Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- 1654503236291-817.png
- 1654503265560-120.png
- 1654503992078-669.png
- 1654504596150-405.png
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- image-20220606162220-5.png
- image-20220606163732-6.jpeg
- image-20220606163915-7.png
- image-20220606165544-8.png
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,7 @@ 1 1 (% style="text-align:center" %) 2 2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]] 3 3 4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]] 4 4 5 5 6 6 ... ... @@ -8,40 +8,44 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 +1. Introduction 24 +11. What is LoRaWAN Soil Moisture & EC Sensor 25 + 26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 27 + 28 + 29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server. 30 + 31 + 24 24 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years. 34 34 35 35 36 - [[image:1654503236291-817.png]]38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 38 39 -[[image: 1654503265560-120.png]]41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]] 40 40 41 41 44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 42 42 43 -== 1.2 Features == 44 44 47 + 48 +* 49 +*1. Features 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 47 * Monitor Soil Moisture ... ... @@ -54,48 +54,63 @@ 54 54 * IP66 Waterproof Enclosure 55 55 * 4000mAh or 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 62 +1. 63 +11. Specification 58 58 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature** 68 +|**Range**|**0-100.00%**|((( 69 +**0-20000uS/cm** 62 62 71 +**(25℃)(0-20.0EC)** 72 +)))|**-40.00℃~85.00℃** 73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃** 74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃** 75 +|**Accuracy**|((( 76 +**±3% (0-53%)** 63 63 78 +**±5% (>53%)** 79 +)))|**2%FS,**|((( 80 +**-10℃~50℃:<0.3℃** 64 64 65 -== 1.4 Applications == 82 +**All other: <0.6℃** 83 +))) 84 +|((( 85 +**Measure** 66 66 87 +**Method** 88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate** 89 + 90 +* 91 +*1. Applications 67 67 * Smart Agriculture 68 68 69 - (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog"%)70 - 94 +1. 95 +11. Firmware Change log 71 71 72 - ==1.5 Firmware Change log ==97 +**LSE01 v1.0:** 73 73 99 +* Release 74 74 75 -**LSE01 v1.0 :** Release 101 +1. Configure LSE01 to connect to LoRaWAN network 102 +11. How it works 76 76 104 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 77 77 78 78 79 - =2.ConfigureLSE01 toconnect toLoRaWAN network=107 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 80 80 81 -== 2.1 How it works == 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 112 +1. 113 +11. Quick guide to connect to LoRaWAN server (OTAA) 91 91 92 - 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 - 95 95 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 97 97 98 -[[image: 1654503992078-669.png]]118 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 99 99 100 100 101 101 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. ... ... @@ -105,40 +105,56 @@ 105 105 106 106 Each LSE01 is shipped with a sticker with the default device EUI as below: 107 107 108 -[[image:image-20220606163732-6.jpeg]] 109 109 129 + 130 + 110 110 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 111 133 + 112 112 **Add APP EUI in the application** 113 113 114 114 115 -[[image: 1654504596150-405.png]]137 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 116 116 117 117 118 118 119 119 **Add APP KEY and DEV EUI** 120 120 121 -[[image:1654504683289-357.png]] 122 122 144 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 123 123 146 +|((( 147 + 148 +))) 124 124 150 + 125 125 **Step 2**: Power on LSE01 126 126 127 127 128 128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 129 130 -[[image:image-20220606163915-7.png]] 131 131 132 132 158 +|((( 159 + 160 +))) 161 + 162 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 163 + 164 + 165 + 166 + 167 + 133 133 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 134 135 -[[image: 1654504778294-788.png]]170 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 136 136 137 137 138 138 139 -== 2.3 Uplink Payload == 140 140 141 -=== 2.3.1 MOD~=0(Default Mode) === 175 +1. 176 +11. Uplink Payload 177 +111. MOD=0(Default Mode) 142 142 143 143 LSE01 will uplink payload via LoRaWAN with below payload format: 144 144 ... ... @@ -161,12 +161,13 @@ 161 161 (Optional) 162 162 ))) 163 163 164 -[[image: 1654504881641-514.png]]200 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 165 165 166 166 203 +1. 204 +11. 205 +111. MOD=1(Original value) 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 - 170 170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 172 |((( ... ... @@ -184,12 +184,12 @@ 184 184 (Optional) 185 185 ))) 186 186 187 -[[image: 1654504907647-967.png]]224 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 188 188 226 +1. 227 +11. 228 +111. Battery Info 189 189 190 - 191 -=== 2.3.3 Battery Info === 192 - 193 193 Check the battery voltage for LSE01. 194 194 195 195 Ex1: 0x0B45 = 2885mV ... ... @@ -198,19 +198,21 @@ 198 198 199 199 200 200 201 -=== 2.3.4 Soil Moisture === 238 +1. 239 +11. 240 +111. Soil Moisture 202 202 203 203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is244 +For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 206 206 246 +**05DC(H) = 1500(D) /100 = 15%.** 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 249 +1. 250 +11. 251 +111. Soil Temperature 210 210 211 - 212 -=== 2.3.5 Soil Temperature === 213 - 214 214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 216 **Example**: ... ... @@ -220,31 +220,21 @@ 220 220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 222 222 262 +1. 263 +11. 264 +111. Soil Conductivity (EC) 223 223 224 - ===2.3.6SoilConductivity(EC)===266 +Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 225 225 226 -((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 -((( 231 231 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 - (((270 + 235 235 Generally, the EC value of irrigation water is less than 800uS / cm. 236 -))) 237 237 238 - (((239 - 240 - )))273 +1. 274 +11. 275 +111. MOD 241 241 242 -((( 243 - 244 -))) 245 - 246 -=== 2.3.7 MOD === 247 - 248 248 Firmware version at least v2.1 supports changing mode. 249 249 250 250 For example, bytes[10]=90 ... ... @@ -259,13 +259,14 @@ 259 259 If** **payload =** **0x0A01, workmode=1 260 260 261 261 291 +1. 292 +11. 293 +111. Decode payload in The Things Network 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 - 265 265 While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 -[[image: 1654505570700-128.png]]298 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 269 269 270 270 The payload decoder function for TTN is here: 271 271 ... ... @@ -272,26 +272,30 @@ 272 272 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 273 273 274 274 275 -== 2.4 Uplink Interval == 305 +1. 306 +11. Uplink Interval 276 276 277 277 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 279 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 312 +1. 313 +11. Downlink Payload 281 281 282 - 283 -== 2.5 Downlink Payload == 284 - 285 285 By default, LSE50 prints the downlink payload to console port. 286 286 287 -[[image:image-20220606165544-8.png]] 317 +|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 318 +|TDC (Transmit Time Interval)|Any|01|4 319 +|RESET|Any|04|2 320 +|AT+CFM|Any|05|4 321 +|INTMOD|Any|06|4 322 +|MOD|Any|0A|2 288 288 324 +**Examples** 289 289 290 -**Examples:** 291 291 327 +**Set TDC** 292 292 293 -* **Set TDC** 294 - 295 295 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 296 296 297 297 Payload: 01 00 00 1E TDC=30S ... ... @@ -299,19 +299,18 @@ 299 299 Payload: 01 00 00 3C TDC=60S 300 300 301 301 302 -* *Reset**336 +**Reset** 303 303 304 304 If payload = 0x04FF, it will reset the LSE01 305 305 306 306 307 -* *CFM**341 +**CFM** 308 308 309 309 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 345 +1. 346 +11. Show Data in DataCake IoT Server 311 311 312 - 313 -== 2.6 Show Data in DataCake IoT Server == 314 - 315 315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 ... ... @@ -320,10 +320,10 @@ 320 320 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 321 321 322 322 323 -[[image: 1654505857935-743.png]]356 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 324 324 325 325 326 -[[image: 1654505874829-548.png]]359 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 327 327 328 328 329 329 ... ... @@ -350,8 +350,8 @@ 350 350 351 351 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 352 353 -1. 354 -11. 386 +1. 387 +11. 355 355 111. EU863-870 (EU868) 356 356 357 357 Uplink: ... ... @@ -382,8 +382,8 @@ 382 382 869.525 - SF9BW125 (RX2 downlink only) 383 383 384 384 385 -1. 386 -11. 418 +1. 419 +11. 387 387 111. US902-928(US915) 388 388 389 389 Used in USA, Canada and South America. Default use CHE=2 ... ... @@ -428,8 +428,8 @@ 428 428 923.3 - SF12BW500(RX2 downlink only) 429 429 430 430 431 -1. 432 -11. 464 +1. 465 +11. 433 433 111. CN470-510 (CN470) 434 434 435 435 Used in China, Default use CHE=1 ... ... @@ -474,8 +474,8 @@ 474 474 505.3 - SF12BW125 (RX2 downlink only) 475 475 476 476 477 -1. 478 -11. 510 +1. 511 +11. 479 479 111. AU915-928(AU915) 480 480 481 481 Default use CHE=2 ... ... @@ -519,8 +519,8 @@ 519 519 520 520 923.3 - SF12BW500(RX2 downlink only) 521 521 522 -1. 523 -11. 555 +1. 556 +11. 524 524 111. AS920-923 & AS923-925 (AS923) 525 525 526 526 **Default Uplink channel:** ... ... @@ -572,8 +572,8 @@ 572 572 923.2 - SF10BW125 (RX2) 573 573 574 574 575 -1. 576 -11. 608 +1. 609 +11. 577 577 111. KR920-923 (KR920) 578 578 579 579 Default channel: ... ... @@ -609,8 +609,8 @@ 609 609 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 610 610 611 611 612 -1. 613 -11. 645 +1. 646 +11. 614 614 111. IN865-867 (IN865) 615 615 616 616 Uplink: ... ... @@ -629,7 +629,7 @@ 629 629 866.550 - SF10BW125 (RX2) 630 630 631 631 632 -1. 665 +1. 633 633 11. LED Indicator 634 634 635 635 The LSE01 has an internal LED which is to show the status of different state. ... ... @@ -639,7 +639,7 @@ 639 639 * Solid ON for 5 seconds once device successful Join the network. 640 640 * Blink once when device transmit a packet. 641 641 642 -1. 675 +1. 643 643 11. Installation in Soil 644 644 645 645 **Measurement the soil surface** ... ... @@ -666,7 +666,7 @@ 666 666 667 667 668 668 669 -1. 702 +1. 670 670 11. Firmware Change Log 671 671 672 672 **Firmware download link:** ... ... @@ -685,7 +685,7 @@ 685 685 686 686 687 687 688 -1. 721 +1. 689 689 11. Battery Analysis 690 690 111. Battery Type 691 691 ... ... @@ -709,15 +709,15 @@ 709 709 710 710 711 711 712 -1. 713 -11. 745 +1. 746 +11. 714 714 111. Battery Note 715 715 716 716 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 718 718 719 -1. 720 -11. 752 +1. 753 +11. 721 721 111. Replace the battery 722 722 723 723 If Battery is lower than 2.7v, user should replace the battery of LSE01. ... ... @@ -737,7 +737,6 @@ 737 737 738 738 == 3.1 Access AT Commands == 739 739 740 - 741 741 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 742 742 743 743 [[image:1654501986557-872.png]] ... ... @@ -746,124 +746,129 @@ 746 746 Or if you have below board, use below connection: 747 747 748 748 749 -[[image: 1654502005655-729.png]]781 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 750 750 751 751 752 752 753 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%)to access the serial console for LSE01. LSE01 will output system info once power on as below:785 +In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below: 754 754 755 755 756 - [[image: 1654502050864-459.png]]788 + [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 757 757 758 758 759 759 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 760 760 761 761 762 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)794 +AT+<CMD>? : Help on <CMD> 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%)796 +AT+<CMD> : Run <CMD> 765 765 766 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%): Set the value798 +AT+<CMD>=<value> : Set the value 767 767 768 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)800 +AT+<CMD>=? : Get the value 769 769 770 770 771 - (% style="color:#037691" %)**General Commands**(%%)803 +**General Commands** 772 772 773 - (% style="background-color:#dcdcdc" %)**AT**(%%)805 +AT : Attention 774 774 775 - (% style="background-color:#dcdcdc" %)**AT?**(%%)807 +AT? : Short Help 776 776 777 - (% style="background-color:#dcdcdc" %)**ATZ**(%%)809 +ATZ : MCU Reset 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)811 +AT+TDC : Application Data Transmission Interval 780 780 781 781 782 - (% style="color:#037691" %)**Keys, IDs and EUIs management**814 +**Keys, IDs and EUIs management** 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%): Application EUI816 +AT+APPEUI : Application EUI 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%): Application Key818 +AT+APPKEY : Application Key 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%): Application Session Key820 +AT+APPSKEY : Application Session Key 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%): Device Address822 +AT+DADDR : Device Address 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%): Device EUI824 +AT+DEUI : Device EUI 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%): Network ID (You can enter this command change only after successful network connection)826 +AT+NWKID : Network ID (You can enter this command change only after successful network connection) 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%): Network Session Key Joining and sending date on LoRa network828 +AT+NWKSKEY : Network Session Key Joining and sending date on LoRa network 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)830 +AT+CFM : Confirm Mode 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+CFS**(%%): Confirm Status832 +AT+CFS : Confirm Status 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)834 +AT+JOIN : Join LoRa? Network 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)836 +AT+NJM : LoRa? Network Join Mode 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NJS**(%%): LoRa? Network Join Status838 +AT+NJS : LoRa? Network Join Status 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+RECV**(%%): Print Last Received Data in Raw Format840 +AT+RECV : Print Last Received Data in Raw Format 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%): Print Last Received Data in Binary Format842 +AT+RECVB : Print Last Received Data in Binary Format 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+SEND**(%%): Send Text Data844 +AT+SEND : Send Text Data 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data846 +AT+SENB : Send Hexadecimal Data 815 815 816 816 817 - (% style="color:#037691" %)**LoRa Network Management**849 +**LoRa Network Management** 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%): Adaptive Rate851 +AT+ADR : Adaptive Rate 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)853 +AT+CLASS : LoRa Class(Currently only support class A 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)855 +AT+DCS : Duty Cycle Setting 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+DR**(%%)857 +AT+DR : Data Rate (Can Only be Modified after ADR=0) 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)859 +AT+FCD : Frame Counter Downlink 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)861 +AT+FCU : Frame Counter Uplink 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)863 +AT+JN1DL : Join Accept Delay1 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)865 +AT+JN2DL : Join Accept Delay2 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)867 +AT+PNM : Public Network Mode 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)869 +AT+RX1DL : Receive Delay1 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)871 +AT+RX2DL : Receive Delay2 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)873 +AT+RX2DR : Rx2 Window Data Rate 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)875 +AT+RX2FQ : Rx2 Window Frequency 844 844 845 - (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)877 +AT+TXP : Transmit Power 846 846 847 - (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)879 +AT+ MOD : Set work mode 848 848 849 849 850 - (% style="color:#037691" %)**Information**882 +**Information** 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%): RSSI of the Last Received Packet884 +AT+RSSI : RSSI of the Last Received Packet 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+SNR**(%%): SNR of the Last Received Packet886 +AT+SNR : SNR of the Last Received Packet 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+VER**(%%): Image Version and Frequency Band888 +AT+VER : Image Version and Frequency Band 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+FDR**(%%): Factory Data Reset890 +AT+FDR : Factory Data Reset 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)892 +AT+PORT : Application Port 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)894 +AT+CHS : Get or Set Frequency (Unit: Hz) for Single Channel Mode 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)896 + AT+CHE : Get or Set eight channels mode, Only for US915, AU915, CN470 865 865 866 866 899 + 900 + 901 + 902 + 903 + 867 867 = 4. FAQ = 868 868 869 869 == 4.1 How to change the LoRa Frequency Bands/Region? == ... ... @@ -894,6 +894,7 @@ 894 894 * 905.3 - SF7BW125 to SF10BW125 895 895 * 904.6 - SF8BW500 896 896 934 + 897 897 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 898 898 899 899 (% class="box infomessage" %)
- 1654503236291-817.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -685.6 KB - Content
- 1654503265560-120.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.7 KB - Content
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -92.0 KB - Content
- image-20220606162220-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.0 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.6 KB - Content