SF12BW125 654 - 655 -922.3 - SF7BW125 to SF12BW125 656 - 657 -922.5 - SF7BW125 to SF12BW125 658 - 659 -922.7 - SF7BW125 to SF12BW125 660 - 661 -922.9 - SF7BW125 to SF12BW125 662 - 663 -923.1 - SF7BW125 to SF12BW125 664 - 665 -923.3 - SF7BW125 to SF12BW125 666 - 667 - 668 -(% style="color:#037691" %)**Downlink:** 669 - 670 -Uplink channels 1-7(RX1) 671 - 672 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 673 - 674 - 675 - 676 -=== 2.7.7 IN865-867 (IN865) === 677 - 678 -(% style="color:#037691" %)** Uplink:** 679 - 680 -865.0625 - SF7BW125 to SF12BW125 681 - 682 -865.4025 - SF7BW125 to SF12BW125 683 - 684 -865.9850 - SF7BW125 to SF12BW125 685 - 686 - 687 -(% style="color:#037691" %) **Downlink:** 688 - 689 -Uplink channels 1-3 (RX1) 690 - 691 -866.550 - SF10BW125 (RX2) 692 - 693 - 694 - 695 - 696 -== 2.8 LED Indicator == 697 - 698 -The LSE01 has an internal LED which is to show the status of different state. 699 - 700 -* Blink once when device power on. 701 -* Solid ON for 5 seconds once device successful Join the network. 702 -* Blink once when device transmit a packet. 703 - 704 -== 2.9 Installation in Soil == 705 - 706 -**Measurement the soil surface** 707 - 708 - 709 -[[image:1654506634463-199.png]] 710 - 711 711 ((( 712 -((( 713 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 714 714 ))) 715 -))) 716 716 717 717 718 718 719 - [[image:1654506665940-119.png]]598 +2.9.2 720 720 721 -((( 722 -Dig a hole with diameter > 20CM. 723 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 724 724 725 -((( 726 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 727 -))) 728 728 603 +Instruction to use as below: 729 729 730 -== 2.10 Firmware Change Log == 731 731 732 -((( 733 -**Firmware download link:** 734 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 735 735 736 -((( 737 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 738 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 739 739 740 -((( 741 - 742 -))) 743 743 744 -((( 745 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 746 -))) 611 +Step 2: Open it and choose 747 747 748 - (((749 - 750 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 751 751 752 -((( 753 -**V1.0.** 754 -))) 617 +And the Life expectation in difference case will be shown on the right. 755 755 756 -((( 757 -Release 758 -))) 759 759 760 760 761 -== 2. 11BatteryAnalysis==621 +=== 2.9.3 Battery Note === 762 762 763 -=== 2.11.1 Battery Type === 764 - 765 765 ((( 766 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 767 -))) 768 - 769 -((( 770 -The battery is designed to last for more than 5 years for the LSN50. 771 -))) 772 - 773 -((( 774 -((( 775 -The battery-related documents are as below: 776 -))) 777 -))) 778 - 779 -* ((( 780 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 781 -))) 782 -* ((( 783 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 784 -))) 785 -* ((( 786 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 787 -))) 788 - 789 - [[image:image-20220610172436-1.png]] 790 - 791 - 792 - 793 -=== 2.11.2 Battery Note === 794 - 795 -((( 796 796 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 797 797 ))) 798 798 799 799 800 800 801 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 802 802 803 -((( 804 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 805 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 806 806 807 -((( 808 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 809 -))) 810 810 811 -((( 812 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 813 -))) 814 814 815 - 816 - 817 817 = 3. Using the AT Commands = 818 818 819 819 == 3.1 Access AT Commands ==
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content