Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 108.11
edited by Xiaoling
on 2023/04/04 13:39
Change comment: There is no comment for this version
To version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,71 +1,61 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 -== 1.2 ​ Features ==
57 57  
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Ultra low power consumption
61 -* Distance Detection by Ultrasonic technology
62 -* Flat object range 280mm - 7500mm
63 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
64 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
... ... @@ -79,816 +79,1031 @@
79 79  * Supply Voltage: 2.1v ~~ 3.6v
80 80  * Operating Temperature: -40 ~~ 85°C
81 81  
72 +
82 82  (% style="color:#037691" %)**NB-IoT Spec:**
83 83  
84 -* B1 @H-FDD: 2100MHz
85 -* B3 @H-FDD: 1800MHz
86 -* B8 @H-FDD: 900MHz
87 -* B5 @H-FDD: 850MHz
88 -* B20 @H-FDD: 800MHz
89 -* B28 @H-FDD: 700MHz
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
87 +[[image:image-20220708101224-1.png]]
103 103  
104 104  
105 105  
106 106  == ​1.4  Applications ==
107 107  
108 -
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 112  * Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
115 115  
116 116  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 117  ​
118 118  
119 -
120 120  == 1.5  Pin Definitions ==
121 121  
122 122  
123 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
124 124  
125 125  
126 -= 2.  Use NDDS75 to communicate with IoT Server =
127 127  
128 -== 2.1  How it works ==
105 += 2. Configure LSE01 to connect to LoRaWAN network =
129 129  
107 +== 2.1 How it works ==
130 130  
131 131  (((
132 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
133 133  )))
134 134  
113 +(((
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 +)))
135 135  
117 +
118 +
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 +
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 +
123 +
124 +[[image:1654503992078-669.png]]
125 +
126 +
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 +
129 +
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
136 136  (((
137 -The diagram below shows the working flow in default firmware of NDDS75:
173 +Uplink payload includes in total 11 bytes.
138 138  )))
139 139  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
179 +
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
190 +)))
191 +
192 +=== 2.3.2 MOD~=1(Original value) ===
193 +
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
195 +
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
199 +
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
204 +
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
208 +
209 +(Optional)
210 +)))
211 +
212 +=== 2.3.3 Battery Info ===
213 +
140 140  (((
141 -
215 +Check the battery voltage for LSE01.
142 142  )))
143 143  
144 -[[image:1657328659945-416.png]]
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
145 145  
146 146  (((
147 -
223 +Ex2: 0x0B49 = 2889mV
148 148  )))
149 149  
150 -== 2.2 ​ Configure the NDDS75 ==
151 151  
152 -=== 2.2.1 Test Requirement ===
153 153  
228 +=== 2.3.4 Soil Moisture ===
154 154  
155 155  (((
156 -To use NDDS75 in your city, make sure meet below requirements:
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
157 157  )))
158 158  
159 -* Your local operator has already distributed a NB-IoT Network there.
160 -* The local NB-IoT network used the band that NDDS75 supports.
161 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
162 162  
163 163  (((
164 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
239 +
165 165  )))
166 166  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
167 167  
168 -[[image:1657328756309-230.png]]
169 169  
170 170  
171 -=== 2.2.2 Insert SIM card ===
248 +=== 2.3.5 Soil Temperature ===
172 172  
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
173 173  
174 174  (((
175 -Insert the NB-IoT Card get from your provider.
255 +**Example**:
176 176  )))
177 177  
178 178  (((
179 -User need to take out the NB-IoT module and insert the SIM card like below:
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
180 180  )))
181 181  
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
182 182  
183 -[[image:1657328884227-504.png]]
184 184  
185 185  
186 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
268 +=== 2.3.6 Soil Conductivity (EC) ===
187 187  
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
188 188  
189 189  (((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
277 +
190 190  (((
191 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
192 192  )))
281 +
282 +(((
283 +
193 193  )))
194 194  
195 -[[image:image-20220709092052-2.png]]
286 +(((
287 +
288 +)))
196 196  
290 +=== 2.3.7 MOD ===
197 197  
198 -(% style="color:blue" %)**Connection:**
292 +Firmware version at least v2.1 supports changing mode.
199 199  
200 - (% style="background-color:yellow" %)**USB TTL GND <~-~-~-~-> GND**
294 +For example, bytes[10]=90
201 201  
202 -**~ (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD(%%)**
296 +mod=(bytes[10]>>7)&0x01=1.
203 203  
204 -**~ (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD(%%)**
205 205  
299 +**Downlink Command:**
206 206  
207 -In the PC, use below serial tool settings:
301 +If payload = 0x0A00, workmode=0
208 208  
209 -* Baud:  (% style="color:green" %)**9600**
210 -* Data bits:** (% style="color:green" %)8(%%)**
211 -* Stop bits: (% style="color:green" %)**1**
212 -* Parity:  (% style="color:green" %)**None**
213 -* Flow Control: (% style="color:green" %)**None**
303 +If** **payload =** **0x0A01, workmode=1
214 214  
215 -(((
216 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
217 -)))
218 218  
219 -[[image:1657329814315-101.png]]
220 220  
307 +=== 2.3.8 ​Decode payload in The Things Network ===
221 221  
309 +While using TTN network, you can add the payload format to decode the payload.
310 +
311 +
312 +[[image:1654505570700-128.png]]
313 +
222 222  (((
223 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
315 +The payload decoder function for TTN is here:
224 224  )))
225 225  
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
226 226  
227 -=== 2.2.4 Use CoAP protocol to uplink data ===
228 228  
323 +== 2.4 Uplink Interval ==
229 229  
230 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
231 231  
232 232  
328 +
329 +== 2.5 Downlink Payload ==
330 +
331 +By default, LSE50 prints the downlink payload to console port.
332 +
333 +[[image:image-20220606165544-8.png]]
334 +
335 +
233 233  (((
234 -**Use below commands:**
337 +(% style="color:blue" %)**Examples:**
235 235  )))
236 236  
237 -* (((
238 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
340 +(((
341 +
239 239  )))
343 +
240 240  * (((
241 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/  to set CoAP server address and port
345 +(% style="color:blue" %)**Set TDC**
242 242  )))
243 -* (((
244 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
245 245  
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
246 246  
247 -
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
248 248  )))
249 249  
250 250  (((
251 -For parameter description, please refer to AT command set
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
252 252  
360 +(((
253 253  
254 254  )))
255 255  
256 -[[image:1657330452568-615.png]]
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
257 257  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
258 258  
259 259  
373 +* (% style="color:blue" %)**CFM**
374 +
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 +
377 +
378 +
379 +== 2.6 ​Show Data in DataCake IoT Server ==
380 +
260 260  (((
261 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 +)))
262 262  
385 +(((
263 263  
264 264  )))
265 265  
266 -[[image:1657330472797-498.png]]
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
267 267  
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
268 268  
269 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
270 270  
398 +[[image:1654505857935-743.png]]
271 271  
272 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/  to set UDP server address and port
274 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
275 275  
276 -[[image:1657330501006-241.png]]
401 +[[image:1654505874829-548.png]]
277 277  
278 278  
279 -[[image:1657330533775-472.png]]
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
280 280  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
281 281  
282 -=== 2.2.6 Use MQTT protocol to uplink data ===
283 283  
409 +[[image:1654505905236-553.png]]
284 284  
285 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
286 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
287 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/  Set up the CLIENT of MQTT
288 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/  Set the username of MQTT
289 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/  Set the password of MQTT
290 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/  Set the sending topic of MQTT
291 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/  Set the subscription topic of MQTT
292 292  
293 -[[image:1657249978444-674.png]]
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
294 294  
414 +[[image:1654505925508-181.png]]
295 295  
296 -[[image:1657330723006-866.png]]
297 297  
298 298  
299 -(((
300 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
301 -)))
418 +== 2.7 Frequency Plans ==
302 302  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
303 303  
304 -=== 2.2.7 Use TCP protocol to uplink data ===
305 305  
423 +=== 2.7.1 EU863-870 (EU868) ===
306 306  
307 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
308 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/  to set TCP server address and port
425 +(% style="color:#037691" %)** Uplink:**
309 309  
310 -[[image:image-20220709093918-1.png]]
427 +868.1 - SF7BW125 to SF12BW125
311 311  
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
312 312  
313 -[[image:image-20220709093918-2.png]]
431 +868.5 - SF7BW125 to SF12BW125
314 314  
433 +867.1 - SF7BW125 to SF12BW125
315 315  
316 -=== 2.2.8 Change Update Interval ===
435 +867.3 - SF7BW125 to SF12BW125
317 317  
437 +867.5 - SF7BW125 to SF12BW125
318 318  
319 -User can use below command to change the (% style="color:green" %)**uplink interval**.
439 +867.7 - SF7BW125 to SF12BW125
320 320  
321 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/  Set Update Interval to 600s
441 +867.9 - SF7BW125 to SF12BW125
322 322  
323 -(((
324 -
443 +868.8 - FSK
325 325  
326 326  
327 -(% style="color:red" %)**NOTE:**
446 +(% style="color:#037691" %)** Downlink:**
328 328  
329 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
448 +Uplink channels 1-9 (RX1)
330 330  
331 -(% style="color:red" %)**2. When the firmware version is v1.3.2 and later firmware:**
332 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
333 333  
334 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
335 335  
336 336  
337 -== 2. Uplink Payload ==
454 +=== 2.7.2 US902-928(US915) ===
338 338  
339 -=== 2.3.1  Before Firmware v1.3.2 ===
456 +Used in USA, Canada and South America. Default use CHE=2
340 340  
458 +(% style="color:#037691" %)**Uplink:**
341 341  
342 -In this mode, uplink payload includes in total 14 bytes
460 +903.9 - SF7BW125 to SF10BW125
343 343  
344 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
345 -|=(% style="width: 60px;" %)(((
346 -**Size(bytes)**
347 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
348 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
462 +904.1 - SF7BW125 to SF10BW125
349 349  
350 -(((
351 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
352 -)))
464 +904.3 - SF7BW125 to SF10BW125
353 353  
466 +904.5 - SF7BW125 to SF10BW125
354 354  
355 -[[image:1657331036973-987.png]]
468 +904.7 - SF7BW125 to SF10BW125
356 356  
470 +904.9 - SF7BW125 to SF10BW125
357 357  
358 -The payload is **ASCII** string, representative same HEX:
472 +905.1 - SF7BW125 to SF10BW125
359 359  
360 -(% style="background-color:yellow" %)**0x 724031556159 0064 0c6c 19 0292 00 **
474 +905.3 - SF7BW125 to SF10BW125
361 361  
362 -**where :**
363 363  
364 -* (% style="color:#037691" %)**Device ID:**(%%) 0x724031556159 = 724031556159
477 +(% style="color:#037691" %)**Downlink:**
365 365  
366 -* (% style="color:#037691" %)**Version:**(%%)  0x0064=100=1.0.0
479 +923.3 - SF7BW500 to SF12BW500
367 367  
368 -* (% style="color:#037691" %)**BAT:** (%%) 0x0c6c = 3180 mV = 3.180V
481 +923.9 - SF7BW500 to SF12BW500
369 369  
370 -* (% style="color:#037691" %)**Signal:**(%%)  0x19 = 25
483 +924.5 - SF7BW500 to SF12BW500
371 371  
372 -* (% style="color:#037691" %)**Distance:**  (%%)0x0292= 658 mm
485 +925.1 - SF7BW500 to SF12BW500
373 373  
374 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00 = 0
487 +925.7 - SF7BW500 to SF12BW500
375 375  
489 +926.3 - SF7BW500 to SF12BW500
376 376  
491 +926.9 - SF7BW500 to SF12BW500
377 377  
378 -=== 2.3.2  Since firmware v1.3.2 ===
493 +927.5 - SF7BW500 to SF12BW500
379 379  
495 +923.3 - SF12BW500(RX2 downlink only)
380 380  
381 -In this mode, uplink payload includes 69 bytes in total by default.
382 382  
383 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
384 384  
385 -(% border="1" style="background-color:#ffffcc; color:green; width:490px" %)
386 -|=(% scope="row" style="width: 60px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:25px" %)**2**|(% style="width:25px" %)**2**|(% style="width:60px" %)**1**|(% style="width:25px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:70px" %)**4**|(% style="width:40px" %)**2**|(% style="width:60px" %)**4**
387 -|=(% style="width: 95px;" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
499 +=== 2.7.3 CN470-510 (CN470) ===
388 388  
389 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
501 +Used in China, Default use CHE=1
390 390  
391 -[[image:image-20220908175246-1.png]]
503 +(% style="color:#037691" %)**Uplink:**
392 392  
505 +486.3 - SF7BW125 to SF12BW125
393 393  
394 -The payload is ASCII string, representative same HEX:
507 +486.5 - SF7BW125 to SF12BW125
395 395  
396 -**0x (% style="color:red" %)f867787050213317 (% style="color:blue" %)0084 (% style="color:green" %)0cf4 (% style="color:#00b0f0" %)1e (% style="color:#7030a0" %)01 (% style="color:#d60093" %)00(% style="color:#a14d07" %) 0039 (% style="color:#0020b0" %)6315537b (% style="color:#663300" %)00396319baf0 00396319ba3c 00396319b988 00396319b8d4 00396319b820 00396319b76c 00396319b6b8 00396319b604 (%%)**
509 +486.7 - SF7BW125 to SF12BW125
397 397  
398 -**where:**
511 +486.9 - SF7BW125 to SF12BW125
399 399  
400 -* (% style="color:#037691" %)**Device ID:**(%%) f867787050213317 = f867787050213317
513 +487.1 - SF7BW125 to SF12BW125
401 401  
402 -* (% style="color:#037691" %)**Version:**(%%) 0x0084=132=1.3.2
515 +487.3 - SF7BW125 to SF12BW125
403 403  
404 -* (% style="color:#037691" %)**BAT:**(%%)  0x0cf4 = 3316 mV = 3.316V
517 +487.5 - SF7BW125 to SF12BW125
405 405  
406 -* (% style="color:#037691" %)**Singal:**(%%)  0x1e = 30
519 +487.7 - SF7BW125 to SF12BW125
407 407  
408 -* (% style="color:#037691" %)**Mod:**(%%)**     **0x01 = 1
409 409  
410 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
522 +(% style="color:#037691" %)**Downlink:**
411 411  
412 -* (% style="color:#037691" %)**Distance:**(%%) 0x0039= 57 = 57
524 +506.7 - SF7BW125 to SF12BW125
413 413  
414 -* (% style="color:#037691" %)**Time stamp:**(%%) 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
526 +506.9 - SF7BW125 to SF12BW125
415 415  
416 -* (% style="color:#037691" %)**Distance,Time stamp:**(%%) 00396319baf0
528 +507.1 - SF7BW125 to SF12BW125
417 417  
418 -* (% style="color:#037691" %)**8 sets of recorded data: Distance,Time stamp :**(%%) //**00396319ba3c**//,.......
530 +507.3 - SF7BW125 to SF12BW125
419 419  
532 +507.5 - SF7BW125 to SF12BW125
420 420  
534 +507.7 - SF7BW125 to SF12BW125
421 421  
422 -== 2. Payload Explanation and Sensor Interface ==
536 +507.9 - SF7BW125 to SF12BW125
423 423  
424 -=== 2.4.1  Device ID ===
538 +508.1 - SF7BW125 to SF12BW125
425 425  
540 +505.3 - SF12BW125 (RX2 downlink only)
426 426  
427 -(((
428 -By default, the Device ID equal to the last 6 bytes of IMEI.
429 -)))
430 430  
431 -(((
432 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
433 433  
434 -
435 -)))
544 +=== 2.7.4 AU915-928(AU915) ===
436 436  
437 -(((
438 -(% style="color:blue" %)**Example :**
439 -)))
546 +Default use CHE=2
440 440  
441 -(((
442 -AT+DEUI=A84041F15612
443 -)))
548 +(% style="color:#037691" %)**Uplink:**
444 444  
445 -(((
446 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
447 -)))
550 +916.8 - SF7BW125 to SF12BW125
448 448  
552 +917.0 - SF7BW125 to SF12BW125
449 449  
450 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
554 +917.2 - SF7BW125 to SF12BW125
451 451  
452 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
556 +917.4 - SF7BW125 to SF12BW125
453 453  
454 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
558 +917.6 - SF7BW125 to SF12BW125
455 455  
560 +917.8 - SF7BW125 to SF12BW125
456 456  
457 -(% style="color:blue" %)**Example :**
562 +918.0 - SF7BW125 to SF12BW125
458 458  
459 -AT+DEUI=868411056754138
564 +918.2 - SF7BW125 to SF12BW125
460 460  
461 461  
462 -=== 2.4.2  Version Info ===
567 +(% style="color:#037691" %)**Downlink:**
463 463  
569 +923.3 - SF7BW500 to SF12BW500
464 464  
465 -(((
466 -Specify the software version: 0x64=100, means firmware version 1.00.
467 -)))
571 +923.9 - SF7BW500 to SF12BW500
468 468  
469 -(((
470 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
471 -)))
573 +924.5 - SF7BW500 to SF12BW500
472 472  
575 +925.1 - SF7BW500 to SF12BW500
473 473  
474 -=== 2.4.3  Battery Info ===
577 +925.7 - SF7BW500 to SF12BW500
475 475  
579 +926.3 - SF7BW500 to SF12BW500
476 476  
477 -(((
478 -Ex1: 0x0B45 = 2885mV
479 -)))
581 +926.9 - SF7BW500 to SF12BW500
480 480  
481 -(((
482 -Ex2: 0x0B49 = 2889mV
483 -)))
583 +927.5 - SF7BW500 to SF12BW500
484 484  
585 +923.3 - SF12BW500(RX2 downlink only)
485 485  
486 -=== 2.4.4  Signal Strength ===
487 487  
488 488  
489 -(((
490 -NB-IoT Network signal Strength.
491 -)))
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
492 492  
493 -(((
494 -**Ex1: 0x1d = 29**
495 -)))
591 +(% style="color:#037691" %)**Default Uplink channel:**
496 496  
497 -(((
498 -(% style="color:blue" %)**0**(%%)  -113dBm or less
499 -)))
593 +923.2 - SF7BW125 to SF10BW125
500 500  
501 -(((
502 -(% style="color:blue" %)**1**(%%)  -111dBm
503 -)))
595 +923.4 - SF7BW125 to SF10BW125
504 504  
505 -(((
506 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
507 -)))
508 508  
509 -(((
510 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
511 -)))
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
512 512  
513 -(((
514 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
515 -)))
600 +(OTAA mode, channel added by JoinAccept message)
516 516  
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
517 517  
518 -=== 2.4.5  Distance ===
604 +922.2 - SF7BW125 to SF10BW125
519 519  
606 +922.4 - SF7BW125 to SF10BW125
520 520  
521 -Get the distance. Flat object range 280mm - 7500mm.
608 +922.6 - SF7BW125 to SF10BW125
522 522  
523 -(((
524 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
525 -)))
610 +922.8 - SF7BW125 to SF10BW125
526 526  
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
527 527  (((
528 528  (((
529 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
530 530  )))
531 531  )))
532 532  
717 +
718 +
719 +[[image:1654506665940-119.png]]
720 +
533 533  (((
534 -
722 +Dig a hole with diameter > 20CM.
535 535  )))
536 536  
537 -=== 2.4.6  Digital Interrupt ===
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
538 538  
539 539  
730 +== 2.10 ​Firmware Change Log ==
731 +
540 540  (((
541 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
733 +**Firmware download link:**
542 542  )))
543 543  
544 544  (((
545 -The command is:
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
546 546  )))
547 547  
548 548  (((
549 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
741 +
550 550  )))
551 551  
552 -
553 553  (((
554 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
555 555  )))
556 556  
557 -
558 558  (((
559 -Example:
749 +
560 560  )))
561 561  
562 562  (((
563 -0x(00): Normal uplink packet.
753 +**V1.0.**
564 564  )))
565 565  
566 566  (((
567 -0x(01): Interrupt Uplink Packet.
757 +Release
568 568  )))
569 569  
570 570  
571 -=== 2.4.7 +5V Output ===
761 +== 2.11Battery Analysis ==
572 572  
763 +=== 2.11.1 ​Battery Type ===
573 573  
574 574  (((
575 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
576 576  )))
577 577  
578 -
579 579  (((
580 -The 5V output time can be controlled by AT Command.
581 -
582 -
770 +The battery is designed to last for more than 5 years for the LSN50.
583 583  )))
584 584  
585 585  (((
586 -(% style="color:blue" %)**AT+5VT=1000**
587 -
588 -
774 +(((
775 +The battery-related documents are as below:
589 589  )))
777 +)))
590 590  
591 -(((
592 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
779 +* (((
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
593 593  )))
782 +* (((
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
784 +)))
785 +* (((
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
787 +)))
594 594  
789 + [[image:image-20220610172436-1.png]]
595 595  
596 -== 2.5  Downlink Payload ==
597 597  
598 598  
599 -By default, NDDS75 prints the downlink payload to console port.
793 +=== 2.11.2 ​Battery Note ===
600 600  
601 -[[image:image-20220709100028-1.png]]
602 -
603 -
604 604  (((
605 -(% style="color:blue" %)**Examples:**
796 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
606 606  )))
607 607  
608 -(((
609 -
610 -)))
611 611  
612 -* (((
613 -(% style="color:blue" %)**Set TDC**
614 -)))
615 615  
616 -(((
617 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
618 -)))
801 +=== 2.11.3 Replace the battery ===
619 619  
620 620  (((
621 -Payload:    01 00 00 1E    TDC=30S
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
622 622  )))
623 623  
624 624  (((
625 -Payload:    01 00 00 3C    TDC=60S
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
626 626  )))
627 627  
628 628  (((
629 -
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
630 630  )))
631 631  
632 -* (((
633 -(% style="color:blue" %)**Reset**
634 -)))
635 635  
636 -(((
637 -If payload = 0x04FF, it will reset the NDDS75
638 -)))
639 639  
817 += 3. ​Using the AT Commands =
640 640  
641 -* (% style="color:blue" %)**INTMOD**
819 +== 3.1 Access AT Commands ==
642 642  
643 -(((
644 -Downlink Payload: 06000003, Set AT+INTMOD=3
645 -)))
646 646  
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
647 647  
648 -== 2.6  Distance alarm function(Since firmware v1.3.2) ==
824 +[[image:1654501986557-872.png||height="391" width="800"]]
649 649  
650 650  
651 -(% style="color:blue" %)** ➢ AT Command:**
827 +Or if you have below board, use below connection:
652 652  
653 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
654 654  
655 -² When min=0, and max≠0, Alarm higher than max
830 +[[image:1654502005655-729.png||height="503" width="801"]]
656 656  
657 -² When min≠0, and max=0, Alarm lower than min
658 658  
659 -² When min≠0 and max≠0, Alarm higher than max or lower than min
660 660  
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
661 661  
662 -(% style="color:blue" %)** Example:**
663 663  
664 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
837 + [[image:1654502050864-459.png||height="564" width="806"]]
665 665  
666 666  
667 -== 2.7  Set the number of data to be uploaded and the recording time ==
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
668 668  
669 669  
670 -(% style="color:blue" %)**AT Command:**
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
671 671  
672 -* (% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
673 -* (% style="color:#037691" %)** AT+NOUD=8**             (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
674 674  
675 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
676 676  
677 -[[image:image-20221009001114-1.png||height="687" width="955"]]
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
678 678  
679 679  
680 -== 2.8  Read or Clear cached data ==
852 +(% style="color:#037691" %)**General Commands**(%%)      
681 681  
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
682 682  
683 -(% style="color:blue" %)**AT Command:**
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
684 684  
685 -* (% style="color:#037691" %)** AT+CDP ** (%%) ~/~/  Read cached data
686 -* (% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/  Clear cached data
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
687 687  
688 -[[image:image-20220908175333-2.png]]
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
689 689  
690 690  
691 -== 2.9  ​LED Indicator ==
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
692 692  
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
693 693  
694 -The NDDS75 has an internal LED which is to show the status of different state.
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
695 695  
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
696 696  
697 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
698 -* Then the LED will be on for 1 second means device is boot normally.
699 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
700 -* For each uplink probe, LED will be on for 500ms.
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
701 701  
702 -(((
703 -
704 -)))
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
705 705  
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
706 706  
707 -== 2.10  ​Firmware Change Log ==
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
708 708  
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
709 709  
710 -(((
711 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
712 -)))
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
713 713  
714 -(((
715 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
716 -)))
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
717 717  
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
718 718  
719 -== 2.11 Battery & Power Consumption ==
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
720 720  
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
721 721  
722 -NDDS75 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
723 723  
724 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
725 725  
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
726 726  
727 -= 3. ​ Access NB-IoT Module =
728 728  
898 +(% style="color:#037691" %)**LoRa Network Management**
729 729  
730 -(((
731 -Users can directly access the AT command set of the NB-IoT module.
732 -)))
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
733 733  
734 -(((
735 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
736 736  
737 -
738 -)))
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
739 739  
740 -[[image:1657333200519-600.png]]
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
741 741  
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
742 742  
743 -= 4.  Using the AT Commands =
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
744 744  
745 -== 4.1  Access AT Commands ==
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
746 746  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
747 747  
748 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
749 749  
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
750 750  
751 -AT+<CMD>?  :  Help on <CMD>
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
752 752  
753 -AT+<CMD>         :  Run <CMD>
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
754 754  
755 -AT+<CMD>=<value> :  Set the value
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
756 756  
757 -AT+<CMD>=?  :  Get the value
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
758 758  
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
759 759  
760 -(% style="color:#037691" %)**General Commands**(%%)      
761 761  
762 -AT  :  Attention       
931 +(% style="color:#037691" %)**Information** 
763 763  
764 -AT?  :  Short Help     
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
765 765  
766 -ATZ  :  MCU Reset    
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
767 767  
768 -AT+TDC  :  Application Data Transmission Interval
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
769 769  
770 -AT+CFG  :  Print all configurations
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
771 771  
772 -AT+CFGMOD           Working mode selection
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
773 773  
774 -AT+INTMOD            :  Set the trigger interrupt mode
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
775 775  
776 -AT+5VT  Set extend the time of 5V power  
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
777 777  
778 -AT+PRO  :  Choose agreement
779 779  
780 -AT+WEIGRE  :  Get weight or set weight to 0
948 += ​4. FAQ =
781 781  
782 -AT+WEIGAP  :  Get or Set the GapValue of weight
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
783 783  
784 -AT+RXDL  :  Extend the sending and receiving time
952 +(((
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
955 +)))
785 785  
786 -AT+CNTFAC  :  Get or set counting parameters
957 +(((
958 +
959 +)))
787 787  
788 -AT+SERVADDR  :  Server Address
961 +(((
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
963 +)))
789 789  
790 -AT+TR  :  Get or Set record time"
965 +(((
966 +
967 +)))
791 791  
792 -AT+APN     :  Get or set the APN
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
793 793  
794 -AT+FBAND  :  Get or Set whether to automatically modify the frequency band
973 +(((
974 +
975 +)))
795 795  
796 -AT+DNSCFG  : Get or Set DNS Server
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
797 797  
798 -AT+GETSENSORVALUE   :  Returns the current sensor measurement
981 +[[image:image-20220606154726-3.png]]
799 799  
800 -AT+NOUD  :  Get or Set the number of data to be uploaded
801 801  
802 -AT+CDP     Read or Clear cached data
984 +When you use the TTN network, the US915 frequency bands use are:
803 803  
804 -AT+LDDSALARM :  Get or Set alarm of distance
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
805 805  
996 +(((
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
806 806  
807 -(% style="color:#037691" %)**COAP Management**      
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
1001 +)))
808 808  
809 -AT+URI            :  Resource parameters
1003 +(((
1004 +
810 810  
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 +)))
811 811  
812 -(% style="color:#037691" %)**UDP Management**
1009 +(((
1010 +
1011 +)))
813 813  
814 -AT+CFM          :  Upload confirmation mode (only valid for UDP)
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
815 815  
1017 +[[image:image-20220606154825-4.png]]
816 816  
817 -(% style="color:#037691" %)**MQTT Management**
818 818  
819 -AT+CLIENT  :  Get or Set MQTT client
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
820 820  
821 -AT+UNAME  Get or Set MQTT Username
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
822 822  
823 -AT+PWD  :  Get or Set MQTT password
824 824  
825 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
1025 += 5. Trouble Shooting =
826 826  
827 -AT+SUBTOPIC  :  Get or Set MQTT subscription topic
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
828 828  
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
829 829  
830 -(% style="color:#037691" %)**Information**          
831 831  
832 -AT+FDR  :  Factory Data Reset
1032 +== 5.2 AT Command input doesn't work ==
833 833  
834 -AT+PWORD  :  Serial Access Password
1034 +(((
1035 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
835 835  
836 836  
837 -= 5.  FAQ =
1039 +== 5.3 Device rejoin in at the second uplink packet ==
838 838  
839 -== 5.1 ​ How to Upgrade Firmware ==
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
840 840  
1043 +[[image:1654500909990-784.png]]
841 841  
842 -(((
843 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
844 -)))
845 845  
846 -(((
847 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
848 -)))
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
849 849  
850 850  (((
851 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
852 852  )))
853 853  
854 854  
855 -= 6.  Trouble Shooting =
1053 +(% style="color:#4f81bd" %)**Solution: **
856 856  
857 -== 6.1  ​Connection problem when uploading firmware ==
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
858 858  
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
859 859  
860 -(((
861 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
862 -)))
863 863  
864 -(% class="wikigeneratedid" %)
865 -(((
866 -
867 -)))
1060 += 6. ​Order Info =
868 868  
869 -== 6.2  AT Command input doesn't work ==
870 870  
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
871 871  
872 -(((
873 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
874 -)))
875 875  
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
876 876  
877 -= 7. ​ Order Info =
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
878 878  
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
879 879  
880 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
881 881  
1082 +(% class="wikigeneratedid" %)
1083 +(((
1084 +
1085 +)))
882 882  
883 -= 8.  Packing Info =
1087 += 7. Packing Info =
884 884  
885 885  (((
886 886  
887 887  
888 888  (% style="color:#037691" %)**Package Includes**:
1093 +)))
889 889  
890 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
891 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
892 892  )))
893 893  
894 894  (((
... ... @@ -895,21 +895,24 @@
895 895  
896 896  
897 897  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
898 898  
899 -* Device Size: 13.0 x 5 x 4.5 cm
900 -* Device Weight: 150g
901 -* Package Size / pcs : 15 x 12x 5.5 cm
902 -* Weight / pcs : 220g
1105 +* (((
1106 +Device Size: cm
903 903  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
904 904  
905 -(((
906 906  
907 -
908 -
909 909  )))
910 910  
911 -= 9.  Support =
1120 += 8. Support =
912 912  
913 -
914 914  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
915 915  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20221009001114-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content