Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 10 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,7 @@ 1 1 (% style="text-align:center" %) 2 2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]] 3 3 4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]] 4 4 5 5 6 6 ... ... @@ -8,40 +8,44 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 +1. Introduction 24 +11. What is LoRaWAN Soil Moisture & EC Sensor 25 + 26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 27 + 28 + 29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server. 30 + 31 + 24 24 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years. 34 34 35 35 36 - [[image:1654503236291-817.png]]38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 38 39 -[[image: 1654503265560-120.png]]41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]] 40 40 41 41 44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 42 42 43 -== 1.2 Features == 44 44 47 + 48 +* 49 +*1. Features 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 47 * Monitor Soil Moisture ... ... @@ -54,50 +54,63 @@ 54 54 * IP66 Waterproof Enclosure 55 55 * 4000mAh or 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 62 +1. 63 +11. Specification 58 58 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature** 68 +|**Range**|**0-100.00%**|((( 69 +**0-20000uS/cm** 62 62 71 +**(25℃)(0-20.0EC)** 72 +)))|**-40.00℃~85.00℃** 73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃** 74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃** 75 +|**Accuracy**|((( 76 +**±3% (0-53%)** 63 63 78 +**±5% (>53%)** 79 +)))|**2%FS,**|((( 80 +**-10℃~50℃:<0.3℃** 64 64 65 -== 1.4 Applications == 82 +**All other: <0.6℃** 83 +))) 84 +|((( 85 +**Measure** 66 66 87 +**Method** 88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate** 89 + 90 +* 91 +*1. Applications 67 67 * Smart Agriculture 68 68 94 +1. 95 +11. Firmware Change log 69 69 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 97 +**LSE01 v1.0:** 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 99 +* Release 75 75 101 +1. Configure LSE01 to connect to LoRaWAN network 102 +11. How it works 76 76 77 - **LSE01v1.0:**Release104 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 78 78 79 79 107 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 80 80 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 82 83 -== 2.1 How it works == 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 112 +1. 113 +11. Quick guide to connect to LoRaWAN server (OTAA) 92 92 93 - 94 - 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 - 97 97 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 99 99 100 -[[image: 1654503992078-669.png]]118 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 101 101 102 102 103 103 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. ... ... @@ -107,14 +107,16 @@ 107 107 108 108 Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 -[[image:image-20220606163732-6.jpeg]] 111 111 129 + 130 + 112 112 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 113 133 + 114 114 **Add APP EUI in the application** 115 115 116 116 117 -[[image: 1654504596150-405.png]]137 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 118 118 119 119 120 120 ... ... @@ -127,6 +127,7 @@ 127 127 128 128 ))) 129 129 150 + 130 130 **Step 2**: Power on LSE01 131 131 132 132 ... ... @@ -180,7 +180,7 @@ 180 180 181 181 182 182 1. 183 -11. 204 +11. 184 184 111. MOD=1(Original value) 185 185 186 186 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). ... ... @@ -203,7 +203,7 @@ 203 203 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 204 204 205 205 1. 206 -11. 227 +11. 207 207 111. Battery Info 208 208 209 209 Check the battery voltage for LSE01. ... ... @@ -214,8 +214,8 @@ 214 214 215 215 216 216 217 -1. 218 -11. 238 +1. 239 +11. 219 219 111. Soil Moisture 220 220 221 221 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. ... ... @@ -225,8 +225,8 @@ 225 225 **05DC(H) = 1500(D) /100 = 15%.** 226 226 227 227 228 -1. 229 -11. 249 +1. 250 +11. 230 230 111. Soil Temperature 231 231 232 232 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is ... ... @@ -238,8 +238,8 @@ 238 238 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 239 239 240 240 241 -1. 242 -11. 262 +1. 263 +11. 243 243 111. Soil Conductivity (EC) 244 244 245 245 Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). ... ... @@ -249,8 +249,8 @@ 249 249 250 250 Generally, the EC value of irrigation water is less than 800uS / cm. 251 251 252 -1. 253 -11. 273 +1. 274 +11. 254 254 111. MOD 255 255 256 256 Firmware version at least v2.1 supports changing mode. ... ... @@ -267,8 +267,8 @@ 267 267 If** **payload =** **0x0A01, workmode=1 268 268 269 269 270 -1. 271 -11. 291 +1. 292 +11. 272 272 111. Decode payload in The Things Network 273 273 274 274 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -281,7 +281,7 @@ 281 281 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 282 282 283 283 284 -1. 305 +1. 285 285 11. Uplink Interval 286 286 287 287 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: ... ... @@ -288,7 +288,7 @@ 288 288 289 289 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 290 290 291 -1. 312 +1. 292 292 11. Downlink Payload 293 293 294 294 By default, LSE50 prints the downlink payload to console port. ... ... @@ -321,7 +321,7 @@ 321 321 322 322 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 323 323 324 -1. 345 +1. 325 325 11. Show Data in DataCake IoT Server 326 326 327 327 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: ... ... @@ -362,8 +362,8 @@ 362 362 363 363 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 364 364 365 -1. 366 -11. 386 +1. 387 +11. 367 367 111. EU863-870 (EU868) 368 368 369 369 Uplink: ... ... @@ -394,8 +394,8 @@ 394 394 869.525 - SF9BW125 (RX2 downlink only) 395 395 396 396 397 -1. 398 -11. 418 +1. 419 +11. 399 399 111. US902-928(US915) 400 400 401 401 Used in USA, Canada and South America. Default use CHE=2 ... ... @@ -440,8 +440,8 @@ 440 440 923.3 - SF12BW500(RX2 downlink only) 441 441 442 442 443 -1. 444 -11. 464 +1. 465 +11. 445 445 111. CN470-510 (CN470) 446 446 447 447 Used in China, Default use CHE=1 ... ... @@ -486,8 +486,8 @@ 486 486 505.3 - SF12BW125 (RX2 downlink only) 487 487 488 488 489 -1. 490 -11. 510 +1. 511 +11. 491 491 111. AU915-928(AU915) 492 492 493 493 Default use CHE=2 ... ... @@ -531,8 +531,8 @@ 531 531 532 532 923.3 - SF12BW500(RX2 downlink only) 533 533 534 -1. 535 -11. 555 +1. 556 +11. 536 536 111. AS920-923 & AS923-925 (AS923) 537 537 538 538 **Default Uplink channel:** ... ... @@ -584,8 +584,8 @@ 584 584 923.2 - SF10BW125 (RX2) 585 585 586 586 587 -1. 588 -11. 608 +1. 609 +11. 589 589 111. KR920-923 (KR920) 590 590 591 591 Default channel: ... ... @@ -621,8 +621,8 @@ 621 621 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 622 622 623 623 624 -1. 625 -11. 645 +1. 646 +11. 626 626 111. IN865-867 (IN865) 627 627 628 628 Uplink: ... ... @@ -641,7 +641,7 @@ 641 641 866.550 - SF10BW125 (RX2) 642 642 643 643 644 -1. 665 +1. 645 645 11. LED Indicator 646 646 647 647 The LSE01 has an internal LED which is to show the status of different state. ... ... @@ -651,7 +651,7 @@ 651 651 * Solid ON for 5 seconds once device successful Join the network. 652 652 * Blink once when device transmit a packet. 653 653 654 -1. 675 +1. 655 655 11. Installation in Soil 656 656 657 657 **Measurement the soil surface** ... ... @@ -678,7 +678,7 @@ 678 678 679 679 680 680 681 -1. 702 +1. 682 682 11. Firmware Change Log 683 683 684 684 **Firmware download link:** ... ... @@ -697,7 +697,7 @@ 697 697 698 698 699 699 700 -1. 721 +1. 701 701 11. Battery Analysis 702 702 111. Battery Type 703 703 ... ... @@ -721,15 +721,15 @@ 721 721 722 722 723 723 724 -1. 725 -11. 745 +1. 746 +11. 726 726 111. Battery Note 727 727 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 730 730 731 -1. 732 -11. 752 +1. 753 +11. 733 733 111. Replace the battery 734 734 735 735 If Battery is lower than 2.7v, user should replace the battery of LSE01. ... ... @@ -745,137 +745,140 @@ 745 745 746 746 747 747 748 -= 3. Using the AT Commands = 769 +1. Using the AT Commands 770 +11. Access AT Commands 749 749 750 -== 3.1 Access AT Commands == 751 - 752 - 753 753 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 754 754 755 -[[image: 1654501986557-872.png]]774 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 756 756 757 757 758 758 Or if you have below board, use below connection: 759 759 760 760 761 -[[image: 1654502005655-729.png]]780 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 762 762 763 763 764 764 765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%)to access the serial console for LSE01. LSE01 will output system info once power on as below:784 +In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below: 766 766 767 767 768 - [[image: 1654502050864-459.png]]787 + [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 769 769 770 770 771 771 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 772 772 773 773 774 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)793 +AT+<CMD>? : Help on <CMD> 775 775 776 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%)795 +AT+<CMD> : Run <CMD> 777 777 778 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%): Set the value797 +AT+<CMD>=<value> : Set the value 779 779 780 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)799 +AT+<CMD>=? : Get the value 781 781 782 782 783 - (% style="color:#037691" %)**General Commands**(%%)802 +**General Commands** 784 784 785 - (% style="background-color:#dcdcdc" %)**AT**(%%)804 +AT : Attention 786 786 787 - (% style="background-color:#dcdcdc" %)**AT?**(%%)806 +AT? : Short Help 788 788 789 - (% style="background-color:#dcdcdc" %)**ATZ**(%%)808 +ATZ : MCU Reset 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)810 +AT+TDC : Application Data Transmission Interval 792 792 793 793 794 - (% style="color:#037691" %)**Keys, IDs and EUIs management**813 +**Keys, IDs and EUIs management** 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%): Application EUI815 +AT+APPEUI : Application EUI 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%): Application Key817 +AT+APPKEY : Application Key 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%): Application Session Key819 +AT+APPSKEY : Application Session Key 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%): Device Address821 +AT+DADDR : Device Address 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%): Device EUI823 +AT+DEUI : Device EUI 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%): Network ID (You can enter this command change only after successful network connection)825 +AT+NWKID : Network ID (You can enter this command change only after successful network connection) 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%): Network Session Key Joining and sending date on LoRa network827 +AT+NWKSKEY : Network Session Key Joining and sending date on LoRa network 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)829 +AT+CFM : Confirm Mode 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+CFS**(%%): Confirm Status831 +AT+CFS : Confirm Status 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)833 +AT+JOIN : Join LoRa? Network 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)835 +AT+NJM : LoRa? Network Join Mode 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+NJS**(%%): LoRa? Network Join Status837 +AT+NJS : LoRa? Network Join Status 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+RECV**(%%): Print Last Received Data in Raw Format839 +AT+RECV : Print Last Received Data in Raw Format 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%): Print Last Received Data in Binary Format841 +AT+RECVB : Print Last Received Data in Binary Format 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+SEND**(%%): Send Text Data843 +AT+SEND : Send Text Data 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data845 +AT+SENB : Send Hexadecimal Data 827 827 828 828 829 - (% style="color:#037691" %)**LoRa Network Management**848 +**LoRa Network Management** 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%): Adaptive Rate850 +AT+ADR : Adaptive Rate 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)852 +AT+CLASS : LoRa Class(Currently only support class A 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)854 +AT+DCS : Duty Cycle Setting 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+DR**(%%)856 +AT+DR : Data Rate (Can Only be Modified after ADR=0) 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)858 +AT+FCD : Frame Counter Downlink 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)860 +AT+FCU : Frame Counter Uplink 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)862 +AT+JN1DL : Join Accept Delay1 844 844 845 - (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)864 +AT+JN2DL : Join Accept Delay2 846 846 847 - (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)866 +AT+PNM : Public Network Mode 848 848 849 - (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)868 +AT+RX1DL : Receive Delay1 850 850 851 - (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)870 +AT+RX2DL : Receive Delay2 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)872 +AT+RX2DR : Rx2 Window Data Rate 854 854 855 - (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)874 +AT+RX2FQ : Rx2 Window Frequency 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)876 +AT+TXP : Transmit Power 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)878 +AT+ MOD : Set work mode 860 860 861 861 862 - (% style="color:#037691" %)**Information**881 +**Information** 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%): RSSI of the Last Received Packet883 +AT+RSSI : RSSI of the Last Received Packet 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+SNR**(%%): SNR of the Last Received Packet885 +AT+SNR : SNR of the Last Received Packet 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+VER**(%%): Image Version and Frequency Band887 +AT+VER : Image Version and Frequency Band 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+FDR**(%%): Factory Data Reset889 +AT+FDR : Factory Data Reset 871 871 872 - (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)891 +AT+PORT : Application Port 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)893 +AT+CHS : Get or Set Frequency (Unit: Hz) for Single Channel Mode 875 875 876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)895 + AT+CHE : Get or Set eight channels mode, Only for US915, AU915, CN470 877 877 878 878 898 + 899 + 900 + 901 + 902 + 879 879 = 4. FAQ = 880 880 881 881 == 4.1 How to change the LoRa Frequency Bands/Region? == ... ... @@ -884,16 +884,33 @@ 884 884 When downloading the images, choose the required image file for download. 885 885 886 886 887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 888 888 912 +How to set up LSE01 to work in 8 channel mode 889 889 914 +By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 915 + 916 + 890 890 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 891 891 892 892 920 + 893 893 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 894 894 895 -[[image:image-20220606154726-3.png]] 896 896 924 +(% border="1" cellspacing="10" style="background-color:#f7faff" %) 925 +|=(% style="width: 56px;" %)CHE|=(% colspan="9" style="width: 1433px;" %)US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0) 926 +|(% style="width:56px" %)0|(% colspan="9" style="width:1433px" %)ENABLE Channel 0-63 927 +|(% style="width:56px" %)1|(% style="width:63px" %)902.3|(% style="width:70px" %)902.5|(% style="width:68px" %)902.7|(% style="width:70px" %)902.9|(% style="width:464px" %)903.1|903.3|903.5|903.7|Channel 0-7 928 +|(% style="width:56px" %)2|(% style="width:63px" %)903.9|(% style="width:70px" %)904.1|(% style="width:68px" %)904.3|(% style="width:70px" %)904.5|(% style="width:464px" %)904.7|904.9|905.1|905.3|Channel 8-15 929 +|(% style="width:56px" %)3|(% style="width:63px" %)905.5|(% style="width:70px" %)905.7|(% style="width:68px" %)905.9|(% style="width:70px" %)906.1|(% style="width:464px" %)906.3|906.5|906.7|906.9|Channel 16-23 930 +|(% style="width:56px" %)4|(% style="width:63px" %)907.1|(% style="width:70px" %)907.3|(% style="width:68px" %)907.5|(% style="width:70px" %)907.7|(% style="width:464px" %)907.9|908.1|908.3|908.5|Channel 24-31 931 +|(% style="width:56px" %)5|(% style="width:63px" %)908.7|(% style="width:70px" %)908.9|(% style="width:68px" %)909.1|(% style="width:70px" %)909.3|(% style="width:464px" %)909.5|909.7|909.9|910.1|Channel 32-39 932 +|(% style="width:56px" %)6|(% style="width:63px" %)910.3|(% style="width:70px" %)910.5|(% style="width:68px" %)910.7|(% style="width:70px" %)910.9|(% style="width:464px" %)911.1|911.3|911.5|911.7|Channel 40-47 933 +|(% style="width:56px" %)7|(% style="width:63px" %)911.9|(% style="width:70px" %)912.1|(% style="width:68px" %)912.3|(% style="width:70px" %)912.5|(% style="width:464px" %)912.7|912.9|913.1|913.3|Channel 48-55 934 +|(% style="width:56px" %)8|(% style="width:63px" %)913.5|(% style="width:70px" %)913.7|(% style="width:68px" %)913.9|(% style="width:70px" %)914.1|(% style="width:464px" %)914.3|914.5|914.7|914.9|Channel 56-63 935 +|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0) 936 +|(% style="width:56px" %) |(% style="width:63px" %)903|(% style="width:70px" %)904.6|(% style="width:68px" %)906.2|(% style="width:70px" %)907.8|(% style="width:464px" %)909.4|911|912.6|914.2|Channel 64-71 937 + 897 897 When you use the TTN network, the US915 frequency bands use are: 898 898 899 899 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -908,15 +908,9 @@ 908 908 909 909 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 910 910 911 -(% class="box infomessage" %) 912 -((( 913 913 **AT+CHE=2** 914 -))) 915 915 916 -(% class="box infomessage" %) 917 -((( 918 918 **ATZ** 919 -))) 920 920 921 921 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 922 922 ... ... @@ -923,12 +923,25 @@ 923 923 924 924 The **AU915** band is similar. Below are the AU915 Uplink Channels. 925 925 926 -[[image:image-20220606154825-4.png]] 927 927 962 +|CHE|(% colspan="9" %)AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0) 963 +|0|(% colspan="9" %)ENABLE Channel 0-63 964 +|1|915.2|915.4|915.6|915.8|916|916.2|916.4|916.6|Channel 0-7 965 +|2|916.8|917|917.2|917.4|917.6|917.8|918|918.2|Channel 8-15 966 +|3|918.4|918.6|918.8|919|919.2|919.4|919.6|919.8|Channel 16-23 967 +|4|920|920.2|920.4|920.6|920.8|921|921.2|921.4|Channel 24-31 968 +|5|921.6|921.8|922|922.2|922.4|922.6|922.8|923|Channel 32-39 969 +|6|923.2|923.4|923.6|923.8|924|924.2|924.4|924.6|Channel 40-47 970 +|7|924.8|925|925.2|925.4|925.6|925.8|926|926.2|Channel 48-55 971 +|8|926.4|926.6|926.8|927|927.2|927.4|927.6|927.8|Channel 56-63 972 +|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0) 973 +| |915.9|917.5|919.1|920.7|922.3|923.9|925.5|927.1|Channel 64-71 928 928 929 929 976 + 930 930 = 5. Trouble Shooting = 931 931 979 + 932 932 == 5.1 Why I can’t join TTN in US915 / AU915 bands? == 933 933 934 934 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. ... ... @@ -1016,3 +1016,4 @@ 1016 1016 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1017 1017 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1018 1018 1067 +
- 1654501986557-872.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -767.2 KB - Content
- 1654502005655-729.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -915.0 KB - Content
- 1654502050864-459.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -174.6 KB - Content
- 1654503236291-817.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -685.6 KB - Content
- 1654503265560-120.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.7 KB - Content
- image-20220606154825-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.3 KB - Content
- image-20220606162220-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.0 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.5 KB - Content