Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -59,6 +59,7 @@ 59 59 * 4000mAh or 8500mAh Battery for long term use 60 60 61 61 62 + 62 62 == 1.3 Specification == 63 63 64 64 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. ... ... @@ -90,7 +90,7 @@ 90 90 ))) 91 91 92 92 ((( 93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3. UsingtheATCommands"]].94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 94 94 ))) 95 95 96 96 ... ... @@ -143,88 +143,107 @@ 143 143 144 144 == 2.3 Uplink Payload == 145 145 147 +=== === 148 + 146 146 === 2.3.1 MOD~=0(Default Mode) === 147 147 148 148 LSE01 will uplink payload via LoRaWAN with below payload format: 149 149 150 - 153 +((( 151 151 Uplink payload includes in total 11 bytes. 152 - 155 +))) 153 153 154 -(% border="1" cellspacing="10" style="background-color:#f 7faff; width:510px" %)155 -| =(((157 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 158 +|((( 156 156 **Size** 157 157 158 158 **(bytes)** 159 -)))| =(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**160 -|**Value**| (% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((162 +)))|**2**|**2**|**2**|**2**|**2**|**1** 163 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 161 161 Temperature 162 162 163 163 (Reserve, Ignore now) 164 -)))| (% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((167 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 165 165 MOD & Digital Interrupt 166 166 167 167 (Optional) 168 168 ))) 169 169 170 -[[image:1654504881641-514.png]] 171 171 172 - 173 - 174 174 === 2.3.2 MOD~=1(Original value) === 175 175 176 176 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 177 178 -(% border="1" cellspacing="10" style="background-color:#f 7faff; width:510px" %)179 -| =(((178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 180 **Size** 181 181 182 182 **(bytes)** 183 -)))| =**2**|=**2**|=**2**|=**2**|=**2**|=**1**183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 184 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 185 Temperature 186 186 187 187 (Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 189 MOD & Digital Interrupt 190 190 191 191 (Optional) 192 192 ))) 193 193 194 -[[image:1654504907647-967.png]] 195 195 196 - 197 - 198 198 === 2.3.3 Battery Info === 199 199 197 +((( 200 200 Check the battery voltage for LSE01. 199 +))) 201 201 201 +((( 202 202 Ex1: 0x0B45 = 2885mV 203 +))) 203 203 205 +((( 204 204 Ex2: 0x0B49 = 2889mV 207 +))) 205 205 206 206 207 207 208 208 === 2.3.4 Soil Moisture === 209 209 213 +((( 210 210 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 215 +))) 211 211 217 +((( 212 212 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 219 +))) 213 213 221 +((( 222 + 223 +))) 214 214 225 +((( 215 215 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 227 +))) 216 216 217 217 218 218 219 219 === 2.3.5 Soil Temperature === 220 220 233 +((( 221 221 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 235 +))) 222 222 237 +((( 223 223 **Example**: 239 +))) 224 224 241 +((( 225 225 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 243 +))) 226 226 245 +((( 227 227 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 247 +))) 228 228 229 229 230 230 ... ... @@ -259,7 +259,7 @@ 259 259 mod=(bytes[10]>>7)&0x01=1. 260 260 261 261 262 -Downlink Command: 282 +**Downlink Command:** 263 263 264 264 If payload = 0x0A00, workmode=0 265 265 ... ... @@ -274,19 +274,22 @@ 274 274 275 275 [[image:1654505570700-128.png]] 276 276 297 +((( 277 277 The payload decoder function for TTN is here: 299 +))) 278 278 301 +((( 279 279 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 303 +))) 280 280 281 281 306 + 282 282 == 2.4 Uplink Interval == 283 283 284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 309 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 285 285 286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 287 287 288 288 289 - 290 290 == 2.5 Downlink Payload == 291 291 292 292 By default, LSE50 prints the downlink payload to console port. ... ... @@ -294,21 +294,41 @@ 294 294 [[image:image-20220606165544-8.png]] 295 295 296 296 320 +((( 297 297 **Examples:** 322 +))) 298 298 324 +((( 325 + 326 +))) 299 299 300 -* **Set TDC** 328 +* ((( 329 +**Set TDC** 330 +))) 301 301 332 +((( 302 302 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 334 +))) 303 303 336 +((( 304 304 Payload: 01 00 00 1E TDC=30S 338 +))) 305 305 340 +((( 306 306 Payload: 01 00 00 3C TDC=60S 342 +))) 307 307 344 +((( 345 + 346 +))) 308 308 309 -* **Reset** 348 +* ((( 349 +**Reset** 350 +))) 310 310 352 +((( 311 311 If payload = 0x04FF, it will reset the LSE01 354 +))) 312 312 313 313 314 314 * **CFM** ... ... @@ -319,12 +319,21 @@ 319 319 320 320 == 2.6 Show Data in DataCake IoT Server == 321 321 365 +((( 322 322 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 367 +))) 323 323 369 +((( 370 + 371 +))) 324 324 373 +((( 325 325 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 375 +))) 326 326 377 +((( 327 327 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 379 +))) 328 328 329 329 330 330 [[image:1654505857935-743.png]] ... ... @@ -632,6 +632,7 @@ 632 632 * Solid ON for 5 seconds once device successful Join the network. 633 633 * Blink once when device transmit a packet. 634 634 687 + 635 635 == 2.9 Installation in Soil == 636 636 637 637 **Measurement the soil surface** ... ... @@ -751,13 +751,13 @@ 751 751 752 752 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 753 753 754 -[[image:1654501986557-872.png]] 807 +[[image:1654501986557-872.png||height="391" width="800"]] 755 755 756 756 757 757 Or if you have below board, use below connection: 758 758 759 759 760 -[[image:1654502005655-729.png]] 813 +[[image:1654502005655-729.png||height="503" width="801"]] 761 761 762 762 763 763 ... ... @@ -764,7 +764,7 @@ 764 764 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 765 765 766 766 767 - [[image:1654502050864-459.png]] 820 + [[image:1654502050864-459.png||height="564" width="806"]] 768 768 769 769 770 770 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] ... ... @@ -879,20 +879,38 @@ 879 879 880 880 == 4.1 How to change the LoRa Frequency Bands/Region? == 881 881 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 935 +((( 936 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 883 When downloading the images, choose the required image file for download. 938 +))) 884 884 940 +((( 941 + 942 +))) 885 885 944 +((( 886 886 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 946 +))) 887 887 948 +((( 949 + 950 +))) 888 888 952 +((( 889 889 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 +))) 890 890 956 +((( 957 + 958 +))) 891 891 960 +((( 892 892 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 962 +))) 893 893 894 894 [[image:image-20220606154726-3.png]] 895 895 966 + 896 896 When you use the TTN network, the US915 frequency bands use are: 897 897 898 898 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -905,7 +905,9 @@ 905 905 * 905.3 - SF7BW125 to SF10BW125 906 906 * 904.6 - SF8BW500 907 907 979 +((( 908 908 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 981 +))) 909 909 910 910 (% class="box infomessage" %) 911 911 ((( ... ... @@ -917,10 +917,17 @@ 917 917 **ATZ** 918 918 ))) 919 919 993 +((( 920 920 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 +))) 921 921 997 +((( 998 + 999 +))) 922 922 1001 +((( 923 923 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 +))) 924 924 925 925 [[image:image-20220606154825-4.png]] 926 926 ... ... @@ -935,7 +935,9 @@ 935 935 936 936 == 5.2 AT Command input doesn’t work == 937 937 1018 +((( 938 938 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 +))) 939 939 940 940 941 941 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -947,7 +947,9 @@ 947 947 948 948 (% style="color:#4f81bd" %)**Cause for this issue:** 949 949 1032 +((( 950 950 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1034 +))) 951 951 952 952 953 953 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -954,7 +954,7 @@ 954 954 955 955 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 956 956 957 -[[image:1654500929571-736.png]] 1041 +[[image:1654500929571-736.png||height="458" width="832"]] 958 958 959 959 960 960 = 6. Order Info = ... ... @@ -987,7 +987,9 @@ 987 987 = 7. Packing Info = 988 988 989 989 ((( 990 -**Package Includes**: 1074 + 1075 + 1076 +(% style="color:#037691" %)**Package Includes**: 991 991 ))) 992 992 993 993 * ((( ... ... @@ -996,10 +996,8 @@ 996 996 997 997 ((( 998 998 999 -))) 1000 1000 1001 -((( 1002 -**Dimension and weight**: 1086 +(% style="color:#037691" %)**Dimension and weight**: 1003 1003 ))) 1004 1004 1005 1005 * ((( ... ... @@ -1014,7 +1014,6 @@ 1014 1014 * ((( 1015 1015 Weight / pcs : g 1016 1016 1017 - 1018 1018 1019 1019 ))) 1020 1020