Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 108.9
edited by Xiaoling
on 2023/04/04 12:01
Change comment: There is no comment for this version
To version 57.2
edited by Xiaoling
on 2022/07/08 11:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,77 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 -
75 75  == 1.3  Specification ==
76 76  
77 77  
... ... @@ -82,230 +82,187 @@
82 82  
83 83  (% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 -* B1 @H-FDD: 2100MHz
86 -* B3 @H-FDD: 1800MHz
87 -* B8 @H-FDD: 900MHz
88 -* B5 @H-FDD: 850MHz
89 -* B20 @H-FDD: 800MHz
90 -* B28 @H-FDD: 700MHz
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
91 91  
92 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
104 104  
105 105  
106 106  == ​1.4  Applications ==
107 107  
108 -
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 112  * Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
115 115  
116 116  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 117  ​
118 118  
119 -
120 -
121 121  == 1.5  Pin Definitions ==
122 122  
123 123  
124 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
125 125  
126 126  
127 127  
128 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
129 129  
130 -
131 131  == 2.1  How it works ==
132 132  
133 133  
134 134  (((
135 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
136 136  )))
137 137  
138 138  
139 139  (((
140 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
141 141  )))
142 142  
143 -(((
144 -
145 -)))
115 +[[image:image-20220708101605-2.png]]
146 146  
147 -[[image:1657328659945-416.png]]
148 -
149 149  (((
150 150  
151 151  )))
152 152  
153 153  
154 -== 2.2 ​ Configure the NDDS75 ==
155 155  
123 +== 2.2 ​ Configure the NSE01 ==
156 156  
125 +
157 157  === 2.2.1 Test Requirement ===
158 158  
159 159  
160 -(((
161 -To use NDDS75 in your city, make sure meet below requirements:
162 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
163 163  
164 164  * Your local operator has already distributed a NB-IoT Network there.
165 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
166 166  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
167 167  
168 168  (((
169 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
170 170  )))
171 171  
172 172  
173 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
174 174  
175 175  
176 176  
177 177  === 2.2.2 Insert SIM card ===
178 178  
179 -
180 -(((
181 181  Insert the NB-IoT Card get from your provider.
182 -)))
183 183  
184 -(((
185 185  User need to take out the NB-IoT module and insert the SIM card like below:
186 -)))
187 187  
188 188  
189 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
190 190  
191 191  
192 192  
193 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
194 194  
195 -
196 196  (((
197 197  (((
198 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
199 199  )))
200 200  )))
201 201  
202 -[[image:image-20220709092052-2.png]]
203 203  
164 +**Connection:**
204 204  
205 -(% style="color:blue" %)**Connection:**
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
206 206  
207 - (% style="background-color:yellow" %)**USB TTL GND <~-~-~-~-> GND**
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
208 208  
209 -**~ (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD(%%)**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
210 210  
211 -**~ (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD(%%)**
212 212  
213 -
214 214  In the PC, use below serial tool settings:
215 215  
216 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
217 217  * Data bits:** (% style="color:green" %)8(%%)**
218 218  * Stop bits: (% style="color:green" %)**1**
219 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
220 220  * Flow Control: (% style="color:green" %)**None**
221 221  
222 222  (((
223 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
224 224  )))
225 225  
226 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
227 227  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
228 228  
229 -(((
230 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
231 -)))
232 232  
233 233  
234 -
235 235  === 2.2.4 Use CoAP protocol to uplink data ===
236 236  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
237 237  
238 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
239 239  
240 -
241 -(((
242 242  **Use below commands:**
243 -)))
244 244  
245 -* (((
246 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
247 -)))
248 -* (((
249 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/  to set CoAP server address and port
250 -)))
251 -* (((
252 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
253 253  
254 254  
255 -
256 -)))
257 -
258 -(((
259 259  For parameter description, please refer to AT command set
260 260  
261 -
262 -)))
205 +[[image:1657249793983-486.png]]
263 263  
264 -[[image:1657330452568-615.png]]
265 265  
208 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
266 266  
210 +[[image:1657249831934-534.png]]
267 267  
268 -(((
269 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
270 270  
271 -
272 -)))
273 273  
274 -[[image:1657330472797-498.png]]
214 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
275 275  
216 +This feature is supported since firmware version v1.0.1
276 276  
277 277  
278 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
219 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
221 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
279 279  
280 280  
281 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
282 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/  to set UDP server address and port
283 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
224 +[[image:1657249864775-321.png]]
284 284  
285 -[[image:1657330501006-241.png]]
286 286  
287 287  
288 -[[image:1657330533775-472.png]]
228 +[[image:1657249930215-289.png]]
289 289  
290 290  
291 291  
292 292  === 2.2.6 Use MQTT protocol to uplink data ===
293 293  
234 +This feature is supported since firmware version v110
294 294  
295 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
296 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
297 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/  Set up the CLIENT of MQTT
298 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/  Set the username of MQTT
299 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/  Set the password of MQTT
300 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/  Set the sending topic of MQTT
301 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/  Set the subscription topic of MQTT
302 302  
237 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
239 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
240 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
241 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
242 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
243 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
244 +
245 +
303 303  [[image:1657249978444-674.png]]
304 304  
305 305  
306 -[[image:1657330723006-866.png]]
249 +[[image:1657249990869-686.png]]
307 307  
308 308  
252 +
309 309  (((
310 310  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
311 311  )))
... ... @@ -314,650 +314,1019 @@
314 314  
315 315  === 2.2.7 Use TCP protocol to uplink data ===
316 316  
261 +This feature is supported since firmware version v110
317 317  
318 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
319 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/  to set TCP server address and port
320 320  
321 -[[image:image-20220709093918-1.png]]
264 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
322 322  
267 +[[image:1657250217799-140.png]]
323 323  
324 -[[image:image-20220709093918-2.png]]
325 325  
270 +[[image:1657250255956-604.png]]
326 326  
327 327  
328 328  === 2.2.8 Change Update Interval ===
329 329  
330 -
331 331  User can use below command to change the (% style="color:green" %)**uplink interval**.
332 332  
333 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/  Set Update Interval to 600s
277 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
334 334  
335 335  (((
336 -
337 -
338 -
339 339  (% style="color:red" %)**NOTE:**
281 +)))
340 340  
341 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
342 -
343 -(% style="color:red" %)**2. When the firmware version is v1.3.2 and later firmware:**
283 +(((
284 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
344 344  )))
345 345  
346 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
347 347  
348 348  
349 -
350 350  == 2.3  Uplink Payload ==
351 351  
291 +In this mode, uplink payload includes in total 18 bytes
352 352  
353 -=== 2.3.1  Before Firmware v1.3.2 ===
293 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 +|=(% style="width: 50px;" %)(((
295 +**Size(bytes)**
296 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
297 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>path:#Device_ID]]|(% style="width:41px" %)[[Ver>>path:#Version]]|(% style="width:46px" %)[[BAT>>path:#battery]]|(% style="width:123px" %)[[Signal Strength>>path:#Signal]]|(% style="width:108px" %)[[Soil Moisture>>path:#Payload_Explain]]|(% style="width:133px" %)[[Soil Temperature>>path:#Payload_Explain]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>path:#Payload_Explain]]|(% style="width:80px" %)[[Interrupt>>path:#Interrupt]]
354 354  
299 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
355 355  
356 -In this mode, uplink payload includes in total 14 bytes
357 357  
358 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
359 -|=(% style="width: 60px;" %)(((
360 -**Size(bytes)**
361 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
362 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
302 +[[image:image-20220708111918-4.png]]
363 363  
364 -(((
365 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
366 -)))
367 367  
305 +The payload is ASCII string, representative same HEX:
368 368  
369 -[[image:1657331036973-987.png]]
307 +0x72403155615900640c7817075e0a8c02f900 where:
370 370  
309 +* Device ID: 0x 724031556159 = 724031556159
310 +* Version: 0x0064=100=1.0.0
371 371  
312 +* BAT: 0x0c78 = 3192 mV = 3.192V
313 +* Singal: 0x17 = 23
314 +* Soil Moisture: 0x075e= 1886 = 18.86  %
315 +* Soil Temperature:0x0a8c =2700=27 °C
316 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
317 +* Interrupt: 0x00 = 0
372 372  
373 -The payload is **ASCII** string, representative same HEX:
374 374  
375 -(% style="background-color:yellow" %)**0x 724031556159 0064 0c6c 19 0292 00 **
376 376  
377 -**where :**
321 +=== 2.3.1 MOD~=0(Default Mode) ===
378 378  
379 -* (% style="color:#037691" %)**Device ID:**(%%) 0x724031556159 = 724031556159
323 +LSE01 will uplink payload via LoRaWAN with below payload format: 
380 380  
381 -* (% style="color:#037691" %)**Version:**(%%)  0x0064=100=1.0.0
325 +(((
326 +Uplink payload includes in total 11 bytes.
327 +)))
382 382  
383 -* (% style="color:#037691" %)**BAT:** (%%) 0x0c6c = 3180 mV = 3.180V
329 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
330 +|(((
331 +**Size**
384 384  
385 -* (% style="color:#037691" %)**Signal:**(%%)  0x19 = 25
333 +**(bytes)**
334 +)))|**2**|**2**|**2**|**2**|**2**|**1**
335 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
336 +Temperature
386 386  
387 -* (% style="color:#037691" %)**Distance:**  (%%)0x0292= 658 mm
338 +(Reserve, Ignore now)
339 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
340 +MOD & Digital Interrupt
388 388  
389 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00 = 0
342 +(Optional)
343 +)))
390 390  
345 +=== 2.3.2 MOD~=1(Original value) ===
391 391  
392 -=== 2.3.2  Since firmware v1.3.2 ===
347 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
393 393  
349 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
350 +|(((
351 +**Size**
394 394  
395 -In this mode, uplink payload includes 69 bytes in total by default.
353 +**(bytes)**
354 +)))|**2**|**2**|**2**|**2**|**2**|**1**
355 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
356 +Temperature
396 396  
397 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
358 +(Reserve, Ignore now)
359 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
360 +MOD & Digital Interrupt
398 398  
399 -(% border="1" style="background-color:#ffffcc; color:green; width:490px" %)
400 -|=(% scope="row" style="width: 60px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:25px" %)**2**|(% style="width:25px" %)**2**|(% style="width:60px" %)**1**|(% style="width:25px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:70px" %)**4**|(% style="width:40px" %)**2**|(% style="width:60px" %)**4**
401 -|=(% style="width: 95px;" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
362 +(Optional)
363 +)))
402 402  
403 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
365 +=== 2.3.3 Battery Info ===
404 404  
405 -[[image:image-20220908175246-1.png]]
367 +(((
368 +Check the battery voltage for LSE01.
369 +)))
406 406  
371 +(((
372 +Ex1: 0x0B45 = 2885mV
373 +)))
407 407  
408 -The payload is ASCII string, representative same HEX:
375 +(((
376 +Ex2: 0x0B49 = 2889mV
377 +)))
409 409  
410 -**0x (% style="color:red" %)f867787050213317 (% style="color:blue" %)0084 (% style="color:green" %)0cf4 (% style="color:#00b0f0" %)1e (% style="color:#7030a0" %)01 (% style="color:#d60093" %)00(% style="color:#a14d07" %) 0039 (% style="color:#0020b0" %)6315537b (% style="color:#663300" %)00396319baf0 00396319ba3c 00396319b988 00396319b8d4 00396319b820 00396319b76c 00396319b6b8 00396319b604 (%%)**
411 411  
412 -**where:**
413 413  
414 -* (% style="color:#037691" %)**Device ID:**(%%) f867787050213317 = f867787050213317
381 +=== 2.3.4 Soil Moisture ===
415 415  
416 -* (% style="color:#037691" %)**Version:**(%%) 0x0084=132=1.3.2
383 +(((
384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 +)))
417 417  
418 -* (% style="color:#037691" %)**BAT:**(%%)  0x0cf4 = 3316 mV = 3.316V
387 +(((
388 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
389 +)))
419 419  
420 -* (% style="color:#037691" %)**Singal:**(%%)  0x1e = 30
391 +(((
392 +
393 +)))
421 421  
422 -* (% style="color:#037691" %)**Mod:**(%%)**     **0x01 = 1
395 +(((
396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 +)))
423 423  
424 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
425 425  
426 -* (% style="color:#037691" %)**Distance:**(%%) 0x0039= 57 = 57
427 427  
428 -* (% style="color:#037691" %)**Time stamp:**(%%) 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
401 +=== 2.3.5 Soil Temperature ===
429 429  
430 -* (% style="color:#037691" %)**Distance,Time stamp:**(%%) 00396319baf0
403 +(((
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
405 +)))
431 431  
432 -* (% style="color:#037691" %)**8 sets of recorded data: Distance,Time stamp :**(%%) //**00396319ba3c**//,.......
407 +(((
408 +**Example**:
409 +)))
433 433  
434 -== 2.4  Payload Explanation and Sensor Interface ==
411 +(((
412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 +)))
435 435  
415 +(((
416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 +)))
436 436  
437 -=== 2.4.1  Device ID ===
438 438  
439 439  
421 +=== 2.3.6 Soil Conductivity (EC) ===
422 +
440 440  (((
441 -By default, the Device ID equal to the last 6 bytes of IMEI.
424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
442 442  )))
443 443  
444 444  (((
445 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
446 -
447 -
428 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
448 448  )))
449 449  
450 450  (((
451 -(% style="color:blue" %)**Example :**
432 +Generally, the EC value of irrigation water is less than 800uS / cm.
452 452  )))
453 453  
454 454  (((
455 -AT+DEUI=A84041F15612
436 +
456 456  )))
457 457  
458 458  (((
459 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
440 +
460 460  )))
461 461  
443 +=== 2.3.7 MOD ===
462 462  
463 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
445 +Firmware version at least v2.1 supports changing mode.
464 464  
465 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
447 +For example, bytes[10]=90
466 466  
467 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
449 +mod=(bytes[10]>>7)&0x01=1.
468 468  
469 469  
470 -(% style="color:blue" %)**Example :**
452 +**Downlink Command:**
471 471  
472 -AT+DEUI=868411056754138
454 +If payload = 0x0A00, workmode=0
473 473  
456 +If** **payload =** **0x0A01, workmode=1
474 474  
475 475  
476 -=== 2.4.2  Version Info ===
477 477  
460 +=== 2.3.8 ​Decode payload in The Things Network ===
478 478  
462 +While using TTN network, you can add the payload format to decode the payload.
463 +
464 +
465 +[[image:1654505570700-128.png]]
466 +
479 479  (((
480 -Specify the software version: 0x64=100, means firmware version 1.00.
468 +The payload decoder function for TTN is here:
481 481  )))
482 482  
483 483  (((
484 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
472 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
485 485  )))
486 486  
487 487  
476 +== 2.4 Uplink Interval ==
488 488  
489 -=== 2.4.3  Battery Info ===
478 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
490 490  
491 491  
492 -(((
493 -Ex1: 0x0B45 = 2885mV
494 -)))
495 495  
496 -(((
497 -Ex2: 0x0B49 = 2889mV
498 -)))
482 +== 2.5 Downlink Payload ==
499 499  
484 +By default, LSE50 prints the downlink payload to console port.
500 500  
486 +[[image:image-20220606165544-8.png]]
501 501  
502 -=== 2.4.4  Signal Strength ===
503 503  
504 -
505 505  (((
506 -NB-IoT Network signal Strength.
490 +(% style="color:blue" %)**Examples:**
507 507  )))
508 508  
509 509  (((
510 -**Ex1: 0x1d = 29**
494 +
511 511  )))
512 512  
497 +* (((
498 +(% style="color:blue" %)**Set TDC**
499 +)))
500 +
513 513  (((
514 -(% style="color:blue" %)**0**(%%)  -113dBm or less
502 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
515 515  )))
516 516  
517 517  (((
518 -(% style="color:blue" %)**1**(%%)  -111dBm
506 +Payload:    01 00 00 1E    TDC=30S
519 519  )))
520 520  
521 521  (((
522 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
510 +Payload:    01 00 00 3C    TDC=60S
523 523  )))
524 524  
525 525  (((
526 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
514 +
527 527  )))
528 528  
517 +* (((
518 +(% style="color:blue" %)**Reset**
519 +)))
520 +
529 529  (((
530 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
522 +If payload = 0x04FF, it will reset the LSE01
531 531  )))
532 532  
533 533  
526 +* (% style="color:blue" %)**CFM**
534 534  
535 -=== 2.4.5  Distance ===
528 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
536 536  
537 537  
538 -Get the distance. Flat object range 280mm - 7500mm.
539 539  
532 +== 2.6 ​Show Data in DataCake IoT Server ==
533 +
540 540  (((
541 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
535 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
542 542  )))
543 543  
544 544  (((
545 -(((
546 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
539 +
547 547  )))
548 -)))
549 549  
550 550  (((
551 -
543 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
552 552  )))
553 553  
554 554  (((
555 -
547 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 556  )))
557 557  
558 -=== 2.4.6  Digital Interrupt ===
559 559  
551 +[[image:1654505857935-743.png]]
560 560  
561 -(((
562 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
563 -)))
564 564  
565 -(((
566 -The command is:
567 -)))
554 +[[image:1654505874829-548.png]]
568 568  
569 -(((
570 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
571 -)))
572 572  
557 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
573 573  
574 -(((
575 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
576 -)))
559 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
577 577  
578 578  
579 -(((
580 -Example:
581 -)))
562 +[[image:1654505905236-553.png]]
582 582  
583 -(((
584 -0x(00): Normal uplink packet.
585 -)))
586 586  
587 -(((
588 -0x(01): Interrupt Uplink Packet.
589 -)))
565 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
590 590  
567 +[[image:1654505925508-181.png]]
591 591  
592 592  
593 -=== 2.4.7  ​+5V Output ===
594 594  
571 +== 2.7 Frequency Plans ==
595 595  
596 -(((
597 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
598 -)))
573 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
599 599  
600 600  
601 -(((
602 -The 5V output time can be controlled by AT Command.
576 +=== 2.7.1 EU863-870 (EU868) ===
603 603  
604 -
605 -)))
578 +(% style="color:#037691" %)** Uplink:**
606 606  
607 -(((
608 -(% style="color:blue" %)**AT+5VT=1000**
580 +868.1 - SF7BW125 to SF12BW125
609 609  
610 -
611 -)))
582 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
612 612  
613 -(((
614 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
615 -)))
584 +868.5 - SF7BW125 to SF12BW125
616 616  
586 +867.1 - SF7BW125 to SF12BW125
617 617  
588 +867.3 - SF7BW125 to SF12BW125
618 618  
619 -== 2.5  Downlink Payload ==
590 +867.5 - SF7BW125 to SF12BW125
620 620  
592 +867.7 - SF7BW125 to SF12BW125
621 621  
622 -By default, NDDS75 prints the downlink payload to console port.
594 +867.9 - SF7BW125 to SF12BW125
623 623  
624 -[[image:image-20220709100028-1.png]]
596 +868.8 - FSK
625 625  
626 626  
627 -(((
628 -(% style="color:blue" %)**Examples:**
629 -)))
599 +(% style="color:#037691" %)** Downlink:**
630 630  
631 -(((
632 -
633 -)))
601 +Uplink channels 1-9 (RX1)
634 634  
635 -* (((
636 -(% style="color:blue" %)**Set TDC**
637 -)))
603 +869.525 - SF9BW125 (RX2 downlink only)
638 638  
639 -(((
640 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
641 -)))
642 642  
643 -(((
644 -Payload:    01 00 00 1E    TDC=30S
645 -)))
646 646  
647 -(((
648 -Payload:    01 00 00 3C    TDC=60S
649 -)))
607 +=== 2.7.2 US902-928(US915) ===
650 650  
651 -(((
652 -
653 -)))
609 +Used in USA, Canada and South America. Default use CHE=2
654 654  
655 -* (((
656 -(% style="color:blue" %)**Reset**
657 -)))
611 +(% style="color:#037691" %)**Uplink:**
658 658  
659 -(((
660 -If payload = 0x04FF, it will reset the NDDS75
661 -)))
613 +903.9 - SF7BW125 to SF10BW125
662 662  
615 +904.1 - SF7BW125 to SF10BW125
663 663  
664 -* (% style="color:blue" %)**INTMOD**
617 +904.3 - SF7BW125 to SF10BW125
665 665  
666 -(((
667 -Downlink Payload: 06000003, Set AT+INTMOD=3
668 -)))
619 +904.5 - SF7BW125 to SF10BW125
669 669  
621 +904.7 - SF7BW125 to SF10BW125
670 670  
623 +904.9 - SF7BW125 to SF10BW125
671 671  
672 -== 2. Distance alarm function(Since firmware v1.3.2) ==
625 +905.1 - SF7BW125 to SF10BW125
673 673  
627 +905.3 - SF7BW125 to SF10BW125
674 674  
675 -(% style="color:blue" %)** ➢ AT Command:**
676 676  
677 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
630 +(% style="color:#037691" %)**Downlink:**
678 678  
679 -² When min=0, and max≠0, Alarm higher than max
632 +923.3 - SF7BW500 to SF12BW500
680 680  
681 -² When min≠0, and max=0, Alarm lower than min
634 +923.9 - SF7BW500 to SF12BW500
682 682  
683 -² When min≠0 and max≠0, Alarm higher than max or lower than min
636 +924.5 - SF7BW500 to SF12BW500
684 684  
638 +925.1 - SF7BW500 to SF12BW500
685 685  
686 -(% style="color:blue" %)** Example:**
640 +925.7 - SF7BW500 to SF12BW500
687 687  
688 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
642 +926.3 - SF7BW500 to SF12BW500
689 689  
644 +926.9 - SF7BW500 to SF12BW500
690 690  
646 +927.5 - SF7BW500 to SF12BW500
691 691  
692 -== 2. Set the number of data to be uploaded and the recording time ==
648 +923.3 - SF12BW500(RX2 downlink only)
693 693  
694 694  
695 -(% style="color:blue" %)** ➢ AT Command:**
696 696  
697 -* (% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
698 -* (% style="color:#037691" %)** AT+NOUD=8**             (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
652 +=== 2.7.3 CN470-510 (CN470) ===
699 699  
700 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
654 +Used in China, Default use CHE=1
701 701  
702 -[[image:image-20221009001114-1.png||height="687" width="955"]]
656 +(% style="color:#037691" %)**Uplink:**
703 703  
658 +486.3 - SF7BW125 to SF12BW125
704 704  
660 +486.5 - SF7BW125 to SF12BW125
705 705  
706 -== 2.8  Read or Clear cached data ==
662 +486.7 - SF7BW125 to SF12BW125
707 707  
664 +486.9 - SF7BW125 to SF12BW125
708 708  
709 -(% style="color:blue" %)** ➢ AT Command:**
666 +487.1 - SF7BW125 to SF12BW125
710 710  
711 -* (% style="color:#037691" %)** AT+CDP ** (%%) ~/~/  Read cached data
712 -* (% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/  Clear cached data
668 +487.3 - SF7BW125 to SF12BW125
713 713  
714 -[[image:image-20220908175333-2.png]]
670 +487.5 - SF7BW125 to SF12BW125
715 715  
672 +487.7 - SF7BW125 to SF12BW125
716 716  
717 717  
718 -== 2.9  ​LED Indicator ==
675 +(% style="color:#037691" %)**Downlink:**
719 719  
677 +506.7 - SF7BW125 to SF12BW125
720 720  
721 -The NDDS75 has an internal LED which is to show the status of different state.
679 +506.9 - SF7BW125 to SF12BW125
722 722  
681 +507.1 - SF7BW125 to SF12BW125
723 723  
724 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
725 -* Then the LED will be on for 1 second means device is boot normally.
726 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
727 -* For each uplink probe, LED will be on for 500ms.
683 +507.3 - SF7BW125 to SF12BW125
728 728  
685 +507.5 - SF7BW125 to SF12BW125
686 +
687 +507.7 - SF7BW125 to SF12BW125
688 +
689 +507.9 - SF7BW125 to SF12BW125
690 +
691 +508.1 - SF7BW125 to SF12BW125
692 +
693 +505.3 - SF12BW125 (RX2 downlink only)
694 +
695 +
696 +
697 +=== 2.7.4 AU915-928(AU915) ===
698 +
699 +Default use CHE=2
700 +
701 +(% style="color:#037691" %)**Uplink:**
702 +
703 +916.8 - SF7BW125 to SF12BW125
704 +
705 +917.0 - SF7BW125 to SF12BW125
706 +
707 +917.2 - SF7BW125 to SF12BW125
708 +
709 +917.4 - SF7BW125 to SF12BW125
710 +
711 +917.6 - SF7BW125 to SF12BW125
712 +
713 +917.8 - SF7BW125 to SF12BW125
714 +
715 +918.0 - SF7BW125 to SF12BW125
716 +
717 +918.2 - SF7BW125 to SF12BW125
718 +
719 +
720 +(% style="color:#037691" %)**Downlink:**
721 +
722 +923.3 - SF7BW500 to SF12BW500
723 +
724 +923.9 - SF7BW500 to SF12BW500
725 +
726 +924.5 - SF7BW500 to SF12BW500
727 +
728 +925.1 - SF7BW500 to SF12BW500
729 +
730 +925.7 - SF7BW500 to SF12BW500
731 +
732 +926.3 - SF7BW500 to SF12BW500
733 +
734 +926.9 - SF7BW500 to SF12BW500
735 +
736 +927.5 - SF7BW500 to SF12BW500
737 +
738 +923.3 - SF12BW500(RX2 downlink only)
739 +
740 +
741 +
742 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
743 +
744 +(% style="color:#037691" %)**Default Uplink channel:**
745 +
746 +923.2 - SF7BW125 to SF10BW125
747 +
748 +923.4 - SF7BW125 to SF10BW125
749 +
750 +
751 +(% style="color:#037691" %)**Additional Uplink Channel**:
752 +
753 +(OTAA mode, channel added by JoinAccept message)
754 +
755 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
756 +
757 +922.2 - SF7BW125 to SF10BW125
758 +
759 +922.4 - SF7BW125 to SF10BW125
760 +
761 +922.6 - SF7BW125 to SF10BW125
762 +
763 +922.8 - SF7BW125 to SF10BW125
764 +
765 +923.0 - SF7BW125 to SF10BW125
766 +
767 +922.0 - SF7BW125 to SF10BW125
768 +
769 +
770 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
771 +
772 +923.6 - SF7BW125 to SF10BW125
773 +
774 +923.8 - SF7BW125 to SF10BW125
775 +
776 +924.0 - SF7BW125 to SF10BW125
777 +
778 +924.2 - SF7BW125 to SF10BW125
779 +
780 +924.4 - SF7BW125 to SF10BW125
781 +
782 +924.6 - SF7BW125 to SF10BW125
783 +
784 +
785 +(% style="color:#037691" %)** Downlink:**
786 +
787 +Uplink channels 1-8 (RX1)
788 +
789 +923.2 - SF10BW125 (RX2)
790 +
791 +
792 +
793 +=== 2.7.6 KR920-923 (KR920) ===
794 +
795 +Default channel:
796 +
797 +922.1 - SF7BW125 to SF12BW125
798 +
799 +922.3 - SF7BW125 to SF12BW125
800 +
801 +922.5 - SF7BW125 to SF12BW125
802 +
803 +
804 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
805 +
806 +922.1 - SF7BW125 to SF12BW125
807 +
808 +922.3 - SF7BW125 to SF12BW125
809 +
810 +922.5 - SF7BW125 to SF12BW125
811 +
812 +922.7 - SF7BW125 to SF12BW125
813 +
814 +922.9 - SF7BW125 to SF12BW125
815 +
816 +923.1 - SF7BW125 to SF12BW125
817 +
818 +923.3 - SF7BW125 to SF12BW125
819 +
820 +
821 +(% style="color:#037691" %)**Downlink:**
822 +
823 +Uplink channels 1-7(RX1)
824 +
825 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
826 +
827 +
828 +
829 +=== 2.7.7 IN865-867 (IN865) ===
830 +
831 +(% style="color:#037691" %)** Uplink:**
832 +
833 +865.0625 - SF7BW125 to SF12BW125
834 +
835 +865.4025 - SF7BW125 to SF12BW125
836 +
837 +865.9850 - SF7BW125 to SF12BW125
838 +
839 +
840 +(% style="color:#037691" %) **Downlink:**
841 +
842 +Uplink channels 1-3 (RX1)
843 +
844 +866.550 - SF10BW125 (RX2)
845 +
846 +
847 +
848 +
849 +== 2.8 LED Indicator ==
850 +
851 +The LSE01 has an internal LED which is to show the status of different state.
852 +
853 +* Blink once when device power on.
854 +* Solid ON for 5 seconds once device successful Join the network.
855 +* Blink once when device transmit a packet.
856 +
857 +== 2.9 Installation in Soil ==
858 +
859 +**Measurement the soil surface**
860 +
861 +
862 +[[image:1654506634463-199.png]] ​
863 +
729 729  (((
730 -
865 +(((
866 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
731 731  )))
868 +)))
732 732  
733 733  
734 734  
735 -== 2.10  ​Firmware Change Log ==
872 +[[image:1654506665940-119.png]]
736 736  
874 +(((
875 +Dig a hole with diameter > 20CM.
876 +)))
737 737  
738 738  (((
739 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
879 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
740 740  )))
741 741  
882 +
883 +== 2.10 ​Firmware Change Log ==
884 +
742 742  (((
886 +**Firmware download link:**
887 +)))
888 +
889 +(((
890 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
891 +)))
892 +
893 +(((
743 743  
744 744  )))
745 745  
746 746  (((
747 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
898 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
748 748  )))
749 749  
901 +(((
902 +
903 +)))
750 750  
905 +(((
906 +**V1.0.**
907 +)))
751 751  
752 -== 2.11 Battery & Power Consumption ==
909 +(((
910 +Release
911 +)))
753 753  
754 754  
755 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
914 +== 2.11 ​Battery Analysis ==
756 756  
757 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
916 +=== 2.11.1 ​Battery Type ===
758 758  
759 -= 3. ​ Access NB-IoT Module =
918 +(((
919 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
920 +)))
760 760  
922 +(((
923 +The battery is designed to last for more than 5 years for the LSN50.
924 +)))
761 761  
762 762  (((
763 -Users can directly access the AT command set of the NB-IoT module.
927 +(((
928 +The battery-related documents are as below:
764 764  )))
930 +)))
765 765  
932 +* (((
933 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
934 +)))
935 +* (((
936 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
937 +)))
938 +* (((
939 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
940 +)))
941 +
942 + [[image:image-20220610172436-1.png]]
943 +
944 +
945 +
946 +=== 2.11.2 ​Battery Note ===
947 +
766 766  (((
767 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
949 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
950 +)))
768 768  
769 -
952 +
953 +
954 +=== 2.11.3 Replace the battery ===
955 +
956 +(((
957 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
770 770  )))
771 771  
772 -[[image:1657333200519-600.png]]
960 +(((
961 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
962 +)))
773 773  
964 +(((
965 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
966 +)))
774 774  
775 775  
776 -= 4.  Using the AT Commands =
777 777  
970 += 3. ​Using the AT Commands =
778 778  
779 -== 4.1  Access AT Commands ==
972 +== 3.1 Access AT Commands ==
780 780  
781 781  
782 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
975 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
783 783  
977 +[[image:1654501986557-872.png||height="391" width="800"]]
784 784  
785 -AT+<CMD>?  :  Help on <CMD>
786 786  
787 -AT+<CMD>         :  Run <CMD>
980 +Or if you have below board, use below connection:
788 788  
789 -AT+<CMD>=<value> :  Set the value
790 790  
791 -AT+<CMD>=?  :  Get the value
983 +[[image:1654502005655-729.png||height="503" width="801"]]
792 792  
793 793  
986 +
987 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
988 +
989 +
990 + [[image:1654502050864-459.png||height="564" width="806"]]
991 +
992 +
993 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
994 +
995 +
996 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
997 +
998 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
999 +
1000 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
1001 +
1002 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
1003 +
1004 +
794 794  (% style="color:#037691" %)**General Commands**(%%)      
795 795  
796 -AT  :  Attention       
1007 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
797 797  
798 -AT?  :  Short Help     
1009 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
799 799  
800 -ATZ  :  MCU Reset    
1011 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
801 801  
802 -AT+TDC  :  Application Data Transmission Interval
1013 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
803 803  
804 -AT+CFG  :  Print all configurations
805 805  
806 -AT+CFGMOD           :  Working mode selection
1016 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
807 807  
808 -AT+INTMOD            :  Set the trigger interrupt mode
1018 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
809 809  
810 -AT+5VT  :  Set extend the time of 5V power  
1020 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
811 811  
812 -AT+PRO  :  Choose agreement
1022 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
813 813  
814 -AT+WEIGRE  :  Get weight or set weight to 0
1024 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
815 815  
816 -AT+WEIGAP  :  Get or Set the GapValue of weight
1026 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
817 817  
818 -AT+RXDL  :  Extend the sending and receiving time
1028 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
819 819  
820 -AT+CNTFAC  :  Get or set counting parameters
1030 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
821 821  
822 -AT+SERVADDR  Server Address
1032 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
823 823  
824 -AT+TR  :  Get or Set record time"
1034 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
825 825  
826 -AT+AP    :  Get or set the APN
1036 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
827 827  
828 -AT+FBAND  Get or Set whether to automatically modify the frequency band
1038 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
829 829  
830 -AT+DNSCFG  : Get or Set DNS Server
1040 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
831 831  
832 -AT+GETSENSORVALUE   :  Returns the current sensor measurement
1042 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
833 833  
834 -AT+NOUD  :  Get or Set the number of data to be uploaded
1044 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
835 835  
836 -AT+CDP     :  Read or Clear cached data
1046 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
837 837  
838 -AT+LDDSALARM :  Get or Set alarm of distance
1048 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
839 839  
840 840  
841 -(% style="color:#037691" %)**COAP Management**      
1051 +(% style="color:#037691" %)**LoRa Network Management**
842 842  
843 -AT+URI            :  Resource parameters
1053 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
844 844  
1055 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
845 845  
846 -(% style="color:#037691" %)**UDP Management**
1057 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
847 847  
848 -AT+CFM          Upload confirmation mode (only valid for UDP)
1059 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
849 849  
1061 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
850 850  
851 -(% style="color:#037691" %)**MQTT Management**
1063 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
852 852  
853 -AT+CLIENT  :  Get or Set MQTT client
1065 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
854 854  
855 -AT+UNAME  :  Get or Set MQTT Username
1067 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
856 856  
857 -AT+PWD  :  Get or Set MQTT password
1069 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
858 858  
859 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
1071 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
860 860  
861 -AT+SUBTOPIC  :  Get or Set MQTT subscription topic
1073 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
862 862  
1075 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
863 863  
864 -(% style="color:#037691" %)**Information**          
1077 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
865 865  
866 -AT+FDR  :  Factory Data Reset
1079 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
867 867  
868 -AT+PWORD  :  Serial Access Password
1081 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
869 869  
870 870  
1084 +(% style="color:#037691" %)**Information** 
871 871  
872 -= ​5.  FAQ =
1086 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
873 873  
1088 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
874 874  
875 -== 5.1 How to Upgrade Firmware ==
1090 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
876 876  
1092 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
877 877  
1094 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1095 +
1096 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1097 +
1098 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1099 +
1100 +
1101 += ​4. FAQ =
1102 +
1103 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1104 +
878 878  (((
879 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1106 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1107 +When downloading the images, choose the required image file for download. ​
880 880  )))
881 881  
882 882  (((
883 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1111 +
884 884  )))
885 885  
886 886  (((
887 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1115 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
888 888  )))
889 889  
1118 +(((
1119 +
1120 +)))
890 890  
1122 +(((
1123 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1124 +)))
891 891  
892 -= 6.  Trouble Shooting =
1126 +(((
1127 +
1128 +)))
893 893  
1130 +(((
1131 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1132 +)))
894 894  
895 -== 6.1  ​Connection problem when uploading firmware ==
1134 +[[image:image-20220606154726-3.png]]
896 896  
897 897  
1137 +When you use the TTN network, the US915 frequency bands use are:
1138 +
1139 +* 903.9 - SF7BW125 to SF10BW125
1140 +* 904.1 - SF7BW125 to SF10BW125
1141 +* 904.3 - SF7BW125 to SF10BW125
1142 +* 904.5 - SF7BW125 to SF10BW125
1143 +* 904.7 - SF7BW125 to SF10BW125
1144 +* 904.9 - SF7BW125 to SF10BW125
1145 +* 905.1 - SF7BW125 to SF10BW125
1146 +* 905.3 - SF7BW125 to SF10BW125
1147 +* 904.6 - SF8BW500
1148 +
898 898  (((
899 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1150 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1151 +
1152 +* (% style="color:#037691" %)**AT+CHE=2**
1153 +* (% style="color:#037691" %)**ATZ**
900 900  )))
901 901  
902 -(% class="wikigeneratedid" %)
903 903  (((
904 904  
1158 +
1159 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
905 905  )))
906 906  
1162 +(((
1163 +
1164 +)))
907 907  
908 -== 6.2  AT Command input doesn't work ==
1166 +(((
1167 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1168 +)))
909 909  
1170 +[[image:image-20220606154825-4.png]]
910 910  
1172 +
1173 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1174 +
1175 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1176 +
1177 +
1178 += 5. Trouble Shooting =
1179 +
1180 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1181 +
1182 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1183 +
1184 +
1185 +== 5.2 AT Command input doesn't work ==
1186 +
911 911  (((
912 912  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1189 +)))
913 913  
914 -
1191 +
1192 +== 5.3 Device rejoin in at the second uplink packet ==
1193 +
1194 +(% style="color:#4f81bd" %)**Issue describe as below:**
1195 +
1196 +[[image:1654500909990-784.png]]
1197 +
1198 +
1199 +(% style="color:#4f81bd" %)**Cause for this issue:**
1200 +
1201 +(((
1202 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
915 915  )))
916 916  
917 917  
918 -= 7. ​ Order Info =
1206 +(% style="color:#4f81bd" %)**Solution: **
919 919  
1208 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
920 920  
921 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1210 +[[image:1654500929571-736.png||height="458" width="832"]]
922 922  
923 923  
1213 += 6. ​Order Info =
1214 +
1215 +
1216 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1217 +
1218 +
1219 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1220 +
1221 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1222 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1223 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1224 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1225 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1226 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1227 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1228 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1229 +
1230 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1231 +
1232 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1233 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1234 +
924 924  (% class="wikigeneratedid" %)
925 925  (((
926 926  
927 927  )))
928 928  
929 -= 8.  Packing Info =
1240 += 7. Packing Info =
930 930  
931 931  (((
932 932  
933 933  
934 934  (% style="color:#037691" %)**Package Includes**:
1246 +)))
935 935  
936 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
937 -* External antenna x 1
1248 +* (((
1249 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
938 938  )))
939 939  
940 940  (((
941 941  
942 942  
943 -
944 944  (% style="color:#037691" %)**Dimension and weight**:
1256 +)))
945 945  
946 -* Device Size: 13.0 x 5 x 4.5 cm
947 -* Device Weight: 150g
948 -* Package Size / pcs : 15 x 12x 5.5 cm
949 -* Weight / pcs : 220g
1258 +* (((
1259 +Device Size: cm
950 950  )))
1261 +* (((
1262 +Device Weight: g
1263 +)))
1264 +* (((
1265 +Package Size / pcs : cm
1266 +)))
1267 +* (((
1268 +Weight / pcs : g
951 951  
952 -(((
953 953  
954 -
955 -
956 -
957 957  )))
958 958  
959 -= 9.  Support =
1273 += 8. Support =
960 960  
961 -
962 962  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
963 963  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20221009001114-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content