Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Content
-
... ... @@ -18,20 +18,20 @@ 18 18 19 19 20 20 21 -= 1. Introduction = 21 += 1. Introduction = 22 22 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 24 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 29 30 -It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 31 32 32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 34 -NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 35 36 36 37 37 ))) ... ... @@ -45,27 +45,46 @@ 45 45 46 46 == 1.2 Features == 47 47 48 - * LoRaWAN 1.0.3 Class A49 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 53 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 59 59 60 -== 1.3 Specification == 62 +== 1.3 Specification == 61 61 64 + 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 62 62 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 63 63 64 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 65 65 66 66 67 67 68 -== 1.4 Applications == 87 +== 1.4 Applications == 69 69 70 70 * Smart Agriculture 71 71 ... ... @@ -72,725 +72,547 @@ 72 72 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 73 74 74 75 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 76 76 77 77 78 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 79 79 80 80 81 81 82 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 83 83 84 -== 2.1 How it works == 103 +== 2.1 How it works == 85 85 105 + 86 86 ((( 87 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 88 88 ))) 89 89 110 + 90 90 ((( 91 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 92 92 ))) 93 93 115 +[[image:image-20220708101605-2.png]] 94 94 117 +((( 118 + 119 +))) 95 95 96 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 97 98 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 99 99 123 +== 2.2 Configure the NSE01 == 100 100 101 -[[image:1654503992078-669.png]] 102 102 126 +=== 2.2.1 Test Requirement === 103 103 104 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 105 129 +To use NSE01 in your city, make sure meet below requirements: 106 106 107 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 108 108 109 -Each LSE01 is shipped with a sticker with the default device EUI as below: 110 - 111 -[[image:image-20220606163732-6.jpeg]] 112 - 113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 - 115 -**Add APP EUI in the application** 116 - 117 - 118 -[[image:1654504596150-405.png]] 119 - 120 - 121 - 122 -**Add APP KEY and DEV EUI** 123 - 124 -[[image:1654504683289-357.png]] 125 - 126 - 127 - 128 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 129 - 130 - 131 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 - 133 -[[image:image-20220606163915-7.png]] 134 - 135 - 136 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 - 138 -[[image:1654504778294-788.png]] 139 - 140 - 141 - 142 -== 2.3 Uplink Payload == 143 - 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 149 ((( 150 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 151 151 ))) 152 152 153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 -|((( 155 -**Size** 156 156 157 -**(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 -Temperature 140 +[[image:1657249419225-449.png]] 161 161 162 -(Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 -MOD & Digital Interrupt 165 165 166 -(Optional) 167 -))) 168 168 169 -=== 2. 3.2MOD~=1(Originalvalue)===144 +=== 2.2.2 Insert SIM card === 170 170 171 - Thismodecan get the originalAD valueofistureand original conductivity (with temperaturedrift compensation).146 +Insert the NB-IoT Card get from your provider. 172 172 173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 -|((( 175 -**Size** 148 +User need to take out the NB-IoT module and insert the SIM card like below: 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 -Temperature 181 181 182 -(Reserve, Ignore now) 183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 -MOD & Digital Interrupt 151 +[[image:1657249468462-536.png]] 185 185 186 -(Optional) 187 -))) 188 188 189 -=== 2.3.3 Battery Info === 190 190 191 -((( 192 -Check the battery voltage for LSE01. 193 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 194 194 195 195 ((( 196 -Ex1: 0x0B45 = 2885mV 197 -))) 198 - 199 199 ((( 200 -E x2: 0x0B49=2889mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 201 201 ))) 202 - 203 - 204 - 205 -=== 2.3.4 Soil Moisture === 206 - 207 -((( 208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 209 ))) 210 210 211 -((( 212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 -))) 214 214 215 -((( 216 - 217 -))) 164 +**Connection:** 218 218 219 -((( 220 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 -))) 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 222 222 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 223 223 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 224 224 225 -=== 2.3.5 Soil Temperature === 226 226 227 -((( 228 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 -))) 173 +In the PC, use below serial tool settings: 230 230 231 -((( 232 -**Example**: 233 -))) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 234 234 235 235 ((( 236 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp =0105(H)/100=2.61°C182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 237 237 ))) 238 238 239 -((( 240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 -))) 185 +[[image:image-20220708110657-3.png]] 242 242 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 243 243 244 244 245 -=== 2.3.6 Soil Conductivity (EC) === 246 246 247 -((( 248 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 -))) 191 +=== 2.2.4 Use CoAP protocol to uplink data === 250 250 251 -((( 252 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 -))) 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 254 254 255 -((( 256 -Generally, the EC value of irrigation water is less than 800uS / cm. 257 -))) 258 258 259 -((( 260 - 261 -))) 196 +**Use below commands:** 262 262 263 -(( (264 - 265 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 266 266 267 - ===2.3.7MOD===202 +For parameter description, please refer to AT command set 268 268 269 - Firmwareversion at least v2.1 supports changing mode.204 +[[image:1657249793983-486.png]] 270 270 271 -For example, bytes[10]=90 272 272 273 - mod=(bytes[10]>>7)&0x01=1.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 274 274 209 +[[image:1657249831934-534.png]] 275 275 276 -**Downlink Command:** 277 277 278 -If payload = 0x0A00, workmode=0 279 279 280 - If****payload=****0x0A01,workmode=1213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 281 281 215 +This feature is supported since firmware version v1.0.1 282 282 283 283 284 -=== 2.3.8 Decode payload in The Things Network === 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 285 285 286 - While using TTN network, you can add the payload format to decode the payload.222 +[[image:1657249864775-321.png]] 287 287 288 288 289 -[[image:1654 505570700-128.png]]225 +[[image:1657249930215-289.png]] 290 290 291 -((( 292 -The payload decoder function for TTN is here: 293 -))) 294 294 295 -((( 296 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 297 -))) 298 298 229 +=== 2.2.6 Use MQTT protocol to uplink data === 299 299 300 - ==2.4UplinkInterval==231 +This feature is supported since firmware version v110 301 301 302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 303 303 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 304 304 242 +[[image:1657249978444-674.png]] 305 305 306 -== 2.5 Downlink Payload == 307 307 308 - By default, LSE50rints the downlink payload to console port.245 +[[image:1657249990869-686.png]] 309 309 310 -[[image:image-20220606165544-8.png]] 311 311 312 - 313 313 ((( 314 - (%style="color:blue"%)**Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 315 315 ))) 316 316 317 -((( 318 - 319 -))) 320 320 321 -* ((( 322 -(% style="color:blue" %)**Set TDC** 323 -))) 324 324 325 -((( 326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 328 328 329 -((( 330 -Payload: 01 00 00 1E TDC=30S 331 -))) 256 +This feature is supported since firmware version v110 332 332 333 -((( 334 -Payload: 01 00 00 3C TDC=60S 335 -))) 336 336 337 -((( 338 - 339 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 340 340 341 -* ((( 342 -(% style="color:blue" %)**Reset** 343 -))) 262 +[[image:1657250217799-140.png]] 344 344 345 -((( 346 -If payload = 0x04FF, it will reset the LSE01 347 -))) 348 348 265 +[[image:1657250255956-604.png]] 349 349 350 -* (% style="color:blue" %)**CFM** 351 351 352 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 353 353 269 +=== 2.2.8 Change Update Interval === 354 354 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 355 355 356 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 357 357 358 358 ((( 359 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 360 360 ))) 361 361 362 362 ((( 363 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 364 364 ))) 365 365 366 -((( 367 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 -))) 369 369 370 -((( 371 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 -))) 373 373 285 +== 2.3 Uplink Payload == 374 374 375 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 376 376 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 377 377 378 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 379 379 380 380 381 - (% style="color:blue" %)**Step 3**(%%)**:** Create an account or logn Datacake.298 +[[image:image-20220708111918-4.png]] 382 382 383 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 384 384 301 +The payload is ASCII string, representative same HEX: 385 385 386 - [[image:1654505905236-553.png]]303 +0x72403155615900640c7817075e0a8c02f900 where: 387 387 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 388 388 389 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 390 390 391 - [[image:1654505925508-181.png]]315 +== 2.4 Payload Explanation and Sensor Interface == 392 392 393 393 318 +=== 2.4.1 Device ID === 394 394 395 - ==2.7FrequencyPlans==320 +By default, the Device ID equal to the last 6 bytes of IMEI. 396 396 397 - TheLSE01usesOTAAmode and below frequency plansby default. Ifuserwanttouseitwith different frequency plan, pleaserefer the AT command sets.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 398 398 324 +**Example:** 399 399 400 - === 2.7.1EU863-870(EU868) ===326 +AT+DEUI=A84041F15612 401 401 402 - (%style="color:#037691"%)**Uplink:**328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 403 403 404 -868.1 - SF7BW125 to SF12BW125 405 405 406 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 407 407 408 - 868.5- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 409 409 410 - 867.1-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 411 411 412 - 867.3-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 413 413 414 -867.5 - SF7BW125 to SF12BW125 415 415 416 -867.7 - SF7BW125 to SF12BW125 417 417 418 - 867.9- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 419 419 420 -868.8 - FSK 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 421 421 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 422 422 423 -(% style="color:#037691" %)** Downlink:** 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 424 424 425 -Uplink channels 1-9 (RX1) 426 426 427 -869.525 - SF9BW125 (RX2 downlink only) 428 428 356 +=== 2.4.4 Signal Strength === 429 429 358 +NB-IoT Network signal Strength. 430 430 431 - ===2.7.2 US902-928(US915)===360 +**Ex1: 0x1d = 29** 432 432 433 - UsedinUSA,CanadaandSouthAmerica.Default useCHE=2362 +(% style="color:blue" %)**0**(%%) -113dBm or less 434 434 435 -(% style="color: #037691" %)**Uplink:**364 +(% style="color:blue" %)**1**(%%) -111dBm 436 436 437 - 903.9- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 438 438 439 - 904.1-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 440 440 441 -9 04.3-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 442 442 443 -904.5 - SF7BW125 to SF10BW125 444 444 445 -904.7 - SF7BW125 to SF10BW125 446 446 447 - 904.9-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 448 448 449 -905.1 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 450 450 451 -905.3 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 452 452 384 +((( 385 + 386 +))) 453 453 454 -(% style="color:#037691" %)**Downlink:** 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 455 455 456 -923.3 - SF7BW500 to SF12BW500 457 457 458 -923.9 - SF7BW500 to SF12BW500 459 459 460 - 924.5-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 461 461 462 -925.1 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 463 463 464 -925.7 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 465 465 466 -926.3 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 467 467 468 -926.9 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 469 469 470 -927.5 - SF7BW500 to SF12BW500 471 471 472 -923.3 - SF12BW500(RX2 downlink only) 473 473 414 +=== 2.4.7 Soil Conductivity (EC) === 474 474 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 475 475 476 -=== 2.7.3 CN470-510 (CN470) === 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 477 477 478 -Used in China, Default use CHE=1 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 479 479 480 -(% style="color:#037691" %)**Uplink:** 428 +((( 429 + 430 +))) 481 481 482 -486.3 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 483 483 484 -4 86.5-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 485 485 486 - 486.7-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 487 487 488 - 486.9- SF7BW125 toSF12BW125440 +The command is: 489 489 490 - 487.1-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 491 491 492 -487.3 - SF7BW125 to SF12BW125 493 493 494 - 487.5-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 495 495 496 -487.7 - SF7BW125 to SF12BW125 497 497 448 +Example: 498 498 499 -( %style="color:#037691"%)**Downlink:**450 +0x(00): Normal uplink packet. 500 500 501 - 506.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 502 502 503 -506.9 - SF7BW125 to SF12BW125 504 504 505 -507.1 - SF7BW125 to SF12BW125 506 506 507 - 507.3- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 508 508 509 - 507.5-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 510 510 511 -507.7 - SF7BW125 to SF12BW125 512 512 513 -5 07.9-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 514 514 515 - 508.1- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 516 516 517 -50 5.3-SF12BW125(RX2downlinkonly)465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 518 518 519 519 520 520 521 -== =2.7.4 AU915-928(AU915)===469 +== 2.5 Downlink Payload == 522 522 523 - DefaultuseCHE=2471 +By default, NSE01 prints the downlink payload to console port. 524 524 525 - (% style="color:#037691" %)**Uplink:**473 +[[image:image-20220708133731-5.png]] 526 526 527 -916.8 - SF7BW125 to SF12BW125 528 528 529 -917.0 - SF7BW125 to SF12BW125 530 530 531 -917.2 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 532 532 533 -917.4 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 534 534 535 -917.6 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 536 536 537 -917.8 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 538 538 539 -918.0 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 540 540 541 -918.2 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 542 542 501 +((( 502 + 503 +))) 543 543 544 -(% style="color:#037691" %)**Downlink:** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 545 545 546 -923.3 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 547 547 548 -923.9 - SF7BW500 to SF12BW500 549 549 550 - 924.5-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 551 551 552 - 925.1-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 553 553 554 -925.7 - SF7BW500 to SF12BW500 555 555 556 -926.3 - SF7BW500 to SF12BW500 557 557 558 - 926.9-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 559 559 560 -927.5 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 561 561 562 -923.3 - SF12BW500(RX2 downlink only) 563 563 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 564 564 565 565 566 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 567 567 568 -(% style="color:#037691" %)**Default Uplink channel:** 569 569 570 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 571 571 572 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 573 573 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 574 574 575 - (% style="color:#037691" %)**Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 576 576 577 -(OTAA mode, channel added by JoinAccept message) 578 578 579 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 580 580 581 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 582 582 583 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 584 584 585 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 586 586 587 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 588 588 589 -923.0 - SF7BW125 to SF10BW125 590 590 591 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 592 592 593 593 594 - (% style="color:#037691"%)**AS923~~AS925 forBrunei,Cambodia, HongKong, Indonesia,Laos, Taiwan, Thailand, Vietnam**:566 +Download URL & Firmware Change log 595 595 596 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 597 597 598 -923.8 - SF7BW125 to SF10BW125 599 599 600 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 601 601 602 -924.2 - SF7BW125 to SF10BW125 603 603 604 -924.4 - SF7BW125 to SF10BW125 605 605 606 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 607 607 577 +=== 2.9.1 Battery Type === 608 608 609 -(% style="color:#037691" %)** Downlink:** 610 610 611 - Uplinkchannels1-8(RX1)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 612 612 613 -923.2 - SF10BW125 (RX2) 614 614 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 615 615 616 616 617 - ===2.7.6KR920-923(KR920)===586 +The battery related documents as below: 618 618 619 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 620 620 621 -922.1 - SF7BW125 to SF12BW125 622 - 623 -922.3 - SF7BW125 to SF12BW125 624 - 625 -922.5 - SF7BW125 to SF12BW125 626 - 627 - 628 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 629 - 630 -922.1 - SF7BW125 to SF12BW125 631 - 632 -922.3 - SF7BW125 to SF12BW125 633 - 634 -922.5 - SF7BW125 to SF12BW125 635 - 636 -922.7 - SF7BW125 to SF12BW125 637 - 638 -922.9 - SF7BW125 to SF12BW125 639 - 640 -923.1 - SF7BW125 to SF12BW125 641 - 642 -923.3 - SF7BW125 to SF12BW125 643 - 644 - 645 -(% style="color:#037691" %)**Downlink:** 646 - 647 -Uplink channels 1-7(RX1) 648 - 649 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 650 - 651 - 652 - 653 -=== 2.7.7 IN865-867 (IN865) === 654 - 655 -(% style="color:#037691" %)** Uplink:** 656 - 657 -865.0625 - SF7BW125 to SF12BW125 658 - 659 -865.4025 - SF7BW125 to SF12BW125 660 - 661 -865.9850 - SF7BW125 to SF12BW125 662 - 663 - 664 -(% style="color:#037691" %) **Downlink:** 665 - 666 -Uplink channels 1-3 (RX1) 667 - 668 -866.550 - SF10BW125 (RX2) 669 - 670 - 671 - 672 - 673 -== 2.8 LED Indicator == 674 - 675 -The LSE01 has an internal LED which is to show the status of different state. 676 - 677 -* Blink once when device power on. 678 -* Solid ON for 5 seconds once device successful Join the network. 679 -* Blink once when device transmit a packet. 680 - 681 -== 2.9 Installation in Soil == 682 - 683 -**Measurement the soil surface** 684 - 685 - 686 -[[image:1654506634463-199.png]] 687 - 688 688 ((( 689 -((( 690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 691 691 ))) 692 -))) 693 693 694 694 695 695 696 - [[image:1654506665940-119.png]]598 +2.9.2 697 697 698 -((( 699 -Dig a hole with diameter > 20CM. 700 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 701 701 702 -((( 703 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 -))) 705 705 603 +Instruction to use as below: 706 706 707 -== 2.10 Firmware Change Log == 708 708 709 -((( 710 -**Firmware download link:** 711 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 712 712 713 -((( 714 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 716 716 717 -((( 718 - 719 -))) 720 720 721 -((( 722 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 -))) 611 +Step 2: Open it and choose 724 724 725 - (((726 - 727 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 728 728 729 -((( 730 -**V1.0.** 731 -))) 617 +And the Life expectation in difference case will be shown on the right. 732 732 733 -((( 734 -Release 735 -))) 736 736 737 737 738 -== 2. 11BatteryAnalysis==621 +=== 2.9.3 Battery Note === 739 739 740 -=== 2.11.1 Battery Type === 741 - 742 742 ((( 743 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 744 -))) 745 - 746 -((( 747 -The battery is designed to last for more than 5 years for the LSN50. 748 -))) 749 - 750 -((( 751 -((( 752 -The battery-related documents are as below: 753 -))) 754 -))) 755 - 756 -* ((( 757 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 758 -))) 759 -* ((( 760 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 761 -))) 762 -* ((( 763 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 764 -))) 765 - 766 - [[image:image-20220610172436-1.png]] 767 - 768 - 769 - 770 -=== 2.11.2 Battery Note === 771 - 772 -((( 773 773 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 774 774 ))) 775 775 776 776 777 777 778 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 779 779 780 -((( 781 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 782 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 783 783 784 -((( 785 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 786 -))) 787 787 788 -((( 789 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 790 -))) 791 791 792 - 793 - 794 794 = 3. Using the AT Commands = 795 795 796 796 == 3.1 Access AT Commands ==
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content