Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 13 removed)
- 1654503992078-669.png
- 1654504596150-405.png
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- image-20220606163732-6.jpeg
- image-20220606163915-7.png
- image-20220606165544-8.png
Details
- Page properties
-
- Content
-
... ... @@ -54,6 +54,7 @@ 54 54 * IP66 Waterproof Enclosure 55 55 * 4000mAh or 8500mAh Battery for long term use 56 56 57 + 57 57 == 1.3 Specification == 58 58 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. ... ... @@ -66,10 +66,8 @@ 66 66 67 67 * Smart Agriculture 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 71 72 -== 1.5 Firmware Change log == 71 +== 1.5 Firmware Change log == 73 73 74 74 75 75 **LSE01 v1.0 :** Release ... ... @@ -80,22 +80,19 @@ 80 80 81 81 == 2.1 How it works == 82 82 83 -((( 84 84 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 85 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 91 91 92 92 88 + 93 93 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 95 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 97 97 98 -[[image: 1654503992078-669.png]]94 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 99 99 100 100 101 101 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. ... ... @@ -105,22 +105,27 @@ 105 105 106 106 Each LSE01 is shipped with a sticker with the default device EUI as below: 107 107 108 -[[image:image-20220606163732-6.jpeg]] 109 109 105 + 106 + 110 110 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 111 109 + 112 112 **Add APP EUI in the application** 113 113 114 114 115 -[[image: 1654504596150-405.png]]113 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 116 116 117 117 118 118 119 119 **Add APP KEY and DEV EUI** 120 120 121 -[[image:1654504683289-357.png]] 122 122 120 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 123 123 122 +|((( 123 + 124 +))) 124 124 125 125 **Step 2**: Power on LSE01 126 126 ... ... @@ -127,18 +127,28 @@ 127 127 128 128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 129 130 -[[image:image-20220606163915-7.png]] 131 131 132 132 133 +|((( 134 + 135 +))) 136 + 137 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 138 + 139 + 140 + 141 + 142 + 133 133 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 134 135 -[[image: 1654504778294-788.png]]145 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 136 136 137 137 138 138 139 -== 2.3 Uplink Payload == 140 140 141 -=== 2.3.1 MOD~=0(Default Mode) === 150 +1. 151 +11. Uplink Payload 152 +111. MOD=0(Default Mode) 142 142 143 143 LSE01 will uplink payload via LoRaWAN with below payload format: 144 144 ... ... @@ -161,12 +161,13 @@ 161 161 (Optional) 162 162 ))) 163 163 164 -[[image: 1654504881641-514.png]]175 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 165 165 166 166 178 +1. 179 +11. 180 +111. MOD=1(Original value) 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 - 170 170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 172 |((( ... ... @@ -184,12 +184,12 @@ 184 184 (Optional) 185 185 ))) 186 186 187 -[[image: 1654504907647-967.png]]199 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 188 188 201 +1. 202 +11. 203 +111. Battery Info 189 189 190 - 191 -=== 2.3.3 Battery Info === 192 - 193 193 Check the battery voltage for LSE01. 194 194 195 195 Ex1: 0x0B45 = 2885mV ... ... @@ -198,19 +198,21 @@ 198 198 199 199 200 200 201 -=== 2.3.4 Soil Moisture === 213 +1. 214 +11. 215 +111. Soil Moisture 202 202 203 203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is219 +For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 206 206 221 +**05DC(H) = 1500(D) /100 = 15%.** 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 224 +1. 225 +11. 226 +111. Soil Temperature 210 210 211 - 212 -=== 2.3.5 Soil Temperature === 213 - 214 214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 216 **Example**: ... ... @@ -220,31 +220,21 @@ 220 220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 222 222 237 +1. 238 +11. 239 +111. Soil Conductivity (EC) 223 223 224 - ===2.3.6SoilConductivity(EC)===241 +Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 225 225 226 -((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 -((( 231 231 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 - (((245 + 235 235 Generally, the EC value of irrigation water is less than 800uS / cm. 236 -))) 237 237 238 - (((239 - 240 - )))248 +1. 249 +11. 250 +111. MOD 241 241 242 -((( 243 - 244 -))) 245 - 246 -=== 2.3.7 MOD === 247 - 248 248 Firmware version at least v2.1 supports changing mode. 249 249 250 250 For example, bytes[10]=90 ... ... @@ -259,13 +259,14 @@ 259 259 If** **payload =** **0x0A01, workmode=1 260 260 261 261 266 +1. 267 +11. 268 +111. Decode payload in The Things Network 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 - 265 265 While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 -[[image: 1654505570700-128.png]]273 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 269 269 270 270 The payload decoder function for TTN is here: 271 271 ... ... @@ -272,26 +272,30 @@ 272 272 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 273 273 274 274 275 -== 2.4 Uplink Interval == 280 +1. 281 +11. Uplink Interval 276 276 277 277 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 279 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 287 +1. 288 +11. Downlink Payload 281 281 282 - 283 -== 2.5 Downlink Payload == 284 - 285 285 By default, LSE50 prints the downlink payload to console port. 286 286 287 -[[image:image-20220606165544-8.png]] 292 +|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 293 +|TDC (Transmit Time Interval)|Any|01|4 294 +|RESET|Any|04|2 295 +|AT+CFM|Any|05|4 296 +|INTMOD|Any|06|4 297 +|MOD|Any|0A|2 288 288 299 +**Examples** 289 289 290 -**Examples:** 291 291 302 +**Set TDC** 292 292 293 -* **Set TDC** 294 - 295 295 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 296 296 297 297 Payload: 01 00 00 1E TDC=30S ... ... @@ -299,19 +299,18 @@ 299 299 Payload: 01 00 00 3C TDC=60S 300 300 301 301 302 -* *Reset**311 +**Reset** 303 303 304 304 If payload = 0x04FF, it will reset the LSE01 305 305 306 306 307 -* *CFM**316 +**CFM** 308 308 309 309 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 320 +1. 321 +11. Show Data in DataCake IoT Server 311 311 312 - 313 -== 2.6 Show Data in DataCake IoT Server == 314 - 315 315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 ... ... @@ -320,10 +320,10 @@ 320 320 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 321 321 322 322 323 -[[image: 1654505857935-743.png]]331 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 324 324 325 325 326 -[[image: 1654505874829-548.png]]334 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 327 327 328 328 329 329 ... ... @@ -350,8 +350,8 @@ 350 350 351 351 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 352 353 -1. 354 -11. 361 +1. 362 +11. 355 355 111. EU863-870 (EU868) 356 356 357 357 Uplink: ... ... @@ -382,8 +382,8 @@ 382 382 869.525 - SF9BW125 (RX2 downlink only) 383 383 384 384 385 -1. 386 -11. 393 +1. 394 +11. 387 387 111. US902-928(US915) 388 388 389 389 Used in USA, Canada and South America. Default use CHE=2 ... ... @@ -428,8 +428,8 @@ 428 428 923.3 - SF12BW500(RX2 downlink only) 429 429 430 430 431 -1. 432 -11. 439 +1. 440 +11. 433 433 111. CN470-510 (CN470) 434 434 435 435 Used in China, Default use CHE=1 ... ... @@ -474,8 +474,8 @@ 474 474 505.3 - SF12BW125 (RX2 downlink only) 475 475 476 476 477 -1. 478 -11. 485 +1. 486 +11. 479 479 111. AU915-928(AU915) 480 480 481 481 Default use CHE=2 ... ... @@ -519,8 +519,8 @@ 519 519 520 520 923.3 - SF12BW500(RX2 downlink only) 521 521 522 -1. 523 -11. 530 +1. 531 +11. 524 524 111. AS920-923 & AS923-925 (AS923) 525 525 526 526 **Default Uplink channel:** ... ... @@ -572,8 +572,8 @@ 572 572 923.2 - SF10BW125 (RX2) 573 573 574 574 575 -1. 576 -11. 583 +1. 584 +11. 577 577 111. KR920-923 (KR920) 578 578 579 579 Default channel: ... ... @@ -609,8 +609,8 @@ 609 609 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 610 610 611 611 612 -1. 613 -11. 620 +1. 621 +11. 614 614 111. IN865-867 (IN865) 615 615 616 616 Uplink: ... ... @@ -629,7 +629,7 @@ 629 629 866.550 - SF10BW125 (RX2) 630 630 631 631 632 -1. 640 +1. 633 633 11. LED Indicator 634 634 635 635 The LSE01 has an internal LED which is to show the status of different state. ... ... @@ -639,7 +639,7 @@ 639 639 * Solid ON for 5 seconds once device successful Join the network. 640 640 * Blink once when device transmit a packet. 641 641 642 -1. 650 +1. 643 643 11. Installation in Soil 644 644 645 645 **Measurement the soil surface** ... ... @@ -666,7 +666,7 @@ 666 666 667 667 668 668 669 -1. 677 +1. 670 670 11. Firmware Change Log 671 671 672 672 **Firmware download link:** ... ... @@ -685,7 +685,7 @@ 685 685 686 686 687 687 688 -1. 696 +1. 689 689 11. Battery Analysis 690 690 111. Battery Type 691 691 ... ... @@ -709,15 +709,15 @@ 709 709 710 710 711 711 712 -1. 713 -11. 720 +1. 721 +11. 714 714 111. Battery Note 715 715 716 716 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 718 718 719 -1. 720 -11. 727 +1. 728 +11. 721 721 111. Replace the battery 722 722 723 723 If Battery is lower than 2.7v, user should replace the battery of LSE01. ... ... @@ -1004,3 +1004,4 @@ 1004 1004 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1005 1005 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1006 1006 1015 +
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.7 KB - Content
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -92.0 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.6 KB - Content