Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 108.2
edited by Xiaoling
on 2022/10/15 09:58
Change comment: There is no comment for this version
To version 45.2
edited by Xiaoling
on 2022/07/08 10:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,76 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
62 +
63 +
74 74  == 1.3  Specification ==
75 75  
76 76  
... ... @@ -79,6 +79,7 @@
79 79  * Supply Voltage: 2.1v ~~ 3.6v
80 80  * Operating Temperature: -40 ~~ 85°C
81 81  
72 +
82 82  (% style="color:#037691" %)**NB-IoT Spec:**
83 83  
84 84  * - B1 @H-FDD: 2100MHz
... ... @@ -88,741 +88,727 @@
88 88  * - B20 @H-FDD: 800MHz
89 89  * - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
103 103  
104 -== ​1.4  Applications ==
105 105  
106 106  
107 -* Smart Buildings & Home Automation
108 -* Logistics and Supply Chain Management
109 -* Smart Metering
91 +== ​1.4  Applications ==
92 +
110 110  * Smart Agriculture
111 -* Smart Cities
112 -* Smart Factory
113 113  
114 114  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
115 115  ​
116 116  
117 -
118 -
119 -
120 120  == 1.5  Pin Definitions ==
121 121  
122 122  
123 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
124 124  
125 125  
126 126  
127 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2.  Use NSE01 to communicate with IoT Server =
128 128  
129 -
130 130  == 2.1  How it works ==
131 131  
132 132  
133 133  (((
134 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
135 135  )))
136 136  
137 137  
138 138  (((
139 -The diagram below shows the working flow in default firmware of NDDS75:
116 +The diagram below shows the working flow in default firmware of NSE01:
140 140  )))
141 141  
119 +[[image:image-20220708101605-2.png]]
120 +
142 142  (((
143 143  
144 144  )))
145 145  
146 -[[image:1657328659945-416.png]]
147 147  
148 -(((
149 -
150 -)))
151 151  
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
152 152  
153 -== 2.2 Configure the NDDS75 ==
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
154 154  
155 155  
156 -=== 2.2.1 Test Requirement ===
132 +[[image:1654503992078-669.png]]
157 157  
158 158  
159 -(((
160 -To use NDDS75 in your city, make sure meet below requirements:
161 -)))
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 -* Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NDDS75 supports.
165 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
167 -(((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
169 -)))
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
170 170  
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
171 171  
172 -[[image:1657328756309-230.png]]
142 +[[image:image-20220606163732-6.jpeg]]
173 173  
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
174 174  
146 +**Add APP EUI in the application**
175 175  
176 -=== 2.2.2 Insert SIM card ===
177 177  
149 +[[image:1654504596150-405.png]]
178 178  
179 -(((
180 -Insert the NB-IoT Card get from your provider.
181 -)))
182 182  
183 -(((
184 -User need to take out the NB-IoT module and insert the SIM card like below:
185 -)))
186 186  
153 +**Add APP KEY and DEV EUI**
187 187  
188 -[[image:1657328884227-504.png]]
155 +[[image:1654504683289-357.png]]
189 189  
190 190  
191 191  
192 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
193 193  
194 194  
195 -(((
196 -(((
197 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
198 -)))
199 -)))
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
200 200  
201 -[[image:image-20220709092052-2.png]]
164 +[[image:image-20220606163915-7.png]]
202 202  
203 203  
204 -(% style="color:blue" %)**Connection:**
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
205 205  
206 - (% style="background-color:yellow" %)**USB TTL GND <~-~-~-~-> GND**
169 +[[image:1654504778294-788.png]]
207 207  
208 -**~ (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD(%%)**
209 209  
210 -**~ (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD(%%)**
211 211  
173 +== 2.3 Uplink Payload ==
212 212  
213 -In the PC, use below serial tool settings:
214 214  
215 -* Baud:  (% style="color:green" %)**9600**
216 -* Data bits:** (% style="color:green" %)8(%%)**
217 -* Stop bits: (% style="color:green" %)**1**
218 -* Parity:  (% style="color:green" %)**None**
219 -* Flow Control: (% style="color:green" %)**None**
176 +=== 2.3.1 MOD~=0(Default Mode) ===
220 220  
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
221 221  (((
222 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
181 +Uplink payload includes in total 11 bytes.
223 223  )))
224 224  
225 -[[image:1657329814315-101.png]]
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
226 226  
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
227 227  
228 -(((
229 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
230 230  )))
231 231  
200 +=== 2.3.2 MOD~=1(Original value) ===
232 232  
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
233 233  
234 -=== 2.2.4 Use CoAP protocol to uplink data ===
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
235 235  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
236 236  
237 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
238 238  
217 +(Optional)
218 +)))
239 239  
220 +=== 2.3.3 Battery Info ===
221 +
240 240  (((
241 -**Use below commands:**
223 +Check the battery voltage for LSE01.
242 242  )))
243 243  
244 -* (((
245 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
226 +(((
227 +Ex1: 0x0B45 = 2885mV
246 246  )))
247 -* (((
248 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/  to set CoAP server address and port
229 +
230 +(((
231 +Ex2: 0x0B49 = 2889mV
249 249  )))
250 -* (((
251 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
252 252  
253 253  
254 -
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
255 255  )))
256 256  
257 257  (((
258 -For parameter description, please refer to AT command set
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
259 259  
246 +(((
260 260  
261 261  )))
262 262  
263 -[[image:1657330452568-615.png]]
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
264 264  
265 265  
266 266  
256 +=== 2.3.5 Soil Temperature ===
257 +
267 267  (((
268 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
269 269  
270 -
262 +(((
263 +**Example**:
271 271  )))
272 272  
273 -[[image:1657330472797-498.png]]
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
274 274  
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
275 275  
276 276  
277 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
278 278  
276 +=== 2.3.6 Soil Conductivity (EC) ===
279 279  
280 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/  to set UDP server address and port
282 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
283 283  
284 -[[image:1657330501006-241.png]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
285 285  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
286 286  
287 -[[image:1657330533775-472.png]]
290 +(((
291 +
292 +)))
288 288  
294 +(((
295 +
296 +)))
289 289  
298 +=== 2.3.7 MOD ===
290 290  
291 -=== 2.2.6 Use MQTT protocol to uplink data ===
300 +Firmware version at least v2.1 supports changing mode.
292 292  
302 +For example, bytes[10]=90
293 293  
294 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
295 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
296 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/  Set up the CLIENT of MQTT
297 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/  Set the username of MQTT
298 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/  Set the password of MQTT
299 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/  Set the sending topic of MQTT
300 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/  Set the subscription topic of MQTT
304 +mod=(bytes[10]>>7)&0x01=1.
301 301  
302 -[[image:1657249978444-674.png]]
303 303  
307 +**Downlink Command:**
304 304  
305 -[[image:1657330723006-866.png]]
309 +If payload = 0x0A00, workmode=0
306 306  
311 +If** **payload =** **0x0A01, workmode=1
307 307  
313 +
314 +
315 +=== 2.3.8 ​Decode payload in The Things Network ===
316 +
317 +While using TTN network, you can add the payload format to decode the payload.
318 +
319 +
320 +[[image:1654505570700-128.png]]
321 +
308 308  (((
309 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
323 +The payload decoder function for TTN is here:
310 310  )))
311 311  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
312 312  
313 313  
314 -=== 2.2.7 Use TCP protocol to uplink data ===
331 +== 2.4 Uplink Interval ==
315 315  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
316 316  
317 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
318 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/  to set TCP server address and port
319 319  
320 -[[image:image-20220709093918-1.png]]
321 321  
337 +== 2.5 Downlink Payload ==
322 322  
323 -[[image:image-20220709093918-2.png]]
339 +By default, LSE50 prints the downlink payload to console port.
324 324  
341 +[[image:image-20220606165544-8.png]]
325 325  
326 326  
327 -=== 2.2.8 Change Update Interval ===
344 +(((
345 +(% style="color:blue" %)**Examples:**
346 +)))
328 328  
348 +(((
349 +
350 +)))
329 329  
330 -User can use below command to change the (% style="color:green" %)**uplink interval**.
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
331 331  
332 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/  Set Update Interval to 600s
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
333 333  
334 334  (((
335 -
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
336 336  
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
337 337  
338 -(% style="color:red" %)**NOTE:**
368 +(((
369 +
370 +)))
339 339  
340 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
372 +* (((
373 +(% style="color:blue" %)**Reset**
374 +)))
341 341  
342 -(% style="color:red" %)**2. When the firmware version is v1.3.2 and later firmware:**
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
343 343  )))
344 344  
345 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
346 346  
381 +* (% style="color:blue" %)**CFM**
347 347  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
348 348  
349 -== 2.3  Uplink Payload ==
350 350  
351 351  
352 -=== 2.3.1  Before Firmware v1.3.2 ===
387 +== 2.6 ​Show Data in DataCake IoT Server ==
353 353  
389 +(((
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
391 +)))
354 354  
355 -In this mode, uplink payload includes in total 14 bytes
393 +(((
394 +
395 +)))
356 356  
357 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
358 -|=(% style="width: 60px;" %)(((
359 -**Size(bytes)**
360 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
361 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
362 362  
363 363  (((
364 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
365 365  )))
366 366  
367 367  
368 -[[image:1657331036973-987.png]]
406 +[[image:1654505857935-743.png]]
369 369  
370 370  
409 +[[image:1654505874829-548.png]]
371 371  
372 -The payload is **ASCII** string, representative same HEX:
373 373  
374 -(% style="background-color:yellow" %)**0x724031556159 0064 0c6c 19 0292 00 **
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
375 375  
376 -**where :**
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
377 377  
378 -* (% style="color:#037691" %)**Device ID:**(%%) 0x724031556159 = 724031556159
379 379  
380 -* (% style="color:#037691" %)**Version:**(%%)  0x0064=100=1.0.0
417 +[[image:1654505905236-553.png]]
381 381  
382 -* (% style="color:#037691" %)**BAT:** (%%) 0x0c6c = 3180 mV = 3.180V
383 383  
384 -* (% style="color:#037691" %)**Signal:**(%%)  0x19 = 25
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
385 385  
386 -* (% style="color:#037691" %)**Distance:**  (%%)0x0292= 658 mm
422 +[[image:1654505925508-181.png]]
387 387  
388 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00 = 0
389 389  
390 390  
426 +== 2.7 Frequency Plans ==
391 391  
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
392 392  
393 -=== **2.3.2  Since firmware v1.3.2** ===
394 394  
431 +=== 2.7.1 EU863-870 (EU868) ===
395 395  
396 -In this mode, uplink payload includes 69 bytes in total by default.
433 +(% style="color:#037691" %)** Uplink:**
397 397  
398 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
435 +868.1 - SF7BW125 to SF12BW125
399 399  
400 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
401 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
402 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
403 403  
404 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
439 +868.5 - SF7BW125 to SF12BW125
405 405  
406 -[[image:image-20220908175246-1.png]]
441 +867.1 - SF7BW125 to SF12BW125
407 407  
443 +867.3 - SF7BW125 to SF12BW125
408 408  
409 -The payload is ASCII string, representative same HEX:
445 +867.5 - SF7BW125 to SF12BW125
410 410  
411 -**0x (% style="color:red" %)f867787050213317 (% style="color:blue" %)0084 (% style="color:green" %)0cf4 (% style="color:#00b0f0" %)1e (% style="color:#7030a0" %)01 (% style="color:#d60093" %)00(% style="color:#a14d07" %) 0039 (% style="color:#0020b0" %)6315537b (% style="color:#663300" %)00396319baf0 00396319ba3c 00396319b988 00396319b8d4 00396319b820 00396319b76c 00396319b6b8 00396319b604 (%%)**
447 +867.7 - SF7BW125 to SF12BW125
412 412  
413 -**where:**
449 +867.9 - SF7BW125 to SF12BW125
414 414  
415 -* (% style="color:#037691" %)**Device ID:**(%%) f867787050213317 = f867787050213317
451 +868.8 - FSK
416 416  
417 -* (% style="color:#037691" %)**Version:**(%%) 0x0084=132=1.3.2
418 418  
419 -* (% style="color:#037691" %)**BAT:**(%%)  0x0cf4 = 3316 mV = 3.316V
454 +(% style="color:#037691" %)** Downlink:**
420 420  
421 -* (% style="color:#037691" %)**Singal:**(%%)  0x1e = 30
456 +Uplink channels 1-9 (RX1)
422 422  
423 -* (% style="color:#037691" %)**Mod:**(%%)**  **0x01 = 1
458 +869.525 - SF9BW125 (RX2 downlink only)
424 424  
425 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
426 426  
427 -* (% style="color:#037691" %)**Distance:**(%%) 0x0039= 57 = 57
428 428  
429 -* (% style="color:#037691" %)**Time stamp:**(%%) 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
462 +=== 2.7.2 US902-928(US915) ===
430 430  
431 -* (% style="color:#037691" %)**Distance,Time stamp:**(%%) 00396319baf0
464 +Used in USA, Canada and South America. Default use CHE=2
432 432  
433 -* (% style="color:#037691" %) **8 sets of recorded data: Distance,Time stamp :**(%%) //**00396319ba3c**//,.......
466 +(% style="color:#037691" %)**Uplink:**
434 434  
468 +903.9 - SF7BW125 to SF10BW125
435 435  
470 +904.1 - SF7BW125 to SF10BW125
436 436  
472 +904.3 - SF7BW125 to SF10BW125
437 437  
438 -== 2.4  Payload Explanation and Sensor Interface ==
474 +904.5 - SF7BW125 to SF10BW125
439 439  
476 +904.7 - SF7BW125 to SF10BW125
440 440  
441 -=== 2.4.1  Device ID ===
478 +904.9 - SF7BW125 to SF10BW125
442 442  
480 +905.1 - SF7BW125 to SF10BW125
443 443  
444 -(((
445 -By default, the Device ID equal to the last 6 bytes of IMEI.
446 -)))
482 +905.3 - SF7BW125 to SF10BW125
447 447  
448 -(((
449 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
450 450  
451 -
452 -)))
485 +(% style="color:#037691" %)**Downlink:**
453 453  
454 -(((
455 -(% style="color:blue" %)**Example :**
456 -)))
487 +923.3 - SF7BW500 to SF12BW500
457 457  
458 -(((
459 -AT+DEUI=A84041F15612
460 -)))
489 +923.9 - SF7BW500 to SF12BW500
461 461  
462 -(((
463 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
464 -)))
491 +924.5 - SF7BW500 to SF12BW500
465 465  
493 +925.1 - SF7BW500 to SF12BW500
466 466  
467 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
495 +925.7 - SF7BW500 to SF12BW500
468 468  
469 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
497 +926.3 - SF7BW500 to SF12BW500
470 470  
471 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
499 +926.9 - SF7BW500 to SF12BW500
472 472  
501 +927.5 - SF7BW500 to SF12BW500
473 473  
474 -(% style="color:blue" %)**Example :**
503 +923.3 - SF12BW500(RX2 downlink only)
475 475  
476 -AT+DEUI=868411056754138
477 477  
478 478  
507 +=== 2.7.3 CN470-510 (CN470) ===
479 479  
480 -=== 2.4.2  Version Info ===
509 +Used in China, Default use CHE=1
481 481  
511 +(% style="color:#037691" %)**Uplink:**
482 482  
483 -(((
484 -Specify the software version: 0x64=100, means firmware version 1.00.
485 -)))
513 +486.3 - SF7BW125 to SF12BW125
486 486  
487 -(((
488 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
489 -)))
515 +486.5 - SF7BW125 to SF12BW125
490 490  
517 +486.7 - SF7BW125 to SF12BW125
491 491  
519 +486.9 - SF7BW125 to SF12BW125
492 492  
493 -=== 2.4. Battery Info ===
521 +487.1 - SF7BW125 to SF12BW125
494 494  
523 +487.3 - SF7BW125 to SF12BW125
495 495  
496 -(((
497 -Ex1: 0x0B45 = 2885mV
498 -)))
525 +487.5 - SF7BW125 to SF12BW125
499 499  
500 -(((
501 -Ex2: 0x0B49 = 2889mV
502 -)))
527 +487.7 - SF7BW125 to SF12BW125
503 503  
504 504  
530 +(% style="color:#037691" %)**Downlink:**
505 505  
506 -=== 2.4.4  Signal Strength ===
532 +506.7 - SF7BW125 to SF12BW125
507 507  
534 +506.9 - SF7BW125 to SF12BW125
508 508  
509 -(((
510 -NB-IoT Network signal Strength.
511 -)))
536 +507.1 - SF7BW125 to SF12BW125
512 512  
513 -(((
514 -**Ex1: 0x1d = 29**
515 -)))
538 +507.3 - SF7BW125 to SF12BW125
516 516  
517 -(((
518 -(% style="color:blue" %)**0**(%%)  -113dBm or less
519 -)))
540 +507.5 - SF7BW125 to SF12BW125
520 520  
521 -(((
522 -(% style="color:blue" %)**1**(%%)  -111dBm
523 -)))
542 +507.7 - SF7BW125 to SF12BW125
524 524  
525 -(((
526 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
527 -)))
544 +507.9 - SF7BW125 to SF12BW125
528 528  
529 -(((
530 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
531 -)))
546 +508.1 - SF7BW125 to SF12BW125
532 532  
533 -(((
534 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
535 -)))
548 +505.3 - SF12BW125 (RX2 downlink only)
536 536  
537 537  
538 538  
539 -=== 2.4.5  Distance ===
552 +=== 2.7.4 AU915-928(AU915) ===
540 540  
554 +Default use CHE=2
541 541  
542 -Get the distance. Flat object range 280mm - 7500mm.
556 +(% style="color:#037691" %)**Uplink:**
543 543  
544 -(((
545 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
546 -)))
558 +916.8 - SF7BW125 to SF12BW125
547 547  
548 -(((
549 -(((
550 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
551 -)))
552 -)))
560 +917.0 - SF7BW125 to SF12BW125
553 553  
554 -(((
555 -
556 -)))
562 +917.2 - SF7BW125 to SF12BW125
557 557  
558 -(((
559 -
560 -)))
564 +917.4 - SF7BW125 to SF12BW125
561 561  
562 -=== 2.4.6  Digital Interrupt ===
566 +917.6 - SF7BW125 to SF12BW125
563 563  
568 +917.8 - SF7BW125 to SF12BW125
564 564  
565 -(((
566 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
567 -)))
570 +918.0 - SF7BW125 to SF12BW125
568 568  
569 -(((
570 -The command is:
571 -)))
572 +918.2 - SF7BW125 to SF12BW125
572 572  
573 -(((
574 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
575 -)))
576 576  
575 +(% style="color:#037691" %)**Downlink:**
577 577  
578 -(((
579 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
580 -)))
577 +923.3 - SF7BW500 to SF12BW500
581 581  
579 +923.9 - SF7BW500 to SF12BW500
582 582  
583 -(((
584 -Example:
585 -)))
581 +924.5 - SF7BW500 to SF12BW500
586 586  
587 -(((
588 -0x(00): Normal uplink packet.
589 -)))
583 +925.1 - SF7BW500 to SF12BW500
590 590  
591 -(((
592 -0x(01): Interrupt Uplink Packet.
593 -)))
585 +925.7 - SF7BW500 to SF12BW500
594 594  
587 +926.3 - SF7BW500 to SF12BW500
595 595  
589 +926.9 - SF7BW500 to SF12BW500
596 596  
597 -=== 2.4.7  ​+5V Output ===
591 +927.5 - SF7BW500 to SF12BW500
598 598  
593 +923.3 - SF12BW500(RX2 downlink only)
599 599  
600 -(((
601 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
602 -)))
603 603  
604 604  
605 -(((
606 -The 5V output time can be controlled by AT Command.
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
607 607  
608 -
609 -)))
599 +(% style="color:#037691" %)**Default Uplink channel:**
610 610  
611 -(((
612 -(% style="color:blue" %)**AT+5VT=1000**
601 +923.2 - SF7BW125 to SF10BW125
613 613  
614 -
615 -)))
603 +923.4 - SF7BW125 to SF10BW125
616 616  
617 -(((
618 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
619 -)))
620 620  
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
621 621  
608 +(OTAA mode, channel added by JoinAccept message)
622 622  
623 -== 2.5  Downlink Payload ==
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
624 624  
612 +922.2 - SF7BW125 to SF10BW125
625 625  
626 -By default, NDDS75 prints the downlink payload to console port.
614 +922.4 - SF7BW125 to SF10BW125
627 627  
628 -[[image:image-20220709100028-1.png]]
616 +922.6 - SF7BW125 to SF10BW125
629 629  
618 +922.8 - SF7BW125 to SF10BW125
630 630  
631 -(((
632 -(% style="color:blue" %)**Examples:**
633 -)))
620 +923.0 - SF7BW125 to SF10BW125
634 634  
635 -(((
636 -
637 -)))
622 +922.0 - SF7BW125 to SF10BW125
638 638  
639 -* (((
640 -(% style="color:blue" %)**Set TDC**
641 -)))
642 642  
643 -(((
644 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
645 -)))
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
646 646  
647 -(((
648 -Payload:    01 00 00 1E    TDC=30S
649 -)))
627 +923.6 - SF7BW125 to SF10BW125
650 650  
651 -(((
652 -Payload:    01 00 00 3C    TDC=60S
653 -)))
629 +923.8 - SF7BW125 to SF10BW125
654 654  
655 -(((
656 -
657 -)))
631 +924.0 - SF7BW125 to SF10BW125
658 658  
659 -* (((
660 -(% style="color:blue" %)**Reset**
661 -)))
633 +924.2 - SF7BW125 to SF10BW125
662 662  
663 -(((
664 -If payload = 0x04FF, it will reset the NDDS75
665 -)))
635 +924.4 - SF7BW125 to SF10BW125
666 666  
637 +924.6 - SF7BW125 to SF10BW125
667 667  
668 -* (% style="color:blue" %)**INTMOD**
669 669  
670 -(((
671 -Downlink Payload: 06000003, Set AT+INTMOD=3
672 -)))
640 +(% style="color:#037691" %)** Downlink:**
673 673  
642 +Uplink channels 1-8 (RX1)
674 674  
644 +923.2 - SF10BW125 (RX2)
675 675  
676 -== 2.6  Distance alarm function(Since firmware v1.3.2) ==
677 677  
678 678  
679 -(% style="color:blue" %)** AT Command:**
648 +=== 2.7.6 KR920-923 (KR920) ===
680 680  
681 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
650 +Default channel:
682 682  
683 -² When min=0, and max≠0, Alarm higher than max
652 +922.1 - SF7BW125 to SF12BW125
684 684  
685 -² When min≠0, and max=0, Alarm lower than min
654 +922.3 - SF7BW125 to SF12BW125
686 686  
687 -² When min≠0 and max≠0, Alarm higher than max or lower than min
656 +922.5 - SF7BW125 to SF12BW125
688 688  
689 689  
690 -(% style="color:blue" %)** Example:**
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
691 691  
692 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
661 +922.1 - SF7BW125 to SF12BW125
693 693  
663 +922.3 - SF7BW125 to SF12BW125
694 694  
665 +922.5 - SF7BW125 to SF12BW125
695 695  
696 -== 2.7  Set the number of data to be uploaded and the recording time ==
667 +922.7 - SF7BW125 to SF12BW125
697 697  
669 +922.9 - SF7BW125 to SF12BW125
698 698  
699 -(% style="color:blue" %)** ➢ AT Command:**
671 +923.1 - SF7BW125 to SF12BW125
700 700  
701 -* (% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
702 -* (% style="color:#037691" %)** AT+NOUD=8**             (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
673 +923.3 - SF7BW125 to SF12BW125
703 703  
704 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
705 705  
706 -[[image:image-20221009001114-1.png||height="687" width="955"]]
676 +(% style="color:#037691" %)**Downlink:**
707 707  
678 +Uplink channels 1-7(RX1)
708 708  
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
709 709  
710 -== 2.8  Read or Clear cached data ==
711 711  
712 712  
713 -(% style="color:blue" %)** AT Command:**
684 +=== 2.7.7 IN865-867 (IN865) ===
714 714  
715 -* (% style="color:#037691" %)** AT+CDP ** (%%) ~/~/  Read cached data
716 -* (% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/  Clear cached data
686 +(% style="color:#037691" %)** Uplink:**
717 717  
718 -[[image:image-20220908175333-2.png]]
688 +865.0625 - SF7BW125 to SF12BW125
719 719  
690 +865.4025 - SF7BW125 to SF12BW125
720 720  
692 +865.9850 - SF7BW125 to SF12BW125
721 721  
722 -== 2.9  ​LED Indicator ==
723 723  
695 +(% style="color:#037691" %) **Downlink:**
724 724  
725 -The NDDS75 has an internal LED which is to show the status of different state.
697 +Uplink channels 1-3 (RX1)
726 726  
699 +866.550 - SF10BW125 (RX2)
727 727  
728 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
729 -* Then the LED will be on for 1 second means device is boot normally.
730 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
731 -* For each uplink probe, LED will be on for 500ms.
732 732  
733 -(((
734 -
735 -)))
736 736  
737 737  
704 +== 2.8 LED Indicator ==
738 738  
739 -== 2.10  ​Firmware Change Log ==
706 +The LSE01 has an internal LED which is to show the status of different state.
740 740  
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
741 741  
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
742 742  (((
743 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
744 744  )))
723 +)))
745 745  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
746 746  (((
747 -
730 +Dig a hole with diameter > 20CM.
748 748  )))
749 749  
750 750  (((
751 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
752 752  )))
753 753  
754 754  
738 +== 2.10 ​Firmware Change Log ==
755 755  
756 -== 2.11  ​Battery Analysis ==
740 +(((
741 +**Firmware download link:**
742 +)))
757 757  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
758 758  
759 -=== 2.11.1  ​Battery Type ===
748 +(((
749 +
750 +)))
760 760  
761 -
762 762  (((
763 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
764 764  )))
765 765  
766 766  (((
767 -The battery is designed to last for several years depends on the actually use environment and update interval. 
757 +
768 768  )))
769 769  
770 770  (((
771 -The battery related documents as below:
761 +**V1.0.**
772 772  )))
773 773  
774 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
775 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
776 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
777 -
778 778  (((
779 -[[image:image-20220709101450-2.png]]
765 +Release
780 780  )))
781 781  
782 782  
769 +== 2.11 ​Battery Analysis ==
783 783  
784 -=== 2.11. Power consumption Analyze ===
771 +=== 2.11.1 ​Battery Type ===
785 785  
786 -
787 787  (((
788 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
789 789  )))
790 790  
791 -
792 792  (((
793 -Instruction to use as below:
778 +The battery is designed to last for more than 5 years for the LSN50.
794 794  )))
795 795  
796 796  (((
797 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
798 -)))
799 -
800 -
801 801  (((
802 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
783 +The battery-related documents are as below:
803 803  )))
785 +)))
804 804  
805 805  * (((
806 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
807 807  )))
808 808  * (((
809 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
810 810  )))
811 811  * (((
812 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
813 813  )))
814 814  
815 -(((
816 -And the Life expectation in difference case will be shown on the right.
817 -)))
797 + [[image:image-20220610172436-1.png]]
818 818  
819 -[[image:image-20220709110451-3.png]]
820 820  
821 821  
801 +=== 2.11.2 ​Battery Note ===
822 822  
823 -=== 2.11.3  ​Battery Note ===
824 -
825 -
826 826  (((
827 827  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
828 828  )))
... ... @@ -829,217 +829,326 @@
829 829  
830 830  
831 831  
832 -=== 2.11. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
833 833  
811 +(((
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
813 +)))
834 834  
835 835  (((
836 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
837 837  )))
838 838  
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
839 839  
840 840  
841 -= 3. ​ Access NB-IoT Module =
842 842  
825 += 3. ​Using the AT Commands =
843 843  
844 -(((
845 -Users can directly access the AT command set of the NB-IoT module.
846 -)))
827 +== 3.1 Access AT Commands ==
847 847  
848 -(((
849 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
850 850  
851 -
852 -)))
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
853 853  
854 -[[image:1657333200519-600.png]]
832 +[[image:1654501986557-872.png||height="391" width="800"]]
855 855  
856 856  
835 +Or if you have below board, use below connection:
857 857  
858 -= 4.  Using the AT Commands =
859 859  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
860 860  
861 -== 4.1  Access AT Commands ==
862 862  
863 863  
864 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
865 865  
866 866  
867 -AT+<CMD>?  :  Help on <CMD>
845 + [[image:1654502050864-459.png||height="564" width="806"]]
868 868  
869 -AT+<CMD>         :  Run <CMD>
870 870  
871 -AT+<CMD>=<value> Set the value
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
872 872  
873 -AT+<CMD>=?  :  Get the value
874 874  
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
875 875  
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
876 876  (% style="color:#037691" %)**General Commands**(%%)      
877 877  
878 -AT  :  Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
879 879  
880 -AT?  :  Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
881 881  
882 -ATZ  :  MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
883 883  
884 -AT+TDC  :  Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
885 885  
886 -AT+CFG  :  Print all configurations
887 887  
888 -AT+CFGMOD           :  Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
889 889  
890 -AT+INTMOD            :  Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
891 891  
892 -AT+5VT  :  Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
893 893  
894 -AT+PRO  :  Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
895 895  
896 -AT+WEIGRE  :  Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
897 897  
898 -AT+WEIGAP  :  Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
899 899  
900 -AT+RXDL  :  Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
901 901  
902 -AT+CNTFAC  :  Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
903 903  
904 -AT+SERVADDR  Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
905 905  
906 -AT+TR  :  Get or Set record time"
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
907 907  
908 -AT+AP    :  Get or set the APN
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
909 909  
910 -AT+FBAND  Get or Set whether to automatically modify the frequency band
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
911 911  
912 -AT+DNSCFG  : Get or Set DNS Server
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
913 913  
914 -AT+GETSENSORVALUE   :  Returns the current sensor measurement
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
915 915  
916 -AT+NOUD  :  Get or Set the number of data to be uploaded
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
917 917  
918 -AT+CDP     :  Read or Clear cached data
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
919 919  
920 -AT+LDDSALARM :  Get or Set alarm of distance
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
921 921  
922 922  
923 -(% style="color:#037691" %)**COAP Management**      
906 +(% style="color:#037691" %)**LoRa Network Management**
924 924  
925 -AT+URI            :  Resource parameters
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
926 926  
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
927 927  
928 -(% style="color:#037691" %)**UDP Management**
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
929 929  
930 -AT+CFM          Upload confirmation mode (only valid for UDP)
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
931 931  
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
932 932  
933 -(% style="color:#037691" %)**MQTT Management**
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
934 934  
935 -AT+CLIENT  :  Get or Set MQTT client
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
936 936  
937 -AT+UNAME  :  Get or Set MQTT Username
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
938 938  
939 -AT+PWD  :  Get or Set MQTT password
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
940 940  
941 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
942 942  
943 -AT+SUBTOPIC  :  Get or Set MQTT subscription topic
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
944 944  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
945 945  
946 -(% style="color:#037691" %)**Information**          
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
947 947  
948 -AT+FDR  :  Factory Data Reset
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
949 949  
950 -AT+PWORD  :  Serial Access Password
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
951 951  
952 952  
939 +(% style="color:#037691" %)**Information** 
953 953  
954 -= ​5.  FAQ =
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
955 955  
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
956 956  
957 -== 5.1 How to Upgrade Firmware ==
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
958 958  
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
959 959  
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
960 960  (((
961 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
962 962  )))
963 963  
964 964  (((
965 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
966 966  )))
967 967  
968 968  (((
969 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
970 970  )))
971 971  
973 +(((
974 +
975 +)))
972 972  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
973 973  
974 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
975 975  
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
976 976  
977 -== 6.1  ​Connection problem when uploading firmware ==
989 +[[image:image-20220606154726-3.png]]
978 978  
979 979  
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
980 980  (((
981 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
982 982  )))
983 983  
984 -(% class="wikigeneratedid" %)
985 985  (((
986 986  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
987 987  )))
988 988  
1017 +(((
1018 +
1019 +)))
989 989  
990 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
991 991  
1025 +[[image:image-20220606154825-4.png]]
992 992  
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
993 993  (((
994 994  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
995 995  
996 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
997 997  )))
998 998  
999 999  
1000 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
1001 1001  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1002 1002  
1003 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
1004 1004  
1005 1005  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
1006 1006  (% class="wikigeneratedid" %)
1007 1007  (((
1008 1008  
1009 1009  )))
1010 1010  
1011 -= 8.  Packing Info =
1095 += 7. Packing Info =
1012 1012  
1013 1013  (((
1014 1014  
1015 1015  
1016 1016  (% style="color:#037691" %)**Package Includes**:
1101 +)))
1017 1017  
1018 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1019 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1020 1020  )))
1021 1021  
1022 1022  (((
1023 1023  
1024 1024  
1025 -
1026 1026  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
1027 1027  
1028 -* Device Size: 13.0 x 5 x 4.5 cm
1029 -* Device Weight: 150g
1030 -* Package Size / pcs : 15 x 12x 5.5 cm
1031 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
1032 1032  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
1033 1033  
1034 -(((
1035 1035  
1036 -
1037 -
1038 -
1039 1039  )))
1040 1040  
1041 -= 9.  Support =
1128 += 8. Support =
1042 1042  
1043 -
1044 1044  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1045 1045  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20221009001114-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content