Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 104.5
edited by Xiaoling
on 2022/09/09 12:00
Change comment: There is no comment for this version
To version 56.4
edited by Xiaoling
on 2022/07/08 11:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,80 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 -
75 -
76 -
77 -
78 78  == 1.3  Specification ==
79 79  
80 80  
... ... @@ -92,123 +92,91 @@
92 92  * - B20 @H-FDD: 800MHz
93 93  * - B28 @H-FDD: 700MHz
94 94  
95 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
96 96  
97 -* Li/SOCI2 un-chargeable battery
98 -* Capacity: 8500mAh
99 -* Self Discharge: <1% / Year @ 25°C
100 -* Max continuously current: 130mA
101 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
102 102  
103 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
104 104  
105 -* STOP Mode: 10uA @ 3.3v
106 -* Max transmit power: 350mA@3.3v
107 107  
108 108  
109 -
110 -
111 -
112 112  == ​1.4  Applications ==
113 113  
114 -
115 -* Smart Buildings & Home Automation
116 -* Logistics and Supply Chain Management
117 -* Smart Metering
118 118  * Smart Agriculture
119 -* Smart Cities
120 -* Smart Factory
121 121  
122 122  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
123 123  ​
124 124  
125 -
126 -
127 -
128 128  == 1.5  Pin Definitions ==
129 129  
130 130  
131 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
132 132  
133 133  
134 134  
135 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
136 136  
137 -
138 138  == 2.1  How it works ==
139 139  
140 140  
141 141  (((
142 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
143 143  )))
144 144  
145 145  
146 146  (((
147 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
148 148  )))
149 149  
150 -(((
151 -
152 -)))
115 +[[image:image-20220708101605-2.png]]
153 153  
154 -[[image:1657328659945-416.png]]
155 -
156 156  (((
157 157  
158 158  )))
159 159  
160 160  
161 -== 2.2 ​ Configure the NDDS75 ==
162 162  
123 +== 2.2 ​ Configure the NSE01 ==
163 163  
125 +
164 164  === 2.2.1 Test Requirement ===
165 165  
166 166  
167 -(((
168 -To use NDDS75 in your city, make sure meet below requirements:
169 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
170 170  
171 171  * Your local operator has already distributed a NB-IoT Network there.
172 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
173 173  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
174 174  
175 175  (((
176 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
177 177  )))
178 178  
179 179  
180 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
181 181  
182 182  
183 183  
184 184  === 2.2.2 Insert SIM card ===
185 185  
186 -
187 -(((
188 188  Insert the NB-IoT Card get from your provider.
189 -)))
190 190  
191 -(((
192 192  User need to take out the NB-IoT module and insert the SIM card like below:
193 -)))
194 194  
195 195  
196 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
197 197  
198 198  
199 199  
200 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
201 201  
202 -
203 203  (((
204 204  (((
205 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
206 206  )))
207 207  )))
208 208  
209 -[[image:image-20220709092052-2.png]]
210 210  
211 -
212 212  **Connection:**
213 213  
214 214   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -220,99 +220,87 @@
220 220  
221 221  In the PC, use below serial tool settings:
222 222  
223 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
224 224  * Data bits:** (% style="color:green" %)8(%%)**
225 225  * Stop bits: (% style="color:green" %)**1**
226 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
227 227  * Flow Control: (% style="color:green" %)**None**
228 228  
229 229  (((
230 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
231 231  )))
232 232  
233 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
234 234  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
235 235  
236 -(((
237 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
238 -)))
239 239  
240 240  
241 -
242 242  === 2.2.4 Use CoAP protocol to uplink data ===
243 243  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
244 244  
245 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
246 246  
247 -
248 -(((
249 249  **Use below commands:**
250 -)))
251 251  
252 -* (((
253 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
254 -)))
255 -* (((
256 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
257 -)))
258 -* (((
259 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
260 260  
261 261  
262 -
263 -)))
264 264  
265 -(((
266 266  For parameter description, please refer to AT command set
267 267  
268 -
269 -)))
206 +[[image:1657249793983-486.png]]
270 270  
271 -[[image:1657330452568-615.png]]
272 272  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
273 273  
211 +[[image:1657249831934-534.png]]
274 274  
275 -(((
276 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
277 277  
278 -
279 -)))
280 280  
281 -[[image:1657330472797-498.png]]
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
282 282  
217 +This feature is supported since firmware version v1.0.1
283 283  
284 284  
285 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
286 286  
287 287  
288 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
289 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
290 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
291 291  
292 -[[image:1657330501006-241.png]]
226 +[[image:1657249864775-321.png]]
293 293  
294 294  
295 -[[image:1657330533775-472.png]]
296 296  
230 +[[image:1657249930215-289.png]]
297 297  
298 298  
233 +
299 299  === 2.2.6 Use MQTT protocol to uplink data ===
300 300  
236 +This feature is supported since firmware version v110
301 301  
302 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
303 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
304 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
305 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
306 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
307 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
308 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
309 309  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
310 310  [[image:1657249978444-674.png]]
311 311  
312 312  
313 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
314 314  
315 315  
255 +
316 316  (((
317 317  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
318 318  )))
... ... @@ -321,516 +321,665 @@
321 321  
322 322  === 2.2.7 Use TCP protocol to uplink data ===
323 323  
264 +This feature is supported since firmware version v110
324 324  
266 +
325 325  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
326 326  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
327 327  
328 -[[image:image-20220709093918-1.png]]
270 +[[image:1657250217799-140.png]]
329 329  
330 330  
331 -[[image:image-20220709093918-2.png]]
273 +[[image:1657250255956-604.png]]
332 332  
333 333  
334 -
335 335  === 2.2.8 Change Update Interval ===
336 336  
337 -
338 338  User can use below command to change the (% style="color:green" %)**uplink interval**.
339 339  
340 340  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
341 341  
342 -(((
343 -
344 344  
345 -
283 +(((
346 346  (% style="color:red" %)**NOTE:**
285 +)))
347 347  
348 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
349 -
350 -(% style="color:red" %)**2. When the firmware version is v1.3.2 and later firmware:**
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
351 351  )))
352 352  
353 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
354 354  
355 355  
293 +== 2.3 Uplink Payload ==
356 356  
357 -== 2.3  Uplink Payload ==
358 358  
296 +=== 2.3.1 MOD~=0(Default Mode) ===
359 359  
360 -=== 2.3.1  Before Firmware 1.3.2 ===
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
361 361  
300 +(((
301 +Uplink payload includes in total 11 bytes.
302 +)))
362 362  
363 -In this mode, uplink payload includes in total 14 bytes
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
364 364  
365 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
366 -|=(% style="width: 60px;" %)(((
367 -**Size(bytes)**
368 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
369 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
370 370  
371 -(((
372 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
316 +
317 +(Optional)
373 373  )))
374 374  
320 +=== 2.3.2 MOD~=1(Original value) ===
375 375  
376 -[[image:1657331036973-987.png]]
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
377 377  
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
378 378  
379 -(((
380 -The payload is **ASCII** string, representative same HEX:
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
332 +
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
336 +
337 +(Optional)
381 381  )))
382 382  
340 +=== 2.3.3 Battery Info ===
341 +
383 383  (((
384 -0x72403155615900640c6c19029200 where:
343 +Check the battery voltage for LSE01.
385 385  )))
386 386  
387 -* (((
388 -Device ID: 0x724031556159 = 724031556159
346 +(((
347 +Ex1: 0x0B45 = 2885mV
389 389  )))
390 -* (((
391 -Version:  0x0064=100=1.0.0
392 -)))
393 393  
394 -* (((
395 -BAT:  0x0c6c = 3180 mV = 3.180V
350 +(((
351 +Ex2: 0x0B49 = 2889mV
396 396  )))
397 -* (((
398 -Signal: 0x19 = 25
399 -)))
400 -* (((
401 -Distance: 0x0292= 658 mm
402 -)))
403 -* (((
404 -Interrupt: 0x00 = 0
405 405  
406 406  
407 407  
356 +=== 2.3.4 Soil Moisture ===
408 408  
409 -
358 +(((
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
410 410  )))
411 411  
412 -=== **2.3.2  Since firmware v1.3.2** ===
362 +(((
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
364 +)))
413 413  
366 +(((
367 +
368 +)))
414 414  
415 -In this mode, uplink payload includes 69 bytes in total by default.
370 +(((
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
372 +)))
416 416  
417 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
418 418  
419 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
420 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
421 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
422 422  
423 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
376 +=== 2.3.5 Soil Temperature ===
424 424  
425 -[[image:image-20220908175246-1.png]]
378 +(((
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
380 +)))
426 426  
382 +(((
383 +**Example**:
384 +)))
427 427  
428 -The payload is ASCII string, representative same HEX:
386 +(((
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
388 +)))
429 429  
430 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
390 +(((
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
392 +)))
431 431  
432 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
433 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
434 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
435 -* (% style="color:blue" %)Singal: 0x1e = 30
436 -* (% style="color:red" %)Mod: 0x01 = 1
437 -* Interrupt: 0x00= 0
438 -* Distance: 0x0039= 57 = 57
439 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
440 -* Distance,Time stamp : 00396319baf0
441 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
442 442  
443 443  
396 +=== 2.3.6 Soil Conductivity (EC) ===
444 444  
445 -
446 -
447 -== 2.4  Payload Explanation and Sensor Interface ==
448 -
449 -
450 -=== 2.4.1  Device ID ===
451 -
452 -
453 453  (((
454 -By default, the Device ID equal to the last 6 bytes of IMEI.
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
455 455  )))
456 456  
457 457  (((
458 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
459 -
460 -
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
461 461  )))
462 462  
463 463  (((
464 -(% style="color:blue" %)**Example :**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
465 465  )))
466 466  
467 467  (((
468 -AT+DEUI=A84041F15612
411 +
469 469  )))
470 470  
471 471  (((
472 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
415 +
473 473  )))
474 474  
418 +=== 2.3.7 MOD ===
475 475  
476 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
420 +Firmware version at least v2.1 supports changing mode.
477 477  
478 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
422 +For example, bytes[10]=90
479 479  
480 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
424 +mod=(bytes[10]>>7)&0x01=1.
481 481  
482 482  
483 -(% style="color:blue" %)**Example :**
427 +**Downlink Command:**
484 484  
485 -AT+DEUI=868411056754138
429 +If payload = 0x0A00, workmode=0
486 486  
431 +If** **payload =** **0x0A01, workmode=1
487 487  
488 488  
489 -=== 2.4.2  Version Info ===
490 490  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
491 491  
437 +While using TTN network, you can add the payload format to decode the payload.
438 +
439 +
440 +[[image:1654505570700-128.png]]
441 +
492 492  (((
493 -Specify the software version: 0x64=100, means firmware version 1.00.
443 +The payload decoder function for TTN is here:
494 494  )))
495 495  
496 496  (((
497 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
498 498  )))
499 499  
500 500  
451 +== 2.4 Uplink Interval ==
501 501  
502 -=== 2.4.3  Battery Info ===
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
503 503  
504 504  
505 -(((
506 -Ex1: 0x0B45 = 2885mV
507 -)))
508 508  
509 -(((
510 -Ex2: 0x0B49 = 2889mV
511 -)))
457 +== 2.5 Downlink Payload ==
512 512  
459 +By default, LSE50 prints the downlink payload to console port.
513 513  
461 +[[image:image-20220606165544-8.png]]
514 514  
515 -=== 2.4.4  Signal Strength ===
516 516  
517 -
518 518  (((
519 -NB-IoT Network signal Strength.
465 +(% style="color:blue" %)**Examples:**
520 520  )))
521 521  
522 522  (((
523 -**Ex1: 0x1d = 29**
469 +
524 524  )))
525 525  
472 +* (((
473 +(% style="color:blue" %)**Set TDC**
474 +)))
475 +
526 526  (((
527 -(% style="color:blue" %)**0**(%%)  -113dBm or less
477 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
528 528  )))
529 529  
530 530  (((
531 -(% style="color:blue" %)**1**(%%)  -111dBm
481 +Payload:    01 00 00 1E    TDC=30S
532 532  )))
533 533  
534 534  (((
535 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
485 +Payload:    01 00 00 3C    TDC=60S
536 536  )))
537 537  
538 538  (((
539 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
489 +
540 540  )))
541 541  
492 +* (((
493 +(% style="color:blue" %)**Reset**
494 +)))
495 +
542 542  (((
543 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
497 +If payload = 0x04FF, it will reset the LSE01
544 544  )))
545 545  
546 546  
501 +* (% style="color:blue" %)**CFM**
547 547  
548 -=== 2.4.5  Distance ===
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
549 549  
550 550  
551 -Get the distance. Flat object range 280mm - 7500mm.
552 552  
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
553 553  (((
554 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
555 555  )))
556 556  
557 557  (((
558 -(((
559 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
514 +
560 560  )))
561 -)))
562 562  
563 563  (((
564 -
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
565 565  )))
566 566  
567 567  (((
568 -
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
569 569  )))
570 570  
571 -=== 2.4.6  Digital Interrupt ===
572 572  
526 +[[image:1654505857935-743.png]]
573 573  
574 -(((
575 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
576 -)))
577 577  
578 -(((
579 -The command is:
580 -)))
529 +[[image:1654505874829-548.png]]
581 581  
582 -(((
583 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
584 -)))
585 585  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
586 586  
587 -(((
588 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
589 -)))
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
590 590  
591 591  
592 -(((
593 -Example:
594 -)))
537 +[[image:1654505905236-553.png]]
595 595  
596 -(((
597 -0x(00): Normal uplink packet.
598 -)))
599 599  
600 -(((
601 -0x(01): Interrupt Uplink Packet.
602 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
603 603  
542 +[[image:1654505925508-181.png]]
604 604  
605 605  
606 -=== 2.4.7  ​+5V Output ===
607 607  
546 +== 2.7 Frequency Plans ==
608 608  
609 -(((
610 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
611 -)))
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
612 612  
613 613  
614 -(((
615 -The 5V output time can be controlled by AT Command.
551 +=== 2.7.1 EU863-870 (EU868) ===
616 616  
617 -
618 -)))
553 +(% style="color:#037691" %)** Uplink:**
619 619  
620 -(((
621 -(% style="color:blue" %)**AT+5VT=1000**
555 +868.1 - SF7BW125 to SF12BW125
622 622  
623 -
624 -)))
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
625 625  
626 -(((
627 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
628 -)))
559 +868.5 - SF7BW125 to SF12BW125
629 629  
561 +867.1 - SF7BW125 to SF12BW125
630 630  
563 +867.3 - SF7BW125 to SF12BW125
631 631  
632 -== 2.5  Downlink Payload ==
565 +867.5 - SF7BW125 to SF12BW125
633 633  
567 +867.7 - SF7BW125 to SF12BW125
634 634  
635 -By default, NDDS75 prints the downlink payload to console port.
569 +867.9 - SF7BW125 to SF12BW125
636 636  
637 -[[image:image-20220709100028-1.png]]
571 +868.8 - FSK
638 638  
639 639  
640 -(((
641 -(% style="color:blue" %)**Examples:**
642 -)))
574 +(% style="color:#037691" %)** Downlink:**
643 643  
644 -(((
645 -
646 -)))
576 +Uplink channels 1-9 (RX1)
647 647  
648 -* (((
649 -(% style="color:blue" %)**Set TDC**
650 -)))
578 +869.525 - SF9BW125 (RX2 downlink only)
651 651  
652 -(((
653 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
654 -)))
655 655  
656 -(((
657 -Payload:    01 00 00 1E    TDC=30S
658 -)))
659 659  
660 -(((
661 -Payload:    01 00 00 3C    TDC=60S
662 -)))
582 +=== 2.7.2 US902-928(US915) ===
663 663  
664 -(((
665 -
666 -)))
584 +Used in USA, Canada and South America. Default use CHE=2
667 667  
668 -* (((
669 -(% style="color:blue" %)**Reset**
670 -)))
586 +(% style="color:#037691" %)**Uplink:**
671 671  
672 -(((
673 -If payload = 0x04FF, it will reset the NDDS75
674 -)))
588 +903.9 - SF7BW125 to SF10BW125
675 675  
590 +904.1 - SF7BW125 to SF10BW125
676 676  
677 -* (% style="color:blue" %)**INTMOD**
592 +904.3 - SF7BW125 to SF10BW125
678 678  
679 -(((
680 -Downlink Payload: 06000003, Set AT+INTMOD=3
681 -)))
594 +904.5 - SF7BW125 to SF10BW125
682 682  
596 +904.7 - SF7BW125 to SF10BW125
683 683  
598 +904.9 - SF7BW125 to SF10BW125
684 684  
685 -== 2. Distance alarm function(Since firmware v1.3.2) ==
600 +905.1 - SF7BW125 to SF10BW125
686 686  
602 +905.3 - SF7BW125 to SF10BW125
687 687  
688 -(% style="color:blue" %)** ➢ AT Command:**
689 689  
690 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
605 +(% style="color:#037691" %)**Downlink:**
691 691  
692 -² When min=0, and max≠0, Alarm higher than max
607 +923.3 - SF7BW500 to SF12BW500
693 693  
694 -² When min≠0, and max=0, Alarm lower than min
609 +923.9 - SF7BW500 to SF12BW500
695 695  
696 -² When min≠0 and max≠0, Alarm higher than max or lower than min
611 +924.5 - SF7BW500 to SF12BW500
697 697  
613 +925.1 - SF7BW500 to SF12BW500
698 698  
699 -(% style="color:blue" %)** Example:**
615 +925.7 - SF7BW500 to SF12BW500
700 700  
701 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
617 +926.3 - SF7BW500 to SF12BW500
702 702  
619 +926.9 - SF7BW500 to SF12BW500
703 703  
621 +927.5 - SF7BW500 to SF12BW500
704 704  
705 -== 2. Set the number of data to be uploaded and the recording time ==
623 +923.3 - SF12BW500(RX2 downlink only)
706 706  
707 707  
708 -(% style="color:blue" %)** ➢ AT Command:**
709 709  
710 -* (% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
711 -* (% style="color:#037691" %)** AT+NOUD=8** (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
627 +=== 2.7.3 CN470-510 (CN470) ===
712 712  
629 +Used in China, Default use CHE=1
713 713  
631 +(% style="color:#037691" %)**Uplink:**
714 714  
633 +486.3 - SF7BW125 to SF12BW125
715 715  
716 -== 2.8  Read or Clear cached data ==
635 +486.5 - SF7BW125 to SF12BW125
717 717  
637 +486.7 - SF7BW125 to SF12BW125
718 718  
719 -(% style="color:blue" %)** ➢ AT Command:**
639 +486.9 - SF7BW125 to SF12BW125
720 720  
721 -* (% style="color:#037691" %)** AT+CDP ** (%%) ~/~/ Read cached data
722 -* (% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/  Clear cached data
641 +487.1 - SF7BW125 to SF12BW125
723 723  
643 +487.3 - SF7BW125 to SF12BW125
724 724  
645 +487.5 - SF7BW125 to SF12BW125
725 725  
726 -[[image:image-20220908175333-2.png]]
647 +487.7 - SF7BW125 to SF12BW125
727 727  
728 728  
650 +(% style="color:#037691" %)**Downlink:**
729 729  
730 -== 2. ​LED Indicator ==
652 +506.7 - SF7BW125 to SF12BW125
731 731  
654 +506.9 - SF7BW125 to SF12BW125
732 732  
733 -The NDDS75 has an internal LED which is to show the status of different state.
656 +507.1 - SF7BW125 to SF12BW125
734 734  
658 +507.3 - SF7BW125 to SF12BW125
735 735  
736 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
737 -* Then the LED will be on for 1 second means device is boot normally.
738 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
739 -* For each uplink probe, LED will be on for 500ms.
660 +507.5 - SF7BW125 to SF12BW125
740 740  
741 -(((
742 -
743 -)))
662 +507.7 - SF7BW125 to SF12BW125
744 744  
664 +507.9 - SF7BW125 to SF12BW125
745 745  
666 +508.1 - SF7BW125 to SF12BW125
746 746  
747 -== 2.1 ​Firmware Change Log ==
668 +505.3 - SF12BW125 (RX2 downlink only)
748 748  
749 749  
750 -(((
751 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
752 -)))
753 753  
754 -(((
755 -
756 -)))
672 +=== 2.7.4 AU915-928(AU915) ===
757 757  
758 -(((
759 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
760 -)))
674 +Default use CHE=2
761 761  
676 +(% style="color:#037691" %)**Uplink:**
762 762  
678 +916.8 - SF7BW125 to SF12BW125
763 763  
764 -== 2.1 Battery Analysis ==
680 +917.0 - SF7BW125 to SF12BW125
765 765  
682 +917.2 - SF7BW125 to SF12BW125
766 766  
767 -=== 2.11. Battery Type ===
684 +917.4 - SF7BW125 to SF12BW125
768 768  
686 +917.6 - SF7BW125 to SF12BW125
769 769  
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
770 770  (((
771 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
772 772  )))
843 +)))
773 773  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
774 774  (((
775 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
776 776  )))
777 777  
778 778  (((
779 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
780 780  )))
781 781  
782 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
783 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
784 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
785 785  
858 +== 2.10 ​Firmware Change Log ==
859 +
786 786  (((
787 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
788 788  )))
789 789  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
790 790  
868 +(((
869 +
870 +)))
791 791  
792 -=== 2.11.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
793 793  
876 +(((
877 +
878 +)))
794 794  
795 795  (((
796 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
881 +**V1.0.**
797 797  )))
798 798  
884 +(((
885 +Release
886 +)))
799 799  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
800 800  (((
801 -Instruction to use as below:
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
802 802  )))
803 803  
804 804  (((
805 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
898 +The battery is designed to last for more than 5 years for the LSN50.
806 806  )))
807 807  
808 -
809 809  (((
810 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
811 811  )))
905 +)))
812 812  
813 813  * (((
814 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
815 815  )))
816 816  * (((
817 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
818 818  )))
819 819  * (((
820 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
821 821  )))
822 822  
823 -(((
824 -And the Life expectation in difference case will be shown on the right.
825 -)))
917 + [[image:image-20220610172436-1.png]]
826 826  
827 -[[image:image-20220709110451-3.png]]
828 828  
829 829  
921 +=== 2.11.2 ​Battery Note ===
830 830  
831 -=== 2.11.3  ​Battery Note ===
832 -
833 -
834 834  (((
835 835  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
836 836  )))
... ... @@ -837,217 +837,326 @@
837 837  
838 838  
839 839  
840 -=== 2.11. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
841 841  
931 +(((
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
933 +)))
842 842  
843 843  (((
844 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
845 845  )))
846 846  
939 +(((
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
941 +)))
847 847  
848 848  
849 -= 3. ​ Access NB-IoT Module =
850 850  
945 += 3. ​Using the AT Commands =
851 851  
852 -(((
853 -Users can directly access the AT command set of the NB-IoT module.
854 -)))
947 +== 3.1 Access AT Commands ==
855 855  
856 -(((
857 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
858 858  
859 -
860 -)))
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
861 861  
862 -[[image:1657333200519-600.png]]
952 +[[image:1654501986557-872.png||height="391" width="800"]]
863 863  
864 864  
955 +Or if you have below board, use below connection:
865 865  
866 -= 4.  Using the AT Commands =
867 867  
958 +[[image:1654502005655-729.png||height="503" width="801"]]
868 868  
869 -== 4.1  Access AT Commands ==
870 870  
871 871  
872 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
873 873  
874 874  
875 -AT+<CMD>?  : Help on <CMD>
965 + [[image:1654502050864-459.png||height="564" width="806"]]
876 876  
877 -AT+<CMD>         : Run <CMD>
878 878  
879 -AT+<CMD>=<value> : Set the value
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
880 880  
881 -AT+<CMD>=?  : Get the value
882 882  
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
883 883  
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
884 884  (% style="color:#037691" %)**General Commands**(%%)      
885 885  
886 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
887 887  
888 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
889 889  
890 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
891 891  
892 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
893 893  
894 -AT+CFG  : Print all configurations
895 895  
896 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
897 897  
898 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
899 899  
900 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
901 901  
902 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
903 903  
904 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
905 905  
906 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
907 907  
908 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
909 909  
910 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
911 911  
912 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
913 913  
914 -AT+TR      : Get or Set record time"
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
915 915  
916 -AT+AP    : Get or set the APN
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
917 917  
918 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
919 919  
920 -AT+DNSCFG  : Get or Set DNS Server
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
921 921  
922 -AT+GETSENSORVALUE   : Returns the current sensor measurement
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
923 923  
924 -AT+NOUD      : Get or Set the number of data to be uploaded
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
925 925  
926 -AT+CDP     : Read or Clear cached data
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
927 927  
928 -AT+LDDSALARM : Get or Set alarm of distance
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
929 929  
930 930  
931 -(% style="color:#037691" %)**COAP Management**      
1026 +(% style="color:#037691" %)**LoRa Network Management**
932 932  
933 -AT+URI            : Resource parameters
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
934 934  
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
935 935  
936 -(% style="color:#037691" %)**UDP Management**
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
937 937  
938 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
939 939  
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
940 940  
941 -(% style="color:#037691" %)**MQTT Management**
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
942 942  
943 -AT+CLIENT               : Get or Set MQTT client
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
944 944  
945 -AT+UNAME  : Get or Set MQTT Username
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
946 946  
947 -AT+PWD                  : Get or Set MQTT password
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
948 948  
949 -AT+PUBTOPIC  : Get or Set MQTT publish topic
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
950 950  
951 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
952 952  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
953 953  
954 -(% style="color:#037691" %)**Information**          
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
955 955  
956 -AT+FDR  : Factory Data Reset
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
957 957  
958 -AT+PWORD  : Serial Access Password
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
959 959  
960 960  
1059 +(% style="color:#037691" %)**Information** 
961 961  
962 -= ​5.  FAQ =
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
963 963  
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
964 964  
965 -== 5.1 How to Upgrade Firmware ==
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
966 966  
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
967 967  
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
968 968  (((
969 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
970 970  )))
971 971  
972 972  (((
973 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
974 974  )))
975 975  
976 976  (((
977 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
978 978  )))
979 979  
1093 +(((
1094 +
1095 +)))
980 980  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
981 981  
982 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
983 983  
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
984 984  
985 -== 6.1  ​Connection problem when uploading firmware ==
1109 +[[image:image-20220606154726-3.png]]
986 986  
987 987  
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
988 988  (((
989 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
990 990  )))
991 991  
992 -(% class="wikigeneratedid" %)
993 993  (((
994 994  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 995  )))
996 996  
1137 +(((
1138 +
1139 +)))
997 997  
998 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
999 999  
1145 +[[image:image-20220606154825-4.png]]
1000 1000  
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
1001 1001  (((
1002 1002  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
1003 1003  
1004 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1005 1005  )))
1006 1006  
1007 1007  
1008 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
1009 1009  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1010 1010  
1011 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
1012 1012  
1013 1013  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
1014 1014  (% class="wikigeneratedid" %)
1015 1015  (((
1016 1016  
1017 1017  )))
1018 1018  
1019 -= 8.  Packing Info =
1215 += 7. Packing Info =
1020 1020  
1021 1021  (((
1022 1022  
1023 1023  
1024 1024  (% style="color:#037691" %)**Package Includes**:
1221 +)))
1025 1025  
1026 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1027 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1028 1028  )))
1029 1029  
1030 1030  (((
1031 1031  
1032 1032  
1033 -
1034 1034  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
1035 1035  
1036 -* Device Size: 13.0 x 5 x 4.5 cm
1037 -* Device Weight: 150g
1038 -* Package Size / pcs : 15 x 12x 5.5 cm
1039 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
1040 1040  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
1041 1041  
1042 -(((
1043 1043  
1044 -
1045 -
1046 -
1047 1047  )))
1048 1048  
1049 -= 9.  Support =
1248 += 8. Support =
1050 1050  
1051 -
1052 1052  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1053 1053  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content