Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -13,70 +13,82 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 21 += 1. Introduction = 22 22 23 -= 1. Introduction =23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 24 25 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 - 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 32 32 33 -((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 44 44 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 47 47 ))) 48 48 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 54 54 55 55 56 56 57 57 == 1.2 Features == 58 58 59 - * LoRaWAN 1.0.3 Class A60 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 61 61 * Monitor Soil Moisture 62 62 * Monitor Soil Temperature 63 63 * Monitor Soil Conductivity 64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 70 70 71 -== 1.3 Specification == 72 72 63 + 64 +== 1.3 Specification == 65 + 66 + 67 +(% style="color:#037691" %)**Common DC Characteristics:** 68 + 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 71 + 72 + 73 +(% style="color:#037691" %)**NB-IoT Spec:** 74 + 75 +* - B1 @H-FDD: 2100MHz 76 +* - B3 @H-FDD: 1800MHz 77 +* - B8 @H-FDD: 900MHz 78 +* - B5 @H-FDD: 850MHz 79 +* - B20 @H-FDD: 800MHz 80 +* - B28 @H-FDD: 700MHz 81 + 82 + 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 73 73 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 75 -[[image:image-20220 606162220-5.png]]87 +[[image:image-20220708101224-1.png]] 76 76 77 77 78 78 79 -== 1.4 Applications == 91 +== 1.4 Applications == 80 80 81 81 * Smart Agriculture 82 82 ... ... @@ -83,73 +83,210 @@ 83 83 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 84 85 85 86 -== 1.5 Firmware Changelog==98 +== 1.5 Pin Definitions == 87 87 88 88 89 - **LSE01v1.0 :** Release101 +[[image:1657246476176-652.png]] 90 90 91 91 92 92 93 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=105 += 2. Use NSE01 to communicate with IoT Server = 94 94 95 -== 2.1 How it works == 107 +== 2.1 How it works == 96 96 109 + 97 97 ((( 98 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 99 99 ))) 100 100 114 + 101 101 ((( 102 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].116 +The diagram below shows the working flow in default firmware of NSE01: 103 103 ))) 104 104 119 +[[image:image-20220708101605-2.png]] 105 105 121 +((( 122 + 123 +))) 106 106 107 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 110 110 127 +== 2.2 Configure the NSE01 == 111 111 112 - [[image:1654503992078-669.png]]129 +=== 2.2.1 Test Requirement === 113 113 114 114 115 -T heLG308 isalreadyset to connected to [[TTN network>>url:https://console.cloud.thethings.network/]],so whatweneedtonowis configuretheTTNserver.132 +To use NSE01 in your city, make sure meet below requirements: 116 116 134 +* Your local operator has already distributed a NB-IoT Network there. 135 +* The local NB-IoT network used the band that NSE01 supports. 136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 117 117 118 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 119 119 120 - EachLSE01isshippedwithasticker with the defaultdeviceEUIasbelow:139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 121 121 122 -[[image:image-20220606163732-6.jpeg]] 123 123 124 - You canenter thiskey intheLoRaWAN Serverportal. Belowis TTN screen shot:142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]] 125 125 126 -**Add APP EUI in the application** 127 127 128 128 129 - [[image:1654504596150-405.png]]146 +=== 2.2.2 Insert SIM card === 130 130 148 +Insert the NB-IoT Card get from your provider. 131 131 132 132 133 - **AddAPPKEYandDEVEUI**151 +User need to take out the NB-IoT module and insert the SIM card like below: 134 134 135 -[[image:1654504683289-357.png]] 136 136 154 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 137 137 138 138 139 - (% style="color:blue"%)**Step2**(%%):PoweronLSE01157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 140 140 141 141 142 - Put aJumper onJP2topoweron the device.(TheJumpermustbeinFLASHposition).160 +User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 143 143 144 -[[image:image-20220606163915-7.png]] 145 145 146 146 147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 148 149 - [[image:1654504778294-788.png]]165 +Connection: 150 150 167 +USB TTL GND <~-~-~-~-> GND 151 151 169 +USB TTL TXD <~-~-~-~-> UART_RXD 152 152 171 +USB TTL RXD <~-~-~-~-> UART_TXD 172 + 173 + 174 + 175 +In the PC, use below serial tool settings: 176 + 177 +* Baud: **9600** 178 +* Data bits:** 8** 179 +* Stop bits: **1** 180 +* Parity: **None** 181 +* Flow Control: **None** 182 + 183 + 184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 185 + 186 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 187 + 188 +Note: the valid AT Commands can be found at: 189 + 190 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 191 + 192 + 193 +1. 194 +11. 195 +111. Use CoAP protocol to uplink data 196 + 197 + 198 +Note: if you don’t have CoAP server, you can refer this link to set up one: 199 + 200 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 201 + 202 + 203 +Use below commands: 204 + 205 +* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 206 +* **AT+SERVADDR=120.24.4.116,5683 **~/~/ to set CoAP server address and port 207 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" **~/~/Set COAP resource path 208 + 209 + 210 +For parameter description, please refer to AT command set 211 + 212 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 213 + 214 + 215 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 216 + 217 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 218 + 219 +1. 220 +11. 221 +111. Use UDP protocol to uplink data(Default protocol) 222 + 223 + 224 +This feature is supported since firmware version v1.0.1 225 + 226 + 227 +* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 228 +* **AT+SERVADDR=120.24.4.116,5601 **~/~/ to set UDP server address and port 229 +* **AT+CFM=1 **~/~/If the server does not respond, this command is unnecessary 230 + 231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 232 + 233 + 234 + 235 + 236 + 237 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 238 + 239 + 240 +1. 241 +11. 242 +111. Use MQTT protocol to uplink data 243 + 244 + 245 +This feature is supported since firmware version v110 246 + 247 + 248 +* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 249 +* **AT+SERVADDR=120.24.4.116,1883 **~/~/Set MQTT server address and port 250 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT 251 +* **AT+UNAME=UNAME **~/~/Set the username of MQTT 252 +* **AT+PWD=PWD **~/~/Set the password of MQTT 253 +* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 254 +* **AT+SUBTOPIC=NSE01_SUB **~/~/Set the subscription topic of MQTT 255 + 256 + 257 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 258 + 259 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 260 + 261 + 262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 263 + 264 + 265 +1. 266 +11. 267 +111. Use TCP protocol to uplink data 268 + 269 + 270 +This feature is supported since firmware version v110 271 + 272 + 273 +* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 274 +* **AT+SERVADDR=120.24.4.116,5600 **~/~/ to set TCP server address and port 275 + 276 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 277 + 278 + 279 + 280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 281 + 282 + 283 +1. 284 +11. 285 +111. Change Update Interval 286 + 287 +User can use below command to change the **uplink interval**. 288 + 289 +**~ AT+TDC=600 **~/~/ Set Update Interval to 600s 290 + 291 + 292 +**NOTE:** 293 + 294 +1. By default, the device will send an uplink message every 1 hour. 295 + 296 + 297 + 298 + 299 + 300 + 301 + 153 153 == 2.3 Uplink Payload == 154 154 155 155 ... ... @@ -322,7 +322,7 @@ 322 322 323 323 324 324 ((( 325 -**Examples:** 474 +(% style="color:blue" %)**Examples:** 326 326 ))) 327 327 328 328 ((( ... ... @@ -330,7 +330,7 @@ 330 330 ))) 331 331 332 332 * ((( 333 -**Set TDC** 482 +(% style="color:blue" %)**Set TDC** 334 334 ))) 335 335 336 336 ((( ... ... @@ -350,7 +350,7 @@ 350 350 ))) 351 351 352 352 * ((( 353 -**Reset** 502 +(% style="color:blue" %)**Reset** 354 354 ))) 355 355 356 356 ((( ... ... @@ -358,7 +358,7 @@ 358 358 ))) 359 359 360 360 361 -* **CFM** 510 +* (% style="color:blue" %)**CFM** 362 362 363 363 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 364 ... ... @@ -689,9 +689,6 @@ 689 689 * Solid ON for 5 seconds once device successful Join the network. 690 690 * Blink once when device transmit a packet. 691 691 692 - 693 - 694 - 695 695 == 2.9 Installation in Soil == 696 696 697 697 **Measurement the soil surface** ... ... @@ -1015,15 +1015,15 @@ 1015 1015 1016 1016 = 5. Trouble Shooting = 1017 1017 1018 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==1164 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1019 1019 1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.1166 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1021 1021 1022 1022 1023 -== 5.2 AT Command input doesn ’t work ==1169 +== 5.2 AT Command input doesn't work == 1024 1024 1025 1025 ((( 1026 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1172 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1027 1027 ))) 1028 1028 1029 1029
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content