Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 105.1
edited by David Huang
on 2022/10/08 11:49
Change comment: There is no comment for this version
To version 40.6
edited by Xiaoling
on 2022/06/30 11:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.David
1 +XWiki.Xiaoling
Content
... ... @@ -1,10 +1,16 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
10 10  {{toc/}}
... ... @@ -14,730 +14,722 @@
14 14  
15 15  
16 16  
17 -= 1.  Introduction =
23 += 1. Introduction =
18 18  
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 -
22 22  (((
23 23  
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 28  )))
29 29  
30 30  (((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 32  )))
33 33  
34 34  (((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 36  )))
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 40  )))
41 41  
42 42  (((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 44  )))
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
50 50  
51 -
52 -)))
50 +[[image:1654503236291-817.png]]
53 53  
54 -[[image:1657327959271-447.png]]
55 55  
53 +[[image:1654503265560-120.png]]
56 56  
57 57  
58 -== 1.2 ​ Features ==
59 59  
57 +== 1.2 ​Features ==
60 60  
61 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
62 62  * Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
71 -* Micro SIM card slot for NB-IoT SIM
72 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
73 73  
74 74  
75 -== 1.3  Specification ==
72 +== 1.3 Specification ==
76 76  
74 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
78 -(% style="color:#037691" %)**Common DC Characteristics:**
76 +[[image:image-20220606162220-5.png]]
79 79  
80 -* Supply Voltage: 2.1v ~~ 3.6v
81 -* Operating Temperature: -40 ~~ 85°C
82 82  
83 -(% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 -* - B1 @H-FDD: 2100MHz
86 -* - B3 @H-FDD: 1800MHz
87 -* - B8 @H-FDD: 900MHz
88 -* - B5 @H-FDD: 850MHz
89 -* - B20 @H-FDD: 800MHz
90 -* - B28 @H-FDD: 700MHz
80 +== ​1.4 Applications ==
91 91  
92 -(% style="color:#037691" %)**Battery:**
82 +* Smart Agriculture
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
84 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 +​
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
87 +== 1.5 Firmware Change log ==
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
104 104  
90 +**LSE01 v1.0 :**  Release
105 105  
106 -== ​1.4  Applications ==
107 107  
108 108  
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 -* Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
94 += 2. Configure LSE01 to connect to LoRaWAN network =
115 115  
116 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 -​
96 +== 2.1 How it works ==
118 118  
98 +(((
99 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 +)))
119 119  
102 +(((
103 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 +)))
120 120  
121 121  
122 -== 1.5  Pin Definitions ==
123 123  
108 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 124  
125 -[[image:1657328609906-564.png]]
110 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 126  
127 127  
113 +[[image:1654503992078-669.png]]
128 128  
129 -= 2.  Use NDDS75 to communicate with IoT Server =
130 130  
116 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 131  
132 -== 2.1  How it works ==
133 133  
119 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
134 134  
121 +Each LSE01 is shipped with a sticker with the default device EUI as below:
122 +
123 +[[image:image-20220606163732-6.jpeg]]
124 +
125 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 +
127 +**Add APP EUI in the application**
128 +
129 +
130 +[[image:1654504596150-405.png]]
131 +
132 +
133 +
134 +**Add APP KEY and DEV EUI**
135 +
136 +[[image:1654504683289-357.png]]
137 +
138 +
139 +
140 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
141 +
142 +
143 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 +
145 +[[image:image-20220606163915-7.png]]
146 +
147 +
148 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 +
150 +[[image:1654504778294-788.png]]
151 +
152 +
153 +
154 +== 2.3 Uplink Payload ==
155 +
156 +
157 +=== 2.3.1 MOD~=0(Default Mode) ===
158 +
159 +LSE01 will uplink payload via LoRaWAN with below payload format: 
160 +
135 135  (((
136 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
162 +Uplink payload includes in total 11 bytes.
137 137  )))
138 138  
165 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 +|(((
167 +**Size**
139 139  
140 -(((
141 -The diagram below shows the working flow in default firmware of NDDS75:
169 +**(bytes)**
170 +)))|**2**|**2**|**2**|**2**|**2**|**1**
171 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 +Temperature
173 +
174 +(Reserve, Ignore now)
175 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 +MOD & Digital Interrupt
177 +
178 +(Optional)
142 142  )))
143 143  
144 -(((
145 -
181 +
182 +=== 2.3.2 MOD~=1(Original value) ===
183 +
184 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
185 +
186 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 +|(((
188 +**Size**
189 +
190 +**(bytes)**
191 +)))|**2**|**2**|**2**|**2**|**2**|**1**
192 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 +Temperature
194 +
195 +(Reserve, Ignore now)
196 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 +MOD & Digital Interrupt
198 +
199 +(Optional)
146 146  )))
147 147  
148 -[[image:1657328659945-416.png]]
149 149  
203 +=== 2.3.3 Battery Info ===
204 +
150 150  (((
151 -
206 +Check the battery voltage for LSE01.
152 152  )))
153 153  
209 +(((
210 +Ex1: 0x0B45 = 2885mV
211 +)))
154 154  
155 -== 2.2 ​ Configure the NDDS75 ==
213 +(((
214 +Ex2: 0x0B49 = 2889mV
215 +)))
156 156  
157 157  
158 -=== 2.2.1 Test Requirement ===
159 159  
219 +=== 2.3.4 Soil Moisture ===
160 160  
161 161  (((
162 -To use NDDS75 in your city, make sure meet below requirements:
222 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
163 163  )))
164 164  
165 -* Your local operator has already distributed a NB-IoT Network there.
166 -* The local NB-IoT network used the band that NDDS75 supports.
167 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 +(((
226 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
227 +)))
168 168  
169 169  (((
170 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
230 +
171 171  )))
172 172  
233 +(((
234 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 +)))
173 173  
174 -[[image:1657328756309-230.png]]
175 175  
176 176  
239 +=== 2.3.5 Soil Temperature ===
177 177  
178 -=== 2.2.2 Insert SIM card ===
241 +(((
242 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
243 +)))
179 179  
245 +(((
246 +**Example**:
247 +)))
180 180  
181 181  (((
182 -Insert the NB-IoT Card get from your provider.
250 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
183 183  )))
184 184  
185 185  (((
186 -User need to take out the NB-IoT module and insert the SIM card like below:
254 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
187 187  )))
188 188  
189 189  
190 -[[image:1657328884227-504.png]]
191 191  
259 +=== 2.3.6 Soil Conductivity (EC) ===
192 192  
261 +(((
262 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 +)))
193 193  
194 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
265 +(((
266 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 +)))
195 195  
269 +(((
270 +Generally, the EC value of irrigation water is less than 800uS / cm.
271 +)))
196 196  
197 197  (((
274 +
275 +)))
276 +
198 198  (((
199 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
278 +
200 200  )))
201 -)))
202 202  
203 -[[image:image-20220709092052-2.png]]
281 +=== 2.3.7 MOD ===
204 204  
283 +Firmware version at least v2.1 supports changing mode.
205 205  
206 -(% style="color:blue" %)**Connection:**
285 +For example, bytes[10]=90
207 207  
208 - (% style="background-color:yellow" %)**USB TTL GND <~-~-~-~-> GND**
287 +mod=(bytes[10]>>7)&0x01=1.
209 209  
210 -**~ (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD(%%)**
211 211  
212 -**~ (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD(%%)**
290 +**Downlink Command:**
213 213  
292 +If payload = 0x0A00, workmode=0
214 214  
215 -In the PC, use below serial tool settings:
294 +If** **payload =** **0x0A01, workmode=1
216 216  
217 -* Baud:  (% style="color:green" %)**9600**
218 -* Data bits:** (% style="color:green" %)8(%%)**
219 -* Stop bits: (% style="color:green" %)**1**
220 -* Parity:  (% style="color:green" %)**None**
221 -* Flow Control: (% style="color:green" %)**None**
222 222  
223 -(((
224 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
225 -)))
226 226  
227 -[[image:1657329814315-101.png]]
298 +=== 2.3.8 ​Decode payload in The Things Network ===
228 228  
300 +While using TTN network, you can add the payload format to decode the payload.
229 229  
302 +
303 +[[image:1654505570700-128.png]]
304 +
230 230  (((
231 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
306 +The payload decoder function for TTN is here:
232 232  )))
233 233  
309 +(((
310 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
311 +)))
234 234  
235 235  
236 -=== 2.2.4 Use CoAP protocol to uplink data ===
314 +== 2.4 Uplink Interval ==
237 237  
316 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
238 238  
239 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
240 240  
241 241  
320 +== 2.5 Downlink Payload ==
321 +
322 +By default, LSE50 prints the downlink payload to console port.
323 +
324 +[[image:image-20220606165544-8.png]]
325 +
326 +
242 242  (((
243 -**Use below commands:**
328 +(% style="color:blue" %)**Examples:**
244 244  )))
245 245  
246 -* (((
247 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
331 +(((
332 +
248 248  )))
334 +
249 249  * (((
250 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/  to set CoAP server address and port
336 +(% style="color:blue" %)**Set TDC**
251 251  )))
252 -* (((
253 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
254 254  
339 +(((
340 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 +)))
255 255  
256 -
343 +(((
344 +Payload:    01 00 00 1E    TDC=30S
257 257  )))
258 258  
259 259  (((
260 -For parameter description, please refer to AT command set
348 +Payload:    01 00 00 3C    TDC=60S
349 +)))
261 261  
351 +(((
262 262  
263 263  )))
264 264  
265 -[[image:1657330452568-615.png]]
355 +* (((
356 +(% style="color:blue" %)**Reset**
357 +)))
266 266  
267 -
268 -
269 269  (((
270 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
271 -
272 -
360 +If payload = 0x04FF, it will reset the LSE01
273 273  )))
274 274  
275 -[[image:1657330472797-498.png]]
276 276  
364 +* (% style="color:blue" %)**CFM**
277 277  
366 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
278 278  
279 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
280 280  
281 281  
282 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/  to set UDP server address and port
284 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
370 +== 2.6 ​Show Data in DataCake IoT Server ==
285 285  
372 +(((
373 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
374 +)))
286 286  
287 -[[image:1657330501006-241.png]]
376 +(((
377 +
378 +)))
288 288  
380 +(((
381 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
382 +)))
289 289  
290 -[[image:1657330533775-472.png]]
384 +(((
385 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
386 +)))
291 291  
292 292  
389 +[[image:1654505857935-743.png]]
293 293  
294 -=== 2.2.6 Use MQTT protocol to uplink data ===
295 295  
392 +[[image:1654505874829-548.png]]
296 296  
297 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
298 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
299 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/  Set up the CLIENT of MQTT
300 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/  Set the username of MQTT
301 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/  Set the password of MQTT
302 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/  Set the sending topic of MQTT
303 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/  Set the subscription topic of MQTT
304 304  
305 -[[image:1657249978444-674.png]]
395 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
306 306  
397 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
307 307  
308 -[[image:1657330723006-866.png]]
309 309  
400 +[[image:1654505905236-553.png]]
310 310  
311 -(((
312 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
313 -)))
314 314  
403 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
315 315  
405 +[[image:1654505925508-181.png]]
316 316  
317 -=== 2.2.7 Use TCP protocol to uplink data ===
318 318  
319 319  
320 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
321 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/  to set TCP server address and port
409 +== 2.7 Frequency Plans ==
322 322  
323 -[[image:image-20220709093918-1.png]]
411 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
324 324  
325 325  
326 -[[image:image-20220709093918-2.png]]
414 +=== 2.7.1 EU863-870 (EU868) ===
327 327  
416 +(% style="color:#037691" %)** Uplink:**
328 328  
418 +868.1 - SF7BW125 to SF12BW125
329 329  
330 -=== 2.2.8 Change Update Interval ===
420 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
331 331  
422 +868.5 - SF7BW125 to SF12BW125
332 332  
333 -User can use below command to change the (% style="color:green" %)**uplink interval**.
424 +867.1 - SF7BW125 to SF12BW125
334 334  
335 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/  Set Update Interval to 600s
426 +867.3 - SF7BW125 to SF12BW125
336 336  
337 -(((
338 -
428 +867.5 - SF7BW125 to SF12BW125
339 339  
430 +867.7 - SF7BW125 to SF12BW125
340 340  
341 -(% style="color:red" %)**NOTE:**
432 +867.9 - SF7BW125 to SF12BW125
342 342  
343 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
434 +868.8 - FSK
344 344  
345 -(% style="color:red" %)**2. When the firmware version is v1.3.2 and later firmware:**
346 -)))
347 347  
348 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
437 +(% style="color:#037691" %)** Downlink:**
349 349  
439 +Uplink channels 1-9 (RX1)
350 350  
441 +869.525 - SF9BW125 (RX2 downlink only)
351 351  
352 -== 2.3  Uplink Payload ==
353 353  
354 354  
355 -=== 2.3. Before Firmware v1.3.2 ===
445 +=== 2.7.2 US902-928(US915) ===
356 356  
447 +Used in USA, Canada and South America. Default use CHE=2
357 357  
358 -In this mode, uplink payload includes in total 14 bytes
449 +(% style="color:#037691" %)**Uplink:**
359 359  
360 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
361 -|=(% style="width: 60px;" %)(((
362 -**Size(bytes)**
363 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
364 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
451 +903.9 - SF7BW125 to SF10BW125
365 365  
366 -(((
367 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
368 -)))
453 +904.1 - SF7BW125 to SF10BW125
369 369  
455 +904.3 - SF7BW125 to SF10BW125
370 370  
371 -[[image:1657331036973-987.png]]
457 +904.5 - SF7BW125 to SF10BW125
372 372  
459 +904.7 - SF7BW125 to SF10BW125
373 373  
374 -(((
375 -The payload is **ASCII** string, representative same HEX:
376 -)))
461 +904.9 - SF7BW125 to SF10BW125
377 377  
378 -(((
379 -0x72403155615900640c6c19029200 where:
380 -)))
463 +905.1 - SF7BW125 to SF10BW125
381 381  
382 -* (((
383 -Device ID: 0x724031556159 = 724031556159
384 -)))
385 -* (((
386 -Version:  0x0064=100=1.0.0
387 -)))
465 +905.3 - SF7BW125 to SF10BW125
388 388  
389 -* (((
390 -BAT:  0x0c6c = 3180 mV = 3.180V
391 -)))
392 -* (((
393 -Signal: 0x19 = 25
394 -)))
395 -* (((
396 -Distance: 0x0292= 658 mm
397 -)))
398 -* (((
399 -Interrupt: 0x00 = 0
400 400  
468 +(% style="color:#037691" %)**Downlink:**
401 401  
470 +923.3 - SF7BW500 to SF12BW500
402 402  
472 +923.9 - SF7BW500 to SF12BW500
403 403  
404 -
405 -)))
474 +924.5 - SF7BW500 to SF12BW500
406 406  
407 -=== **2.3.2  Since firmware v1.3.2** ===
476 +925.1 - SF7BW500 to SF12BW500
408 408  
478 +925.7 - SF7BW500 to SF12BW500
409 409  
410 -In this mode, uplink payload includes 69 bytes in total by default.
480 +926.3 - SF7BW500 to SF12BW500
411 411  
412 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
482 +926.9 - SF7BW500 to SF12BW500
413 413  
414 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
415 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
416 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
484 +927.5 - SF7BW500 to SF12BW500
417 417  
418 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
486 +923.3 - SF12BW500(RX2 downlink only)
419 419  
420 -[[image:image-20220908175246-1.png]]
421 421  
422 422  
423 -The payload is ASCII string, representative same HEX:
490 +=== 2.7.3 CN470-510 (CN470) ===
424 424  
425 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
492 +Used in China, Default use CHE=1
426 426  
427 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
428 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
429 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
430 -* (% style="color:blue" %)Singal: 0x1e = 30
431 -* (% style="color:red" %)Mod: 0x01 = 1
432 -* Interrupt: 0x00= 0
433 -* Distance: 0x0039= 57 = 57
434 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
435 -* Distance,Time stamp : 00396319baf0
436 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
494 +(% style="color:#037691" %)**Uplink:**
437 437  
496 +486.3 - SF7BW125 to SF12BW125
438 438  
439 -== 2.4  Payload Explanation and Sensor Interface ==
498 +486.5 - SF7BW125 to SF12BW125
440 440  
500 +486.7 - SF7BW125 to SF12BW125
441 441  
442 -=== 2.4.1  Device ID ===
502 +486.9 - SF7BW125 to SF12BW125
443 443  
504 +487.1 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -By default, the Device ID equal to the last 6 bytes of IMEI.
447 -)))
506 +487.3 - SF7BW125 to SF12BW125
448 448  
449 -(((
450 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
508 +487.5 - SF7BW125 to SF12BW125
451 451  
452 -
453 -)))
510 +487.7 - SF7BW125 to SF12BW125
454 454  
455 -(((
456 -(% style="color:blue" %)**Example :**
457 -)))
458 458  
459 -(((
460 -AT+DEUI=A84041F15612
461 -)))
513 +(% style="color:#037691" %)**Downlink:**
462 462  
463 -(((
464 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
465 -)))
515 +506.7 - SF7BW125 to SF12BW125
466 466  
517 +506.9 - SF7BW125 to SF12BW125
467 467  
468 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
519 +507.1 - SF7BW125 to SF12BW125
469 469  
470 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
521 +507.3 - SF7BW125 to SF12BW125
471 471  
472 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
523 +507.5 - SF7BW125 to SF12BW125
473 473  
525 +507.7 - SF7BW125 to SF12BW125
474 474  
475 -(% style="color:blue" %)**Example :**
527 +507.9 - SF7BW125 to SF12BW125
476 476  
477 -AT+DEUI=868411056754138
529 +508.1 - SF7BW125 to SF12BW125
478 478  
531 +505.3 - SF12BW125 (RX2 downlink only)
479 479  
480 480  
481 -=== 2.4.2  Version Info ===
482 482  
535 +=== 2.7.4 AU915-928(AU915) ===
483 483  
484 -(((
485 -Specify the software version: 0x64=100, means firmware version 1.00.
486 -)))
537 +Default use CHE=2
487 487  
488 -(((
489 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
490 -)))
539 +(% style="color:#037691" %)**Uplink:**
491 491  
541 +916.8 - SF7BW125 to SF12BW125
492 492  
543 +917.0 - SF7BW125 to SF12BW125
493 493  
494 -=== 2.4.3  Battery Info ===
545 +917.2 - SF7BW125 to SF12BW125
495 495  
547 +917.4 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -Ex1: 0x0B45 = 2885mV
499 -)))
549 +917.6 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -Ex2: 0x0B49 = 2889mV
503 -)))
551 +917.8 - SF7BW125 to SF12BW125
504 504  
553 +918.0 - SF7BW125 to SF12BW125
505 505  
555 +918.2 - SF7BW125 to SF12BW125
506 506  
507 -=== 2.4.4  Signal Strength ===
508 508  
558 +(% style="color:#037691" %)**Downlink:**
509 509  
510 -(((
511 -NB-IoT Network signal Strength.
512 -)))
560 +923.3 - SF7BW500 to SF12BW500
513 513  
514 -(((
515 -**Ex1: 0x1d = 29**
516 -)))
562 +923.9 - SF7BW500 to SF12BW500
517 517  
518 -(((
519 -(% style="color:blue" %)**0**(%%)  -113dBm or less
520 -)))
564 +924.5 - SF7BW500 to SF12BW500
521 521  
522 -(((
523 -(% style="color:blue" %)**1**(%%)  -111dBm
524 -)))
566 +925.1 - SF7BW500 to SF12BW500
525 525  
526 -(((
527 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
528 -)))
568 +925.7 - SF7BW500 to SF12BW500
529 529  
530 -(((
531 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
532 -)))
570 +926.3 - SF7BW500 to SF12BW500
533 533  
534 -(((
535 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
536 -)))
572 +926.9 - SF7BW500 to SF12BW500
537 537  
574 +927.5 - SF7BW500 to SF12BW500
538 538  
576 +923.3 - SF12BW500(RX2 downlink only)
539 539  
540 -=== 2.4.5  Distance ===
541 541  
542 542  
543 -Get the distance. Flat object range 280mm - 7500mm.
580 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
544 544  
545 -(((
546 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
547 -)))
582 +(% style="color:#037691" %)**Default Uplink channel:**
548 548  
549 -(((
550 -(((
551 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
552 -)))
553 -)))
584 +923.2 - SF7BW125 to SF10BW125
554 554  
555 -(((
556 -
557 -)))
586 +923.4 - SF7BW125 to SF10BW125
558 558  
559 -(((
560 -
561 -)))
562 562  
563 -=== 2.4.6  Digital Interrupt ===
589 +(% style="color:#037691" %)**Additional Uplink Channel**:
564 564  
591 +(OTAA mode, channel added by JoinAccept message)
565 565  
566 -(((
567 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
568 -)))
593 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
569 569  
570 -(((
571 -The command is:
572 -)))
595 +922.2 - SF7BW125 to SF10BW125
573 573  
574 -(((
575 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
576 -)))
597 +922.4 - SF7BW125 to SF10BW125
577 577  
599 +922.6 - SF7BW125 to SF10BW125
578 578  
579 -(((
580 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
581 -)))
601 +922.8 - SF7BW125 to SF10BW125
582 582  
603 +923.0 - SF7BW125 to SF10BW125
583 583  
584 -(((
585 -Example:
586 -)))
605 +922.0 - SF7BW125 to SF10BW125
587 587  
588 -(((
589 -0x(00): Normal uplink packet.
590 -)))
591 591  
592 -(((
593 -0x(01): Interrupt Uplink Packet.
594 -)))
608 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
595 595  
610 +923.6 - SF7BW125 to SF10BW125
596 596  
612 +923.8 - SF7BW125 to SF10BW125
597 597  
598 -=== 2.4. ​+5V Output ===
614 +924.0 - SF7BW125 to SF10BW125
599 599  
616 +924.2 - SF7BW125 to SF10BW125
600 600  
601 -(((
602 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
603 -)))
618 +924.4 - SF7BW125 to SF10BW125
604 604  
620 +924.6 - SF7BW125 to SF10BW125
605 605  
606 -(((
607 -The 5V output time can be controlled by AT Command.
608 608  
609 -
610 -)))
623 +(% style="color:#037691" %)** Downlink:**
611 611  
612 -(((
613 -(% style="color:blue" %)**AT+5VT=1000**
625 +Uplink channels 1-8 (RX1)
614 614  
615 -
616 -)))
627 +923.2 - SF10BW125 (RX2)
617 617  
618 -(((
619 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
620 -)))
621 621  
622 622  
631 +=== 2.7.6 KR920-923 (KR920) ===
623 623  
624 -== 2.5  Downlink Payload ==
633 +Default channel:
625 625  
635 +922.1 - SF7BW125 to SF12BW125
626 626  
627 -By default, NDDS75 prints the downlink payload to console port.
637 +922.3 - SF7BW125 to SF12BW125
628 628  
629 -[[image:image-20220709100028-1.png]]
639 +922.5 - SF7BW125 to SF12BW125
630 630  
631 631  
632 -(((
633 -(% style="color:blue" %)**Examples:**
634 -)))
642 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
635 635  
636 -(((
637 -
638 -)))
644 +922.1 - SF7BW125 to SF12BW125
639 639  
640 -* (((
641 -(% style="color:blue" %)**Set TDC**
642 -)))
646 +922.3 - SF7BW125 to SF12BW125
643 643  
644 -(((
645 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
646 -)))
648 +922.5 - SF7BW125 to SF12BW125
647 647  
648 -(((
649 -Payload:    01 00 00 1E    TDC=30S
650 -)))
650 +922.7 - SF7BW125 to SF12BW125
651 651  
652 -(((
653 -Payload:    01 00 00 3C    TDC=60S
654 -)))
652 +922.9 - SF7BW125 to SF12BW125
655 655  
656 -(((
657 -
658 -)))
654 +923.1 - SF7BW125 to SF12BW125
659 659  
660 -* (((
661 -(% style="color:blue" %)**Reset**
662 -)))
656 +923.3 - SF7BW125 to SF12BW125
663 663  
664 -(((
665 -If payload = 0x04FF, it will reset the NDDS75
666 -)))
667 667  
659 +(% style="color:#037691" %)**Downlink:**
668 668  
669 -* (% style="color:blue" %)**INTMOD**
661 +Uplink channels 1-7(RX1)
670 670  
671 -(((
672 -Downlink Payload: 06000003, Set AT+INTMOD=3
673 -)))
663 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
674 674  
675 675  
676 676  
677 -== 2.6  Distance alarm function(Since firmware v1.3.2) ==
667 +=== 2.7.7 IN865-867 (IN865) ===
678 678  
669 +(% style="color:#037691" %)** Uplink:**
679 679  
680 -(% style="color:blue" %)** ➢ AT Command:**
671 +865.0625 - SF7BW125 to SF12BW125
681 681  
682 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
673 +865.4025 - SF7BW125 to SF12BW125
683 683  
684 -² When min=0, and max≠0, Alarm higher than max
675 +865.9850 - SF7BW125 to SF12BW125
685 685  
686 -² When min≠0, and max=0, Alarm lower than min
687 687  
688 -² When min≠0 and max≠0, Alarm higher than max or lower than min
678 +(% style="color:#037691" %) **Downlink:**
689 689  
680 +Uplink channels 1-3 (RX1)
690 690  
691 -(% style="color:blue" %)** Example:**
682 +866.550 - SF10BW125 (RX2)
692 692  
693 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
694 694  
695 695  
696 696  
697 -== 2. Set the number of data to be uploaded and the recording time ==
687 +== 2.8 LED Indicator ==
698 698  
689 +The LSE01 has an internal LED which is to show the status of different state.
699 699  
700 -(% style="color:blue" %)** ➢ AT Command:**
691 +* Blink once when device power on.
692 +* Solid ON for 5 seconds once device successful Join the network.
693 +* Blink once when device transmit a packet.
701 701  
702 -* (% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
703 -* (% style="color:#037691" %)** AT+NOUD=8**             (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
704 704  
705 -This link explains the relationship between TR, NOUD and TDC more clearly **: **[[https:~~/~~/www.processon.com/view/link/6340e606e401fd390891af87>>url:https://www.processon.com/view/link/6340e606e401fd390891af87]]
706 706  
707 -== 2. Read or Clear cached data ==
697 +== 2.9 Installation in Soil ==
708 708  
699 +**Measurement the soil surface**
709 709  
710 -(% style="color:blue" %)** ➢ AT Command:**
711 711  
712 -* (% style="color:#037691" %)** AT+CDP ** (%%) ~/~/  Read cached data
713 -* (% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/  Clear cached data
702 +[[image:1654506634463-199.png]] ​
714 714  
715 -[[image:image-20220908175333-2.png]]
704 +(((
705 +(((
706 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
707 +)))
708 +)))
716 716  
717 717  
718 718  
719 -== 2.9  ​LED Indicator ==
712 +[[image:1654506665940-119.png]]
720 720  
714 +(((
715 +Dig a hole with diameter > 20CM.
716 +)))
721 721  
722 -The NDDS75 has an internal LED which is to show the status of different state.
718 +(((
719 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
720 +)))
723 723  
724 724  
725 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
726 -* Then the LED will be on for 1 second means device is boot normally.
727 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
728 -* For each uplink probe, LED will be on for 500ms.
723 +== 2.10 ​Firmware Change Log ==
729 729  
730 730  (((
731 -
726 +**Firmware download link:**
732 732  )))
733 733  
729 +(((
730 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
731 +)))
734 734  
733 +(((
734 +
735 +)))
735 735  
736 -== 2.10  ​Firmware Change Log ==
737 -
738 -
739 739  (((
740 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
738 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
741 741  )))
742 742  
743 743  (((
... ... @@ -745,298 +745,374 @@
745 745  )))
746 746  
747 747  (((
748 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
746 +**V1.0.**
749 749  )))
750 750  
749 +(((
750 +Release
751 +)))
751 751  
752 752  
753 -== 2.11  ​Battery Analysis ==
754 +== 2.11 ​Battery Analysis ==
754 754  
756 +=== 2.11.1 ​Battery Type ===
755 755  
756 -=== 2.11.1  ​Battery Type ===
757 -
758 -
759 759  (((
760 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
759 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
761 761  )))
762 762  
763 763  (((
764 -The battery is designed to last for several years depends on the actually use environment and update interval. 
763 +The battery is designed to last for more than 5 years for the LSN50.
765 765  )))
766 766  
767 767  (((
768 -The battery related documents as below:
767 +(((
768 +The battery-related documents are as below:
769 769  )))
770 +)))
770 770  
771 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
772 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
773 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
774 -
775 -(((
776 -[[image:image-20220709101450-2.png]]
772 +* (((
773 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 777  )))
775 +* (((
776 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 +)))
778 +* (((
779 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
780 +)))
778 778  
782 + [[image:image-20220610172436-1.png]]
779 779  
780 780  
781 -=== 2.11.2  Power consumption Analyze ===
782 782  
786 +=== 2.11.2 ​Battery Note ===
783 783  
784 784  (((
785 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
789 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
786 786  )))
787 787  
788 788  
793 +
794 +=== 2.11.3 Replace the battery ===
795 +
789 789  (((
790 -Instruction to use as below:
797 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
791 791  )))
792 792  
793 793  (((
794 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
801 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
795 795  )))
796 796  
797 -
798 798  (((
799 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
805 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
800 800  )))
801 801  
802 -* (((
803 -Product Model
804 -)))
805 -* (((
806 -Uplink Interval
807 -)))
808 -* (((
809 -Working Mode
810 -)))
811 811  
812 -(((
813 -And the Life expectation in difference case will be shown on the right.
814 -)))
815 815  
816 -[[image:image-20220709110451-3.png]]
810 += 3. ​Using the AT Commands =
817 817  
812 +== 3.1 Access AT Commands ==
818 818  
819 819  
820 -=== 2.11.3  ​Battery Note ===
815 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
821 821  
817 +[[image:1654501986557-872.png||height="391" width="800"]]
822 822  
823 -(((
824 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
825 -)))
826 826  
820 +Or if you have below board, use below connection:
827 827  
828 828  
829 -=== 2.11.4  Replace the battery ===
823 +[[image:1654502005655-729.png||height="503" width="801"]]
830 830  
831 831  
832 -(((
833 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
834 -)))
835 835  
827 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
836 836  
837 837  
838 -= 3. ​ Access NB-IoT Module =
830 + [[image:1654502050864-459.png||height="564" width="806"]]
839 839  
840 840  
841 -(((
842 -Users can directly access the AT command set of the NB-IoT module.
843 -)))
833 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
844 844  
845 -(((
846 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
847 847  
848 -
849 -)))
836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
850 850  
851 -[[image:1657333200519-600.png]]
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
852 852  
840 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
853 853  
842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 854  
855 -= 4.  Using the AT Commands =
856 856  
845 +(% style="color:#037691" %)**General Commands**(%%)      
857 857  
858 -== 4.1  Access AT Commands ==
847 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
859 859  
849 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
860 860  
861 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
851 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
862 862  
853 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
863 863  
864 -AT+<CMD>?  :  Help on <CMD>
865 865  
866 -AT+<CMD>         :  Run <CMD>
856 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
867 867  
868 -AT+<CMD>=<value> :  Set the value
858 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
869 869  
870 -AT+<CMD>=?  :  Get the value
860 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
871 871  
862 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
872 872  
873 -(% style="color:#037691" %)**General Commands**(%%)      
864 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
874 874  
875 -AT  :  Attention       
866 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
876 876  
877 -AT?  :  Short Help     
868 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
878 878  
879 -ATZ  :  MCU Reset    
870 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
880 880  
881 -AT+TDC  :  Application Data Transmission Interval
872 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
882 882  
883 -AT+CFG  :  Print all configurations
874 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
884 884  
885 -AT+CFGMOD           Working mode selection
876 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
886 886  
887 -AT+INTMOD            :  Set the trigger interrupt mode
878 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
888 888  
889 -AT+5VT  :  Set extend the time of 5V power  
880 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
890 890  
891 -AT+PRO  :  Choose agreement
882 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
892 892  
893 -AT+WEIGRE  :  Get weight or set weight to 0
884 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
894 894  
895 -AT+WEIGAP  :  Get or Set the GapValue of weight
886 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
896 896  
897 -AT+RXDL  :  Extend the sending and receiving time
888 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
898 898  
899 -AT+CNTFAC  :  Get or set counting parameters
900 900  
901 -AT+SERVADDR  :  Server Address
891 +(% style="color:#037691" %)**LoRa Network Management**
902 902  
903 -AT+T :  Get or Set record time"
893 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
904 904  
905 -AT+APN     :  Get or set the APN
895 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
906 906  
907 -AT+FBAN Get or Set whether to automatically modify the frequency band
897 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
908 908  
909 -AT+DNSCFG  : Get or Set DNS Server
899 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
910 910  
911 -AT+GETSENSORVALUE   Returns the current sensor measurement
901 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
912 912  
913 -AT+NOUD  Get or Set the number of data to be uploaded
903 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
914 914  
915 -AT+CDP     Read or Clear cached data
905 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
916 916  
917 -AT+LDDSALARM :  Get or Set alarm of distance
907 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
918 918  
909 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
919 919  
920 -(% style="color:#037691" %)**COAP Management**      
911 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
921 921  
922 -AT+URI            Resource parameters
913 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
923 923  
915 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
924 924  
925 -(% style="color:#037691" %)**UDP Management**
917 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
926 926  
927 -AT+CFM          :  Upload confirmation mode (only valid for UDP)
919 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
928 928  
921 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 929  
930 -(% style="color:#037691" %)**MQTT Management**
931 931  
932 -AT+CLIENT  :  Get or Set MQTT client
924 +(% style="color:#037691" %)**Information** 
933 933  
934 -AT+UNAME  :  Get or Set MQTT Username
926 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
935 935  
936 -AT+PWD  :  Get or Set MQTT password
928 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
937 937  
938 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
930 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
939 939  
940 -AT+SUBTOPIC  :  Get or Set MQTT subscription topic
932 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
941 941  
934 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 942  
943 -(% style="color:#037691" %)**Information**          
936 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 944  
945 -AT+FDR  :  Factory Data Reset
938 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 946  
947 -AT+PWORD  :  Serial Access Password
948 948  
941 += ​4. FAQ =
949 949  
943 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
950 950  
951 -= ​5.  FAQ =
945 +(((
946 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
947 +When downloading the images, choose the required image file for download. ​
948 +)))
952 952  
950 +(((
951 +
952 +)))
953 953  
954 -== 5.1 ​ How to Upgrade Firmware ==
954 +(((
955 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
956 +)))
955 955  
958 +(((
959 +
960 +)))
956 956  
957 957  (((
958 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
963 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 959  )))
960 960  
961 961  (((
962 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
967 +
963 963  )))
964 964  
965 965  (((
966 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
971 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
967 967  )))
968 968  
974 +[[image:image-20220606154726-3.png]]
969 969  
970 970  
971 -= 6.  Trouble Shooting =
977 +When you use the TTN network, the US915 frequency bands use are:
972 972  
979 +* 903.9 - SF7BW125 to SF10BW125
980 +* 904.1 - SF7BW125 to SF10BW125
981 +* 904.3 - SF7BW125 to SF10BW125
982 +* 904.5 - SF7BW125 to SF10BW125
983 +* 904.7 - SF7BW125 to SF10BW125
984 +* 904.9 - SF7BW125 to SF10BW125
985 +* 905.1 - SF7BW125 to SF10BW125
986 +* 905.3 - SF7BW125 to SF10BW125
987 +* 904.6 - SF8BW500
973 973  
974 -== 6.1  ​Connection problem when uploading firmware ==
989 +(((
990 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 975  
992 +* (% style="color:#037691" %)**AT+CHE=2**
993 +* (% style="color:#037691" %)**ATZ**
994 +)))
976 976  
977 977  (((
978 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +
998 +
999 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
979 979  )))
980 980  
981 -(% class="wikigeneratedid" %)
982 982  (((
983 983  
984 984  )))
985 985  
1006 +(((
1007 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 +)))
986 986  
987 -== 6.2  AT Command input doesn't work ==
1010 +[[image:image-20220606154825-4.png]]
988 988  
989 989  
1013 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1014 +
1015 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1016 +
1017 +
1018 += 5. Trouble Shooting =
1019 +
1020 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1021 +
1022 +It is due to channel mapping. Please see the [[Eight Channel Mode>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.19EightChannelMode||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1023 +
1024 +
1025 +== 5.2 AT Command input doesn't work ==
1026 +
990 990  (((
991 991  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 +)))
992 992  
993 -
1031 +
1032 +== 5.3 Device rejoin in at the second uplink packet ==
1033 +
1034 +(% style="color:#4f81bd" %)**Issue describe as below:**
1035 +
1036 +[[image:1654500909990-784.png]]
1037 +
1038 +
1039 +(% style="color:#4f81bd" %)**Cause for this issue:**
1040 +
1041 +(((
1042 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
994 994  )))
995 995  
996 996  
997 -= 7. ​ Order Info =
1046 +(% style="color:#4f81bd" %)**Solution: **
998 998  
1048 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
999 999  
1000 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1050 +[[image:1654500929571-736.png||height="458" width="832"]]
1001 1001  
1002 1002  
1053 += 6. ​Order Info =
1054 +
1055 +
1056 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1057 +
1058 +
1059 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1060 +
1061 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1062 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1063 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1064 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1065 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1066 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1067 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1068 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1069 +
1070 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1071 +
1072 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1073 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1074 +
1003 1003  (% class="wikigeneratedid" %)
1004 1004  (((
1005 1005  
1006 1006  )))
1007 1007  
1008 -= 8.  Packing Info =
1080 += 7. Packing Info =
1009 1009  
1010 1010  (((
1011 1011  
1012 1012  
1013 1013  (% style="color:#037691" %)**Package Includes**:
1086 +)))
1014 1014  
1015 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1016 -* External antenna x 1
1088 +* (((
1089 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1017 1017  )))
1018 1018  
1019 1019  (((
1020 1020  
1021 1021  
1022 -
1023 1023  (% style="color:#037691" %)**Dimension and weight**:
1096 +)))
1024 1024  
1025 -* Device Size: 13.0 x 5 x 4.5 cm
1026 -* Device Weight: 150g
1027 -* Package Size / pcs : 15 x 12x 5.5 cm
1028 -* Weight / pcs : 220g
1098 +* (((
1099 +Device Size: cm
1029 1029  )))
1101 +* (((
1102 +Device Weight: g
1103 +)))
1104 +* (((
1105 +Package Size / pcs : cm
1106 +)))
1107 +* (((
1108 +Weight / pcs : g
1030 1030  
1031 -(((
1032 1032  
1033 -
1034 -
1035 -
1036 1036  )))
1037 1037  
1038 -= 9.  Support =
1113 += 8. Support =
1039 1039  
1040 -
1041 1041  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1042 1042  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content