Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 108.9
edited by Xiaoling
on 2023/04/04 12:01
Change comment: There is no comment for this version
To version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,77 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 74  
63 +
75 75  == 1.3  Specification ==
76 76  
77 77  
... ... @@ -80,884 +80,1055 @@
80 80  * Supply Voltage: 2.1v ~~ 3.6v
81 81  * Operating Temperature: -40 ~~ 85°C
82 82  
72 +
83 83  (% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 -* B1 @H-FDD: 2100MHz
86 -* B3 @H-FDD: 1800MHz
87 -* B8 @H-FDD: 900MHz
88 -* B5 @H-FDD: 850MHz
89 -* B20 @H-FDD: 800MHz
90 -* B28 @H-FDD: 700MHz
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
91 91  
92 -(% style="color:#037691" %)**Battery:**
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
104 104  
105 105  
90 +
106 106  == ​1.4  Applications ==
107 107  
108 -
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 112  * Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
115 115  
116 116  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 117  ​
118 118  
98 +== 1.5  Pin Definitions ==
119 119  
120 120  
121 -== 1.5  Pin Definitions ==
101 +[[image:1657246476176-652.png]]
122 122  
123 123  
124 -[[image:1657328609906-564.png]]
125 125  
105 += 2. Configure LSE01 to connect to LoRaWAN network =
126 126  
107 +== 2.1 How it works ==
127 127  
128 -= 2.  Use NDDS75 to communicate with IoT Server =
109 +(((
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +)))
129 129  
113 +(((
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 +)))
130 130  
131 -== 2.1  How it works ==
132 132  
133 133  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 +
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 +
123 +
124 +[[image:1654503992078-669.png]]
125 +
126 +
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 +
129 +
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
134 134  (((
135 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
173 +Uplink payload includes in total 11 bytes.
136 136  )))
137 137  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
138 138  
139 -(((
140 -The diagram below shows the working flow in default firmware of NDDS75:
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
141 141  )))
142 142  
143 -(((
144 -
192 +=== 2.3.2 MOD~=1(Original value) ===
193 +
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
195 +
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
199 +
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
204 +
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
208 +
209 +(Optional)
145 145  )))
146 146  
147 -[[image:1657328659945-416.png]]
212 +=== 2.3.3 Battery Info ===
148 148  
149 149  (((
150 -
215 +Check the battery voltage for LSE01.
151 151  )))
152 152  
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
153 153  
154 -== 2.2 ​ Configure the NDDS75 ==
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
155 155  
156 156  
157 -=== 2.2.1 Test Requirement ===
158 158  
228 +=== 2.3.4 Soil Moisture ===
159 159  
160 160  (((
161 -To use NDDS75 in your city, make sure meet below requirements:
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
162 162  )))
163 163  
164 -* Your local operator has already distributed a NB-IoT Network there.
165 -* The local NB-IoT network used the band that NDDS75 supports.
166 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
167 167  
168 168  (((
169 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
239 +
170 170  )))
171 171  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
172 172  
173 -[[image:1657328756309-230.png]]
174 174  
175 175  
248 +=== 2.3.5 Soil Temperature ===
176 176  
177 -=== 2.2.2 Insert SIM card ===
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
178 178  
254 +(((
255 +**Example**:
256 +)))
179 179  
180 180  (((
181 -Insert the NB-IoT Card get from your provider.
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 182  )))
183 183  
184 184  (((
185 -User need to take out the NB-IoT module and insert the SIM card like below:
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
186 186  )))
187 187  
188 188  
189 -[[image:1657328884227-504.png]]
190 190  
268 +=== 2.3.6 Soil Conductivity (EC) ===
191 191  
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
192 192  
193 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
194 194  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
195 195  
196 196  (((
283 +
284 +)))
285 +
197 197  (((
198 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
287 +
199 199  )))
200 -)))
201 201  
202 -[[image:image-20220709092052-2.png]]
290 +=== 2.3.7 MOD ===
203 203  
292 +Firmware version at least v2.1 supports changing mode.
204 204  
205 -(% style="color:blue" %)**Connection:**
294 +For example, bytes[10]=90
206 206  
207 - (% style="background-color:yellow" %)**USB TTL GND <~-~-~-~-> GND**
296 +mod=(bytes[10]>>7)&0x01=1.
208 208  
209 -**~ (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD(%%)**
210 210  
211 -**~ (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD(%%)**
299 +**Downlink Command:**
212 212  
301 +If payload = 0x0A00, workmode=0
213 213  
214 -In the PC, use below serial tool settings:
303 +If** **payload =** **0x0A01, workmode=1
215 215  
216 -* Baud:  (% style="color:green" %)**9600**
217 -* Data bits:** (% style="color:green" %)8(%%)**
218 -* Stop bits: (% style="color:green" %)**1**
219 -* Parity:  (% style="color:green" %)**None**
220 -* Flow Control: (% style="color:green" %)**None**
221 221  
222 -(((
223 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
224 -)))
225 225  
226 -[[image:1657329814315-101.png]]
307 +=== 2.3.8 ​Decode payload in The Things Network ===
227 227  
309 +While using TTN network, you can add the payload format to decode the payload.
228 228  
311 +
312 +[[image:1654505570700-128.png]]
313 +
229 229  (((
230 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
315 +The payload decoder function for TTN is here:
231 231  )))
232 232  
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
233 233  
234 234  
235 -=== 2.2.4 Use CoAP protocol to uplink data ===
323 +== 2.4 Uplink Interval ==
236 236  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
237 237  
238 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
239 239  
240 240  
329 +== 2.5 Downlink Payload ==
330 +
331 +By default, LSE50 prints the downlink payload to console port.
332 +
333 +[[image:image-20220606165544-8.png]]
334 +
335 +
241 241  (((
242 -**Use below commands:**
337 +(% style="color:blue" %)**Examples:**
243 243  )))
244 244  
245 -* (((
246 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
340 +(((
341 +
247 247  )))
343 +
248 248  * (((
249 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/  to set CoAP server address and port
345 +(% style="color:blue" %)**Set TDC**
250 250  )))
251 -* (((
252 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
253 253  
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
254 254  
255 -
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
256 256  )))
257 257  
258 258  (((
259 -For parameter description, please refer to AT command set
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
260 260  
360 +(((
261 261  
262 262  )))
263 263  
264 -[[image:1657330452568-615.png]]
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
265 265  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
266 266  
267 267  
373 +* (% style="color:blue" %)**CFM**
374 +
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 +
377 +
378 +
379 +== 2.6 ​Show Data in DataCake IoT Server ==
380 +
268 268  (((
269 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 +)))
270 270  
385 +(((
271 271  
272 272  )))
273 273  
274 -[[image:1657330472797-498.png]]
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
275 275  
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
276 276  
277 277  
278 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
398 +[[image:1654505857935-743.png]]
279 279  
280 280  
281 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
282 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/  to set UDP server address and port
283 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
401 +[[image:1654505874829-548.png]]
284 284  
285 -[[image:1657330501006-241.png]]
286 286  
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
287 287  
288 -[[image:1657330533775-472.png]]
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
289 289  
290 290  
409 +[[image:1654505905236-553.png]]
291 291  
292 -=== 2.2.6 Use MQTT protocol to uplink data ===
293 293  
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
294 294  
295 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
296 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
297 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/  Set up the CLIENT of MQTT
298 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/  Set the username of MQTT
299 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/  Set the password of MQTT
300 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/  Set the sending topic of MQTT
301 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/  Set the subscription topic of MQTT
414 +[[image:1654505925508-181.png]]
302 302  
303 -[[image:1657249978444-674.png]]
304 304  
305 305  
306 -[[image:1657330723006-866.png]]
418 +== 2.7 Frequency Plans ==
307 307  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
308 308  
309 -(((
310 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
311 -)))
312 312  
423 +=== 2.7.1 EU863-870 (EU868) ===
313 313  
425 +(% style="color:#037691" %)** Uplink:**
314 314  
315 -=== 2.2.7 Use TCP protocol to uplink data ===
427 +868.1 - SF7BW125 to SF12BW125
316 316  
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
317 317  
318 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
319 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/  to set TCP server address and port
431 +868.5 - SF7BW125 to SF12BW125
320 320  
321 -[[image:image-20220709093918-1.png]]
433 +867.1 - SF7BW125 to SF12BW125
322 322  
435 +867.3 - SF7BW125 to SF12BW125
323 323  
324 -[[image:image-20220709093918-2.png]]
437 +867.5 - SF7BW125 to SF12BW125
325 325  
439 +867.7 - SF7BW125 to SF12BW125
326 326  
441 +867.9 - SF7BW125 to SF12BW125
327 327  
328 -=== 2.2.8 Change Update Interval ===
443 +868.8 - FSK
329 329  
330 330  
331 -User can use below command to change the (% style="color:green" %)**uplink interval**.
446 +(% style="color:#037691" %)** Downlink:**
332 332  
333 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/  Set Update Interval to 600s
448 +Uplink channels 1-9 (RX1)
334 334  
335 -(((
336 -
450 +869.525 - SF9BW125 (RX2 downlink only)
337 337  
338 338  
339 -(% style="color:red" %)**NOTE:**
340 340  
341 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
454 +=== 2.7.2 US902-928(US915) ===
342 342  
343 -(% style="color:red" %)**2. When the firmware version is v1.3.2 and later firmware:**
344 -)))
456 +Used in USA, Canada and South America. Default use CHE=2
345 345  
346 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
458 +(% style="color:#037691" %)**Uplink:**
347 347  
460 +903.9 - SF7BW125 to SF10BW125
348 348  
462 +904.1 - SF7BW125 to SF10BW125
349 349  
350 -== 2.3  Uplink Payload ==
464 +904.3 - SF7BW125 to SF10BW125
351 351  
466 +904.5 - SF7BW125 to SF10BW125
352 352  
353 -=== 2.3.1  Before Firmware v1.3.2 ===
468 +904.7 - SF7BW125 to SF10BW125
354 354  
470 +904.9 - SF7BW125 to SF10BW125
355 355  
356 -In this mode, uplink payload includes in total 14 bytes
472 +905.1 - SF7BW125 to SF10BW125
357 357  
358 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
359 -|=(% style="width: 60px;" %)(((
360 -**Size(bytes)**
361 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
362 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
474 +905.3 - SF7BW125 to SF10BW125
363 363  
364 -(((
365 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
366 -)))
367 367  
477 +(% style="color:#037691" %)**Downlink:**
368 368  
369 -[[image:1657331036973-987.png]]
479 +923.3 - SF7BW500 to SF12BW500
370 370  
481 +923.9 - SF7BW500 to SF12BW500
371 371  
483 +924.5 - SF7BW500 to SF12BW500
372 372  
373 -The payload is **ASCII** string, representative same HEX:
485 +925.1 - SF7BW500 to SF12BW500
374 374  
375 -(% style="background-color:yellow" %)**0x 724031556159 0064 0c6c 19 0292 00 **
487 +925.7 - SF7BW500 to SF12BW500
376 376  
377 -**where :**
489 +926.3 - SF7BW500 to SF12BW500
378 378  
379 -* (% style="color:#037691" %)**Device ID:**(%%) 0x724031556159 = 724031556159
491 +926.9 - SF7BW500 to SF12BW500
380 380  
381 -* (% style="color:#037691" %)**Version:**(%%)  0x0064=100=1.0.0
493 +927.5 - SF7BW500 to SF12BW500
382 382  
383 -* (% style="color:#037691" %)**BAT:** (%%) 0x0c6c = 3180 mV = 3.180V
495 +923.3 - SF12BW500(RX2 downlink only)
384 384  
385 -* (% style="color:#037691" %)**Signal:**(%%)  0x19 = 25
386 386  
387 -* (% style="color:#037691" %)**Distance:**  (%%)0x0292= 658 mm
388 388  
389 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00 = 0
499 +=== 2.7.3 CN470-510 (CN470) ===
390 390  
501 +Used in China, Default use CHE=1
391 391  
392 -=== 2.3.2  Since firmware v1.3.2 ===
503 +(% style="color:#037691" %)**Uplink:**
393 393  
505 +486.3 - SF7BW125 to SF12BW125
394 394  
395 -In this mode, uplink payload includes 69 bytes in total by default.
507 +486.5 - SF7BW125 to SF12BW125
396 396  
397 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
509 +486.7 - SF7BW125 to SF12BW125
398 398  
399 -(% border="1" style="background-color:#ffffcc; color:green; width:490px" %)
400 -|=(% scope="row" style="width: 60px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:25px" %)**2**|(% style="width:25px" %)**2**|(% style="width:60px" %)**1**|(% style="width:25px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:70px" %)**4**|(% style="width:40px" %)**2**|(% style="width:60px" %)**4**
401 -|=(% style="width: 95px;" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
511 +486.9 - SF7BW125 to SF12BW125
402 402  
403 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
513 +487.1 - SF7BW125 to SF12BW125
404 404  
405 -[[image:image-20220908175246-1.png]]
515 +487.3 - SF7BW125 to SF12BW125
406 406  
517 +487.5 - SF7BW125 to SF12BW125
407 407  
408 -The payload is ASCII string, representative same HEX:
519 +487.7 - SF7BW125 to SF12BW125
409 409  
410 -**0x (% style="color:red" %)f867787050213317 (% style="color:blue" %)0084 (% style="color:green" %)0cf4 (% style="color:#00b0f0" %)1e (% style="color:#7030a0" %)01 (% style="color:#d60093" %)00(% style="color:#a14d07" %) 0039 (% style="color:#0020b0" %)6315537b (% style="color:#663300" %)00396319baf0 00396319ba3c 00396319b988 00396319b8d4 00396319b820 00396319b76c 00396319b6b8 00396319b604 (%%)**
411 411  
412 -**where:**
522 +(% style="color:#037691" %)**Downlink:**
413 413  
414 -* (% style="color:#037691" %)**Device ID:**(%%) f867787050213317 = f867787050213317
524 +506.7 - SF7BW125 to SF12BW125
415 415  
416 -* (% style="color:#037691" %)**Version:**(%%) 0x0084=132=1.3.2
526 +506.9 - SF7BW125 to SF12BW125
417 417  
418 -* (% style="color:#037691" %)**BAT:**(%%)  0x0cf4 = 3316 mV = 3.316V
528 +507.1 - SF7BW125 to SF12BW125
419 419  
420 -* (% style="color:#037691" %)**Singal:**(%%)  0x1e = 30
530 +507.3 - SF7BW125 to SF12BW125
421 421  
422 -* (% style="color:#037691" %)**Mod:**(%%)**     **0x01 = 1
532 +507.5 - SF7BW125 to SF12BW125
423 423  
424 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
534 +507.7 - SF7BW125 to SF12BW125
425 425  
426 -* (% style="color:#037691" %)**Distance:**(%%) 0x0039= 57 = 57
536 +507.9 - SF7BW125 to SF12BW125
427 427  
428 -* (% style="color:#037691" %)**Time stamp:**(%%) 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
538 +508.1 - SF7BW125 to SF12BW125
429 429  
430 -* (% style="color:#037691" %)**Distance,Time stamp:**(%%) 00396319baf0
540 +505.3 - SF12BW125 (RX2 downlink only)
431 431  
432 -* (% style="color:#037691" %)**8 sets of recorded data: Distance,Time stamp :**(%%) //**00396319ba3c**//,.......
433 433  
434 -== 2.4  Payload Explanation and Sensor Interface ==
435 435  
544 +=== 2.7.4 AU915-928(AU915) ===
436 436  
437 -=== 2.4.1  Device ID ===
546 +Default use CHE=2
438 438  
548 +(% style="color:#037691" %)**Uplink:**
439 439  
440 -(((
441 -By default, the Device ID equal to the last 6 bytes of IMEI.
442 -)))
550 +916.8 - SF7BW125 to SF12BW125
443 443  
444 -(((
445 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
552 +917.0 - SF7BW125 to SF12BW125
446 446  
447 -
448 -)))
554 +917.2 - SF7BW125 to SF12BW125
449 449  
450 -(((
451 -(% style="color:blue" %)**Example :**
452 -)))
556 +917.4 - SF7BW125 to SF12BW125
453 453  
454 -(((
455 -AT+DEUI=A84041F15612
456 -)))
558 +917.6 - SF7BW125 to SF12BW125
457 457  
458 -(((
459 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
460 -)))
560 +917.8 - SF7BW125 to SF12BW125
461 461  
562 +918.0 - SF7BW125 to SF12BW125
462 462  
463 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
564 +918.2 - SF7BW125 to SF12BW125
464 464  
465 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
466 466  
467 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
567 +(% style="color:#037691" %)**Downlink:**
468 468  
569 +923.3 - SF7BW500 to SF12BW500
469 469  
470 -(% style="color:blue" %)**Example :**
571 +923.9 - SF7BW500 to SF12BW500
471 471  
472 -AT+DEUI=868411056754138
573 +924.5 - SF7BW500 to SF12BW500
473 473  
575 +925.1 - SF7BW500 to SF12BW500
474 474  
577 +925.7 - SF7BW500 to SF12BW500
475 475  
476 -=== 2.4.2  Version Info ===
579 +926.3 - SF7BW500 to SF12BW500
477 477  
581 +926.9 - SF7BW500 to SF12BW500
478 478  
479 -(((
480 -Specify the software version: 0x64=100, means firmware version 1.00.
481 -)))
583 +927.5 - SF7BW500 to SF12BW500
482 482  
483 -(((
484 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
485 -)))
585 +923.3 - SF12BW500(RX2 downlink only)
486 486  
487 487  
488 488  
489 -=== 2.4.3  Battery Info ===
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
490 490  
591 +(% style="color:#037691" %)**Default Uplink channel:**
491 491  
492 -(((
493 -Ex1: 0x0B45 = 2885mV
494 -)))
593 +923.2 - SF7BW125 to SF10BW125
495 495  
496 -(((
497 -Ex2: 0x0B49 = 2889mV
498 -)))
595 +923.4 - SF7BW125 to SF10BW125
499 499  
500 500  
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
501 501  
502 -=== 2.4.4  Signal Strength ===
600 +(OTAA mode, channel added by JoinAccept message)
503 503  
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
504 504  
505 -(((
506 -NB-IoT Network signal Strength.
507 -)))
604 +922.2 - SF7BW125 to SF10BW125
508 508  
509 -(((
510 -**Ex1: 0x1d = 29**
511 -)))
606 +922.4 - SF7BW125 to SF10BW125
512 512  
513 -(((
514 -(% style="color:blue" %)**0**(%%)  -113dBm or less
515 -)))
608 +922.6 - SF7BW125 to SF10BW125
516 516  
517 -(((
518 -(% style="color:blue" %)**1**(%%)  -111dBm
519 -)))
610 +922.8 - SF7BW125 to SF10BW125
520 520  
521 -(((
522 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
523 -)))
612 +923.0 - SF7BW125 to SF10BW125
524 524  
525 -(((
526 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
527 -)))
614 +922.0 - SF7BW125 to SF10BW125
528 528  
529 -(((
530 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
531 -)))
532 532  
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
533 533  
619 +923.6 - SF7BW125 to SF10BW125
534 534  
535 -=== 2.4.5  Distance ===
621 +923.8 - SF7BW125 to SF10BW125
536 536  
623 +924.0 - SF7BW125 to SF10BW125
537 537  
538 -Get the distance. Flat object range 280mm - 7500mm.
625 +924.2 - SF7BW125 to SF10BW125
539 539  
540 -(((
541 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
542 -)))
627 +924.4 - SF7BW125 to SF10BW125
543 543  
544 -(((
545 -(((
546 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
547 -)))
548 -)))
629 +924.6 - SF7BW125 to SF10BW125
549 549  
550 -(((
551 -
552 -)))
553 553  
554 -(((
555 -
556 -)))
632 +(% style="color:#037691" %)** Downlink:**
557 557  
558 -=== 2.4.6  Digital Interrupt ===
634 +Uplink channels 1-8 (RX1)
559 559  
636 +923.2 - SF10BW125 (RX2)
560 560  
561 -(((
562 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
563 -)))
564 564  
565 -(((
566 -The command is:
567 -)))
568 568  
569 -(((
570 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
571 -)))
640 +=== 2.7.6 KR920-923 (KR920) ===
572 572  
642 +Default channel:
573 573  
574 -(((
575 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
576 -)))
644 +922.1 - SF7BW125 to SF12BW125
577 577  
646 +922.3 - SF7BW125 to SF12BW125
578 578  
579 -(((
580 -Example:
581 -)))
648 +922.5 - SF7BW125 to SF12BW125
582 582  
583 -(((
584 -0x(00): Normal uplink packet.
585 -)))
586 586  
587 -(((
588 -0x(01): Interrupt Uplink Packet.
589 -)))
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
590 590  
653 +922.1 - SF7BW125 to SF12BW125
591 591  
655 +922.3 - SF7BW125 to SF12BW125
592 592  
593 -=== 2.4.7  ​+5V Output ===
657 +922.5 - SF7BW125 to SF12BW125
594 594  
659 +922.7 - SF7BW125 to SF12BW125
595 595  
596 -(((
597 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
598 -)))
661 +922.9 - SF7BW125 to SF12BW125
599 599  
663 +923.1 - SF7BW125 to SF12BW125
600 600  
601 -(((
602 -The 5V output time can be controlled by AT Command.
665 +923.3 - SF7BW125 to SF12BW125
603 603  
604 -
605 -)))
606 606  
607 -(((
608 -(% style="color:blue" %)**AT+5VT=1000**
668 +(% style="color:#037691" %)**Downlink:**
609 609  
610 -
611 -)))
670 +Uplink channels 1-7(RX1)
612 612  
613 -(((
614 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
615 -)))
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
616 616  
617 617  
618 618  
619 -== 2.5  Downlink Payload ==
676 +=== 2.7.7 IN865-867 (IN865) ===
620 620  
678 +(% style="color:#037691" %)** Uplink:**
621 621  
622 -By default, NDDS75 prints the downlink payload to console port.
680 +865.0625 - SF7BW125 to SF12BW125
623 623  
624 -[[image:image-20220709100028-1.png]]
682 +865.4025 - SF7BW125 to SF12BW125
625 625  
684 +865.9850 - SF7BW125 to SF12BW125
626 626  
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
627 627  (((
628 -(% style="color:blue" %)**Examples:**
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
629 629  )))
715 +)))
630 630  
717 +
718 +
719 +[[image:1654506665940-119.png]]
720 +
631 631  (((
632 -
722 +Dig a hole with diameter > 20CM.
633 633  )))
634 634  
635 -* (((
636 -(% style="color:blue" %)**Set TDC**
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
637 637  )))
638 638  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
639 639  (((
640 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
733 +**Firmware download link:**
641 641  )))
642 642  
643 643  (((
644 -Payload:    01 00 00 1E    TDC=30S
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
645 645  )))
646 646  
647 647  (((
648 -Payload:    01 00 00 3C    TDC=60S
741 +
649 649  )))
650 650  
651 651  (((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
747 +
748 +(((
652 652  
653 653  )))
654 654  
655 -* (((
656 -(% style="color:blue" %)**Reset**
752 +(((
753 +**V1.0.**
657 657  )))
658 658  
659 659  (((
660 -If payload = 0x04FF, it will reset the NDDS75
757 +Release
661 661  )))
662 662  
663 663  
664 -* (% style="color:blue" %)**INTMOD**
761 +== 2.11 ​Battery Analysis ==
665 665  
763 +=== 2.11.1 ​Battery Type ===
764 +
666 666  (((
667 -Downlink Payload: 06000003, Set AT+INTMOD=3
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
668 668  )))
669 669  
769 +(((
770 +The battery is designed to last for more than 5 years for the LSN50.
771 +)))
670 670  
773 +(((
774 +(((
775 +The battery-related documents are as below:
776 +)))
777 +)))
671 671  
672 -== 2.6  Distance alarm function(Since firmware v1.3.2) ==
779 +* (((
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
781 +)))
782 +* (((
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
784 +)))
785 +* (((
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
787 +)))
673 673  
789 + [[image:image-20220610172436-1.png]]
674 674  
675 -(% style="color:blue" %)** ➢ AT Command:**
676 676  
677 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
678 678  
679 -² When min=0, and max≠0, Alarm higher than max
793 +=== 2.11.2 ​Battery Note ===
680 680  
681 -² When min≠0, and max=0, Alarm lower than min
795 +(((
796 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
797 +)))
682 682  
683 -² When min≠0 and max≠0, Alarm higher than max or lower than min
684 684  
685 685  
686 -(% style="color:blue" %)** Example:**
801 +=== 2.11.3 Replace the battery ===
687 687  
688 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
803 +(((
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
805 +)))
689 689  
807 +(((
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
809 +)))
690 690  
811 +(((
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
813 +)))
691 691  
692 -== 2.7  Set the number of data to be uploaded and the recording time ==
693 693  
694 694  
695 -(% style="color:blue" %)** ➢ AT Command:**
817 += 3. ​Using the AT Commands =
696 696  
697 -* (% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
698 -* (% style="color:#037691" %)** AT+NOUD=8**             (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
819 +== 3.1 Access AT Commands ==
699 699  
700 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
701 701  
702 -[[image:image-20221009001114-1.png||height="687" width="955"]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
703 703  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
704 704  
705 705  
706 -== 2.8  Read or Clear cached data ==
827 +Or if you have below board, use below connection:
707 707  
708 708  
709 -(% style="color:blue" %)** ➢ AT Command:**
830 +[[image:1654502005655-729.png||height="503" width="801"]]
710 710  
711 -* (% style="color:#037691" %)** AT+CDP ** (%%) ~/~/  Read cached data
712 -* (% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/  Clear cached data
713 713  
714 -[[image:image-20220908175333-2.png]]
715 715  
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
716 716  
717 717  
718 -== 2.9  ​LED Indicator ==
837 + [[image:1654502050864-459.png||height="564" width="806"]]
719 719  
720 720  
721 -The NDDS75 has an internal LED which is to show the status of different state.
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
722 722  
723 723  
724 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
725 -* Then the LED will be on for 1 second means device is boot normally.
726 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
727 -* For each uplink probe, LED will be on for 500ms.
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
728 728  
729 -(((
730 -
731 -)))
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
732 732  
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
733 733  
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
734 734  
735 -== 2.10  ​Firmware Change Log ==
736 736  
852 +(% style="color:#037691" %)**General Commands**(%%)      
737 737  
738 -(((
739 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
740 -)))
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
741 741  
742 -(((
743 -
744 -)))
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
745 745  
746 -(((
747 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
748 -)))
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
749 749  
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
750 750  
751 751  
752 -== 2.11 Battery & Power Consumption ==
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
753 753  
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
754 754  
755 -PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
756 756  
757 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
758 758  
759 -= 3. Access NB-IoT Module =
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
760 760  
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
761 761  
762 -(((
763 -Users can directly access the AT command set of the NB-IoT module.
764 -)))
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
765 765  
766 -(((
767 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
768 768  
769 -
770 -)))
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
771 771  
772 -[[image:1657333200519-600.png]]
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
773 773  
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
774 774  
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
775 775  
776 -= 4.  Using the AT Commands =
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
777 777  
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
778 778  
779 -== 4.1  Access AT Commands ==
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
780 780  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
781 781  
782 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
783 783  
784 784  
785 -AT+<CMD>?  :  Help on <CMD>
898 +(% style="color:#037691" %)**LoRa Network Management**
786 786  
787 -AT+<CMD>         :  Run <CMD>
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
788 788  
789 -AT+<CMD>=<value> :  Set the value
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
790 790  
791 -AT+<CMD>=?  :  Get the value
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
792 792  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
793 793  
794 -(% style="color:#037691" %)**General Commands**(%%)      
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
795 795  
796 -AT  :  Attention       
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
797 797  
798 -AT?  :  Short Help     
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
799 799  
800 -ATZ  :  MCU Reset    
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
801 801  
802 -AT+TDC  :  Application Data Transmission Interval
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
803 803  
804 -AT+CFG  :  Print all configurations
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
805 805  
806 -AT+CFGMO          Working mode selection
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
807 807  
808 -AT+INTMO           Set the trigger interrupt mode
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
809 809  
810 -AT+5VT  :  Set extend the time of 5V power  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
811 811  
812 -AT+PRO  :  Choose agreement
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
813 813  
814 -AT+WEIGRE  :  Get weight or set weight to 0
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
815 815  
816 -AT+WEIGAP  :  Get or Set the GapValue of weight
817 817  
818 -AT+RXDL  :  Extend the sending and receiving time
931 +(% style="color:#037691" %)**Information** 
819 819  
820 -AT+CNTFAC  :  Get or set counting parameters
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
821 821  
822 -AT+SERVADDR  :  Server Address
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
823 823  
824 -AT+T :  Get or Set record time"
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
825 825  
826 -AT+APN     :  Get or set the APN
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
827 827  
828 -AT+FBAND  :  Get or Set whether to automatically modify the frequency band
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
829 829  
830 -AT+DNSCFG  : Get or Set DNS Server
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
831 831  
832 -AT+GETSENSORVALUE   Returns the current sensor measurement
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
833 833  
834 -AT+NOUD  :  Get or Set the number of data to be uploaded
835 835  
836 -AT+CDP     Read or Clear cached data
948 += ​4. FAQ =
837 837  
838 -AT+LDDSALARM Get or Set alarm of distance
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
839 839  
952 +(((
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
955 +)))
840 840  
841 -(% style="color:#037691" %)**COAP Management**      
957 +(((
958 +
959 +)))
842 842  
843 -AT+URI            :  Resource parameters
961 +(((
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
963 +)))
844 844  
965 +(((
966 +
967 +)))
845 845  
846 -(% style="color:#037691" %)**UDP Management**
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
847 847  
848 -AT+CFM          :  Upload confirmation mode (only valid for UDP)
973 +(((
974 +
975 +)))
849 849  
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
850 850  
851 -(% style="color:#037691" %)**MQTT Management**
981 +[[image:image-20220606154726-3.png]]
852 852  
853 -AT+CLIENT  :  Get or Set MQTT client
854 854  
855 -AT+UNAME  :  Get or Set MQTT Username
984 +When you use the TTN network, the US915 frequency bands use are:
856 856  
857 -AT+PWD  :  Get or Set MQTT password
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
858 858  
859 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
996 +(((
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
860 860  
861 -AT+SUBTOPIC  :  Get or Set MQTT subscription topic
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
1001 +)))
862 862  
1003 +(((
1004 +
863 863  
864 -(% style="color:#037691" %)**Information**          
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 +)))
865 865  
866 -AT+FDR  :  Factory Data Reset
1009 +(((
1010 +
1011 +)))
867 867  
868 -AT+PWORD  :  Serial Access Password
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
869 869  
1017 +[[image:image-20220606154825-4.png]]
870 870  
871 871  
872 -= ​5.  FAQ =
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
873 873  
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
874 874  
875 -== 5.1 ​ How to Upgrade Firmware ==
876 876  
1025 += 5. Trouble Shooting =
877 877  
878 -(((
879 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
880 -)))
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
881 881  
882 -(((
883 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
884 -)))
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
885 885  
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
886 886  (((
887 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1035 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
888 888  )))
889 889  
890 890  
1039 +== 5.3 Device rejoin in at the second uplink packet ==
891 891  
892 -= 6.  Trouble Shooting =
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
893 893  
1043 +[[image:1654500909990-784.png]]
894 894  
895 -== 6.1  ​Connection problem when uploading firmware ==
896 896  
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
897 897  
898 898  (((
899 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
900 900  )))
901 901  
902 -(% class="wikigeneratedid" %)
903 -(((
904 -
905 -)))
906 906  
1053 +(% style="color:#4f81bd" %)**Solution: **
907 907  
908 -== 6.2  AT Command input doesn't work ==
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
909 909  
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
910 910  
911 -(((
912 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
913 913  
914 -
915 -)))
1060 += 6. ​Order Info =
916 916  
917 917  
918 -= 7. ​ Order Info =
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
919 919  
920 920  
921 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
922 922  
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
923 923  
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
924 924  (% class="wikigeneratedid" %)
925 925  (((
926 926  
927 927  )))
928 928  
929 -= 8.  Packing Info =
1087 += 7. Packing Info =
930 930  
931 931  (((
932 932  
933 933  
934 934  (% style="color:#037691" %)**Package Includes**:
1093 +)))
935 935  
936 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
937 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
938 938  )))
939 939  
940 940  (((
941 941  
942 942  
943 -
944 944  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
945 945  
946 -* Device Size: 13.0 x 5 x 4.5 cm
947 -* Device Weight: 150g
948 -* Package Size / pcs : 15 x 12x 5.5 cm
949 -* Weight / pcs : 220g
1105 +* (((
1106 +Device Size: cm
950 950  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
951 951  
952 -(((
953 953  
954 -
955 -
956 -
957 957  )))
958 958  
959 -= 9.  Support =
1120 += 8. Support =
960 960  
961 -
962 962  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
963 963  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20221009001114-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content