Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 104.4
edited by Xiaoling
on 2022/09/09 11:53
Change comment: There is no comment for this version
To version 56.1
edited by Xiaoling
on 2022/07/08 11:17
Change comment: Uploaded new attachment "1657250255956-604.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,73 +1,61 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
... ... @@ -88,119 +88,91 @@
88 88  * - B20 @H-FDD: 800MHz
89 89  * - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
103 103  
86 +
104 104  == ​1.4  Applications ==
105 105  
106 -
107 -* Smart Buildings & Home Automation
108 -* Logistics and Supply Chain Management
109 -* Smart Metering
110 110  * Smart Agriculture
111 -* Smart Cities
112 -* Smart Factory
113 113  
114 114  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
115 115  ​
116 116  
117 -
118 -
119 -
120 120  == 1.5  Pin Definitions ==
121 121  
122 122  
123 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
124 124  
125 125  
126 126  
127 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
128 128  
129 -
130 130  == 2.1  How it works ==
131 131  
132 132  
133 133  (((
134 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
135 135  )))
136 136  
137 137  
138 138  (((
139 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
140 140  )))
141 141  
142 -(((
143 -
144 -)))
115 +[[image:image-20220708101605-2.png]]
145 145  
146 -[[image:1657328659945-416.png]]
147 -
148 148  (((
149 149  
150 150  )))
151 151  
152 152  
153 -== 2.2 ​ Configure the NDDS75 ==
154 154  
123 +== 2.2 ​ Configure the NSE01 ==
155 155  
125 +
156 156  === 2.2.1 Test Requirement ===
157 157  
158 158  
159 -(((
160 -To use NDDS75 in your city, make sure meet below requirements:
161 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
162 162  
163 163  * Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
165 165  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
167 167  (((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
169 169  )))
170 170  
171 171  
172 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
173 173  
174 174  
175 175  
176 176  === 2.2.2 Insert SIM card ===
177 177  
178 -
179 -(((
180 180  Insert the NB-IoT Card get from your provider.
181 -)))
182 182  
183 -(((
184 184  User need to take out the NB-IoT module and insert the SIM card like below:
185 -)))
186 186  
187 187  
188 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
189 189  
190 190  
191 191  
192 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
193 193  
194 -
195 195  (((
196 196  (((
197 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
198 198  )))
199 199  )))
200 200  
201 -[[image:image-20220709092052-2.png]]
202 202  
203 -
204 204  **Connection:**
205 205  
206 206   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -212,99 +212,87 @@
212 212  
213 213  In the PC, use below serial tool settings:
214 214  
215 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
216 216  * Data bits:** (% style="color:green" %)8(%%)**
217 217  * Stop bits: (% style="color:green" %)**1**
218 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
219 219  * Flow Control: (% style="color:green" %)**None**
220 220  
221 221  (((
222 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
223 223  )))
224 224  
225 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
226 226  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
227 227  
228 -(((
229 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
230 -)))
231 231  
232 232  
233 -
234 234  === 2.2.4 Use CoAP protocol to uplink data ===
235 235  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
236 236  
237 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
238 238  
239 -
240 -(((
241 241  **Use below commands:**
242 -)))
243 243  
244 -* (((
245 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
246 -)))
247 -* (((
248 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
249 -)))
250 -* (((
251 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
252 252  
253 253  
254 -
255 -)))
256 256  
257 -(((
258 258  For parameter description, please refer to AT command set
259 259  
260 -
261 -)))
206 +[[image:1657249793983-486.png]]
262 262  
263 -[[image:1657330452568-615.png]]
264 264  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
265 265  
211 +[[image:1657249831934-534.png]]
266 266  
267 -(((
268 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
269 269  
270 -
271 -)))
272 272  
273 -[[image:1657330472797-498.png]]
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
274 274  
217 +This feature is supported since firmware version v1.0.1
275 275  
276 276  
277 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
278 278  
279 279  
280 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
282 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
283 283  
284 -[[image:1657330501006-241.png]]
226 +[[image:1657249864775-321.png]]
285 285  
286 286  
287 -[[image:1657330533775-472.png]]
288 288  
230 +[[image:1657249930215-289.png]]
289 289  
290 290  
233 +
291 291  === 2.2.6 Use MQTT protocol to uplink data ===
292 292  
236 +This feature is supported since firmware version v110
293 293  
294 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
295 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
296 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
297 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
298 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
299 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
300 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
301 301  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
302 302  [[image:1657249978444-674.png]]
303 303  
304 304  
305 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
306 306  
307 307  
255 +
308 308  (((
309 309  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
310 310  )))
... ... @@ -314,516 +314,666 @@
314 314  === 2.2.7 Use TCP protocol to uplink data ===
315 315  
316 316  
317 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +This feature is supported since firmware version v110
266 +
267 +
268 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
318 318  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
319 319  
320 -[[image:image-20220709093918-1.png]]
271 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
321 321  
322 322  
323 -[[image:image-20220709093918-2.png]]
324 324  
275 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
325 325  
326 326  
327 327  === 2.2.8 Change Update Interval ===
328 328  
329 -
330 330  User can use below command to change the (% style="color:green" %)**uplink interval**.
331 331  
332 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 +**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
333 333  
334 -(((
335 -
336 336  
337 -
338 338  (% style="color:red" %)**NOTE:**
339 339  
340 -(% style="color:red" %)**1: By default, the device will send an uplink message every 1 hour.**
287 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
341 341  
342 -(% style="color:red" %)**2: When the firmware version is v1.3.2 and later firmware:**
343 -)))
344 344  
345 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
346 346  
347 347  
348 348  
349 -== 2.3  Uplink Payload ==
350 350  
351 351  
352 -=== 2.3.1  Before Firmware 1.3.2 ===
295 +== 2.3 Uplink Payload ==
353 353  
354 354  
355 -In this mode, uplink payload includes in total 14 bytes
298 +=== 2.3.1 MOD~=0(Default Mode) ===
356 356  
357 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
358 -|=(% style="width: 60px;" %)(((
359 -**Size(bytes)**
360 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
361 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
300 +LSE01 will uplink payload via LoRaWAN with below payload format: 
362 362  
363 363  (((
364 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
303 +Uplink payload includes in total 11 bytes.
365 365  )))
366 366  
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
307 +|(((
308 +**Size**
367 367  
368 -[[image:1657331036973-987.png]]
310 +**(bytes)**
311 +)))|**2**|**2**|**2**|**2**|**2**|**1**
312 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
313 +Temperature
369 369  
315 +(Reserve, Ignore now)
316 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
317 +MOD & Digital Interrupt
370 370  
371 -(((
372 -The payload is **ASCII** string, representative same HEX:
319 +(Optional)
373 373  )))
374 374  
375 -(((
376 -0x72403155615900640c6c19029200 where:
377 -)))
322 +=== 2.3.2 MOD~=1(Original value) ===
378 378  
379 -* (((
380 -Device ID: 0x724031556159 = 724031556159
381 -)))
382 -* (((
383 -Version:  0x0064=100=1.0.0
384 -)))
324 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
385 385  
386 -* (((
387 -BAT:  0x0c6c = 3180 mV = 3.180V
388 -)))
389 -* (((
390 -Signal: 0x19 = 25
391 -)))
392 -* (((
393 -Distance: 0x0292= 658 mm
394 -)))
395 -* (((
396 -Interrupt: 0x00 = 0
326 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
327 +|(((
328 +**Size**
397 397  
330 +**(bytes)**
331 +)))|**2**|**2**|**2**|**2**|**2**|**1**
332 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
333 +Temperature
398 398  
335 +(Reserve, Ignore now)
336 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
337 +MOD & Digital Interrupt
399 399  
339 +(Optional)
340 +)))
400 400  
401 -
342 +=== 2.3.3 Battery Info ===
343 +
344 +(((
345 +Check the battery voltage for LSE01.
402 402  )))
403 403  
404 -=== **2.3.2  Since firmware v1.3.2** ===
348 +(((
349 +Ex1: 0x0B45 = 2885mV
350 +)))
405 405  
352 +(((
353 +Ex2: 0x0B49 = 2889mV
354 +)))
406 406  
407 -In this mode, uplink payload includes 69 bytes in total by default.
408 408  
409 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
410 410  
411 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
412 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
413 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
358 +=== 2.3.4 Soil Moisture ===
414 414  
415 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
360 +(((
361 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
362 +)))
416 416  
417 -[[image:image-20220908175246-1.png]]
364 +(((
365 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
366 +)))
418 418  
368 +(((
369 +
370 +)))
419 419  
420 -The payload is ASCII string, representative same HEX:
372 +(((
373 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
374 +)))
421 421  
422 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
423 423  
424 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
425 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
426 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
427 -* (% style="color:blue" %)Singal: 0x1e = 30
428 -* (% style="color:red" %)Mod: 0x01 = 1
429 -* Interrupt: 0x00= 0
430 -* Distance: 0x0039= 57 = 57
431 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
432 -* Distance,Time stamp : 00396319baf0
433 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
434 434  
378 +=== 2.3.5 Soil Temperature ===
435 435  
380 +(((
381 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
382 +)))
436 436  
384 +(((
385 +**Example**:
386 +)))
437 437  
388 +(((
389 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
390 +)))
438 438  
439 -== 2.4  Payload Explanation and Sensor Interface ==
392 +(((
393 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
394 +)))
440 440  
441 441  
442 -=== 2.4.1  Device ID ===
443 443  
398 +=== 2.3.6 Soil Conductivity (EC) ===
444 444  
445 445  (((
446 -By default, the Device ID equal to the last 6 bytes of IMEI.
401 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
447 447  )))
448 448  
449 449  (((
450 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
451 -
452 -
405 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
453 453  )))
454 454  
455 455  (((
456 -(% style="color:blue" %)**Example :**
409 +Generally, the EC value of irrigation water is less than 800uS / cm.
457 457  )))
458 458  
459 459  (((
460 -AT+DEUI=A84041F15612
413 +
461 461  )))
462 462  
463 463  (((
464 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
417 +
465 465  )))
466 466  
420 +=== 2.3.7 MOD ===
467 467  
468 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
422 +Firmware version at least v2.1 supports changing mode.
469 469  
470 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
424 +For example, bytes[10]=90
471 471  
472 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
426 +mod=(bytes[10]>>7)&0x01=1.
473 473  
474 474  
475 -(% style="color:blue" %)**Example :**
429 +**Downlink Command:**
476 476  
477 -AT+DEUI=868411056754138
431 +If payload = 0x0A00, workmode=0
478 478  
433 +If** **payload =** **0x0A01, workmode=1
479 479  
480 480  
481 -=== 2.4.2  Version Info ===
482 482  
437 +=== 2.3.8 ​Decode payload in The Things Network ===
483 483  
439 +While using TTN network, you can add the payload format to decode the payload.
440 +
441 +
442 +[[image:1654505570700-128.png]]
443 +
484 484  (((
485 -Specify the software version: 0x64=100, means firmware version 1.00.
445 +The payload decoder function for TTN is here:
486 486  )))
487 487  
488 488  (((
489 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
449 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
490 490  )))
491 491  
492 492  
453 +== 2.4 Uplink Interval ==
493 493  
494 -=== 2.4.3  Battery Info ===
455 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
495 495  
496 496  
497 -(((
498 -Ex1: 0x0B45 = 2885mV
499 -)))
500 500  
501 -(((
502 -Ex2: 0x0B49 = 2889mV
503 -)))
459 +== 2.5 Downlink Payload ==
504 504  
461 +By default, LSE50 prints the downlink payload to console port.
505 505  
463 +[[image:image-20220606165544-8.png]]
506 506  
507 -=== 2.4.4  Signal Strength ===
508 508  
509 -
510 510  (((
511 -NB-IoT Network signal Strength.
467 +(% style="color:blue" %)**Examples:**
512 512  )))
513 513  
514 514  (((
515 -**Ex1: 0x1d = 29**
471 +
516 516  )))
517 517  
474 +* (((
475 +(% style="color:blue" %)**Set TDC**
476 +)))
477 +
518 518  (((
519 -(% style="color:blue" %)**0**(%%)  -113dBm or less
479 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
520 520  )))
521 521  
522 522  (((
523 -(% style="color:blue" %)**1**(%%)  -111dBm
483 +Payload:    01 00 00 1E    TDC=30S
524 524  )))
525 525  
526 526  (((
527 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
487 +Payload:    01 00 00 3C    TDC=60S
528 528  )))
529 529  
530 530  (((
531 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
491 +
532 532  )))
533 533  
494 +* (((
495 +(% style="color:blue" %)**Reset**
496 +)))
497 +
534 534  (((
535 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
499 +If payload = 0x04FF, it will reset the LSE01
536 536  )))
537 537  
538 538  
503 +* (% style="color:blue" %)**CFM**
539 539  
540 -=== 2.4.5  Distance ===
505 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
541 541  
542 542  
543 -Get the distance. Flat object range 280mm - 7500mm.
544 544  
509 +== 2.6 ​Show Data in DataCake IoT Server ==
510 +
545 545  (((
546 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
512 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
547 547  )))
548 548  
549 549  (((
550 -(((
551 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
516 +
552 552  )))
553 -)))
554 554  
555 555  (((
556 -
520 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
557 557  )))
558 558  
559 559  (((
560 -
524 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
561 561  )))
562 562  
563 -=== 2.4.6  Digital Interrupt ===
564 564  
528 +[[image:1654505857935-743.png]]
565 565  
566 -(((
567 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
568 -)))
569 569  
570 -(((
571 -The command is:
572 -)))
531 +[[image:1654505874829-548.png]]
573 573  
574 -(((
575 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
576 -)))
577 577  
534 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
578 578  
579 -(((
580 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
581 -)))
536 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
582 582  
583 583  
584 -(((
585 -Example:
586 -)))
539 +[[image:1654505905236-553.png]]
587 587  
588 -(((
589 -0x(00): Normal uplink packet.
590 -)))
591 591  
592 -(((
593 -0x(01): Interrupt Uplink Packet.
594 -)))
542 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
595 595  
544 +[[image:1654505925508-181.png]]
596 596  
597 597  
598 -=== 2.4.7  ​+5V Output ===
599 599  
548 +== 2.7 Frequency Plans ==
600 600  
601 -(((
602 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
603 -)))
550 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
604 604  
605 605  
606 -(((
607 -The 5V output time can be controlled by AT Command.
553 +=== 2.7.1 EU863-870 (EU868) ===
608 608  
609 -
610 -)))
555 +(% style="color:#037691" %)** Uplink:**
611 611  
612 -(((
613 -(% style="color:blue" %)**AT+5VT=1000**
557 +868.1 - SF7BW125 to SF12BW125
614 614  
615 -
616 -)))
559 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
617 617  
618 -(((
619 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
620 -)))
561 +868.5 - SF7BW125 to SF12BW125
621 621  
563 +867.1 - SF7BW125 to SF12BW125
622 622  
565 +867.3 - SF7BW125 to SF12BW125
623 623  
624 -== 2.5  Downlink Payload ==
567 +867.5 - SF7BW125 to SF12BW125
625 625  
569 +867.7 - SF7BW125 to SF12BW125
626 626  
627 -By default, NDDS75 prints the downlink payload to console port.
571 +867.9 - SF7BW125 to SF12BW125
628 628  
629 -[[image:image-20220709100028-1.png]]
573 +868.8 - FSK
630 630  
631 631  
632 -(((
633 -(% style="color:blue" %)**Examples:**
634 -)))
576 +(% style="color:#037691" %)** Downlink:**
635 635  
636 -(((
637 -
638 -)))
578 +Uplink channels 1-9 (RX1)
639 639  
640 -* (((
641 -(% style="color:blue" %)**Set TDC**
642 -)))
580 +869.525 - SF9BW125 (RX2 downlink only)
643 643  
644 -(((
645 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
646 -)))
647 647  
648 -(((
649 -Payload:    01 00 00 1E    TDC=30S
650 -)))
651 651  
652 -(((
653 -Payload:    01 00 00 3C    TDC=60S
654 -)))
584 +=== 2.7.2 US902-928(US915) ===
655 655  
656 -(((
657 -
658 -)))
586 +Used in USA, Canada and South America. Default use CHE=2
659 659  
660 -* (((
661 -(% style="color:blue" %)**Reset**
662 -)))
588 +(% style="color:#037691" %)**Uplink:**
663 663  
664 -(((
665 -If payload = 0x04FF, it will reset the NDDS75
666 -)))
590 +903.9 - SF7BW125 to SF10BW125
667 667  
592 +904.1 - SF7BW125 to SF10BW125
668 668  
669 -* (% style="color:blue" %)**INTMOD**
594 +904.3 - SF7BW125 to SF10BW125
670 670  
671 -(((
672 -Downlink Payload: 06000003, Set AT+INTMOD=3
673 -)))
596 +904.5 - SF7BW125 to SF10BW125
674 674  
598 +904.7 - SF7BW125 to SF10BW125
675 675  
600 +904.9 - SF7BW125 to SF10BW125
676 676  
677 -== 2. Distance alarm function(Since firmware v1.3.2) ==
602 +905.1 - SF7BW125 to SF10BW125
678 678  
604 +905.3 - SF7BW125 to SF10BW125
679 679  
680 -(% style="color:blue" %)** ➢ AT Command:**
681 681  
682 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
607 +(% style="color:#037691" %)**Downlink:**
683 683  
684 -² When min=0, and max≠0, Alarm higher than max
609 +923.3 - SF7BW500 to SF12BW500
685 685  
686 -² When min≠0, and max=0, Alarm lower than min
611 +923.9 - SF7BW500 to SF12BW500
687 687  
688 -² When min≠0 and max≠0, Alarm higher than max or lower than min
613 +924.5 - SF7BW500 to SF12BW500
689 689  
615 +925.1 - SF7BW500 to SF12BW500
690 690  
691 -(% style="color:blue" %)** Example:**
617 +925.7 - SF7BW500 to SF12BW500
692 692  
693 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
619 +926.3 - SF7BW500 to SF12BW500
694 694  
621 +926.9 - SF7BW500 to SF12BW500
695 695  
623 +927.5 - SF7BW500 to SF12BW500
696 696  
697 -== 2. Set the number of data to be uploaded and the recording time ==
625 +923.3 - SF12BW500(RX2 downlink only)
698 698  
699 699  
700 -(% style="color:blue" %)** ➢ AT Command:**
701 701  
702 -(% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
629 +=== 2.7.3 CN470-510 (CN470) ===
703 703  
704 -(% style="color:#037691" %)** AT+NOUD=8** (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
631 +Used in China, Default use CHE=1
705 705  
633 +(% style="color:#037691" %)**Uplink:**
706 706  
635 +486.3 - SF7BW125 to SF12BW125
707 707  
708 -== 2.8  Read or Clear cached data ==
637 +486.5 - SF7BW125 to SF12BW125
709 709  
639 +486.7 - SF7BW125 to SF12BW125
710 710  
711 -(% style="color:blue" %)** ➢ AT Command:**
641 +486.9 - SF7BW125 to SF12BW125
712 712  
713 -(% style="color:#037691" %)** AT+CDP ** (%%) ~/~/ Read cached data
643 +487.1 - SF7BW125 to SF12BW125
714 714  
645 +487.3 - SF7BW125 to SF12BW125
715 715  
716 -[[image:image-20220908175333-2.png]]
647 +487.5 - SF7BW125 to SF12BW125
717 717  
649 +487.7 - SF7BW125 to SF12BW125
718 718  
719 -(% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/ Clear cached data
720 720  
652 +(% style="color:#037691" %)**Downlink:**
721 721  
654 +506.7 - SF7BW125 to SF12BW125
722 722  
723 -== 2.9  ​LED Indicator ==
656 +506.9 - SF7BW125 to SF12BW125
724 724  
658 +507.1 - SF7BW125 to SF12BW125
725 725  
726 -The NDDS75 has an internal LED which is to show the status of different state.
660 +507.3 - SF7BW125 to SF12BW125
727 727  
662 +507.5 - SF7BW125 to SF12BW125
728 728  
729 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
730 -* Then the LED will be on for 1 second means device is boot normally.
731 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
732 -* For each uplink probe, LED will be on for 500ms.
664 +507.7 - SF7BW125 to SF12BW125
733 733  
734 -(((
735 -
736 -)))
666 +507.9 - SF7BW125 to SF12BW125
737 737  
668 +508.1 - SF7BW125 to SF12BW125
738 738  
670 +505.3 - SF12BW125 (RX2 downlink only)
739 739  
740 -== 2.10  ​Firmware Change Log ==
741 741  
742 742  
743 -(((
744 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
745 -)))
674 +=== 2.7.4 AU915-928(AU915) ===
746 746  
747 -(((
748 -
749 -)))
676 +Default use CHE=2
750 750  
751 -(((
752 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
753 -)))
678 +(% style="color:#037691" %)**Uplink:**
754 754  
680 +916.8 - SF7BW125 to SF12BW125
755 755  
682 +917.0 - SF7BW125 to SF12BW125
756 756  
757 -== 2.1 Battery Analysis ==
684 +917.2 - SF7BW125 to SF12BW125
758 758  
686 +917.4 - SF7BW125 to SF12BW125
759 759  
760 -=== 2.11. Battery Type ===
688 +917.6 - SF7BW125 to SF12BW125
761 761  
690 +917.8 - SF7BW125 to SF12BW125
762 762  
692 +918.0 - SF7BW125 to SF12BW125
693 +
694 +918.2 - SF7BW125 to SF12BW125
695 +
696 +
697 +(% style="color:#037691" %)**Downlink:**
698 +
699 +923.3 - SF7BW500 to SF12BW500
700 +
701 +923.9 - SF7BW500 to SF12BW500
702 +
703 +924.5 - SF7BW500 to SF12BW500
704 +
705 +925.1 - SF7BW500 to SF12BW500
706 +
707 +925.7 - SF7BW500 to SF12BW500
708 +
709 +926.3 - SF7BW500 to SF12BW500
710 +
711 +926.9 - SF7BW500 to SF12BW500
712 +
713 +927.5 - SF7BW500 to SF12BW500
714 +
715 +923.3 - SF12BW500(RX2 downlink only)
716 +
717 +
718 +
719 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
720 +
721 +(% style="color:#037691" %)**Default Uplink channel:**
722 +
723 +923.2 - SF7BW125 to SF10BW125
724 +
725 +923.4 - SF7BW125 to SF10BW125
726 +
727 +
728 +(% style="color:#037691" %)**Additional Uplink Channel**:
729 +
730 +(OTAA mode, channel added by JoinAccept message)
731 +
732 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
733 +
734 +922.2 - SF7BW125 to SF10BW125
735 +
736 +922.4 - SF7BW125 to SF10BW125
737 +
738 +922.6 - SF7BW125 to SF10BW125
739 +
740 +922.8 - SF7BW125 to SF10BW125
741 +
742 +923.0 - SF7BW125 to SF10BW125
743 +
744 +922.0 - SF7BW125 to SF10BW125
745 +
746 +
747 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
748 +
749 +923.6 - SF7BW125 to SF10BW125
750 +
751 +923.8 - SF7BW125 to SF10BW125
752 +
753 +924.0 - SF7BW125 to SF10BW125
754 +
755 +924.2 - SF7BW125 to SF10BW125
756 +
757 +924.4 - SF7BW125 to SF10BW125
758 +
759 +924.6 - SF7BW125 to SF10BW125
760 +
761 +
762 +(% style="color:#037691" %)** Downlink:**
763 +
764 +Uplink channels 1-8 (RX1)
765 +
766 +923.2 - SF10BW125 (RX2)
767 +
768 +
769 +
770 +=== 2.7.6 KR920-923 (KR920) ===
771 +
772 +Default channel:
773 +
774 +922.1 - SF7BW125 to SF12BW125
775 +
776 +922.3 - SF7BW125 to SF12BW125
777 +
778 +922.5 - SF7BW125 to SF12BW125
779 +
780 +
781 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
782 +
783 +922.1 - SF7BW125 to SF12BW125
784 +
785 +922.3 - SF7BW125 to SF12BW125
786 +
787 +922.5 - SF7BW125 to SF12BW125
788 +
789 +922.7 - SF7BW125 to SF12BW125
790 +
791 +922.9 - SF7BW125 to SF12BW125
792 +
793 +923.1 - SF7BW125 to SF12BW125
794 +
795 +923.3 - SF7BW125 to SF12BW125
796 +
797 +
798 +(% style="color:#037691" %)**Downlink:**
799 +
800 +Uplink channels 1-7(RX1)
801 +
802 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
803 +
804 +
805 +
806 +=== 2.7.7 IN865-867 (IN865) ===
807 +
808 +(% style="color:#037691" %)** Uplink:**
809 +
810 +865.0625 - SF7BW125 to SF12BW125
811 +
812 +865.4025 - SF7BW125 to SF12BW125
813 +
814 +865.9850 - SF7BW125 to SF12BW125
815 +
816 +
817 +(% style="color:#037691" %) **Downlink:**
818 +
819 +Uplink channels 1-3 (RX1)
820 +
821 +866.550 - SF10BW125 (RX2)
822 +
823 +
824 +
825 +
826 +== 2.8 LED Indicator ==
827 +
828 +The LSE01 has an internal LED which is to show the status of different state.
829 +
830 +* Blink once when device power on.
831 +* Solid ON for 5 seconds once device successful Join the network.
832 +* Blink once when device transmit a packet.
833 +
834 +== 2.9 Installation in Soil ==
835 +
836 +**Measurement the soil surface**
837 +
838 +
839 +[[image:1654506634463-199.png]] ​
840 +
763 763  (((
764 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
842 +(((
843 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
765 765  )))
845 +)))
766 766  
847 +
848 +
849 +[[image:1654506665940-119.png]]
850 +
767 767  (((
768 -The battery is designed to last for several years depends on the actually use environment and update interval. 
852 +Dig a hole with diameter > 20CM.
769 769  )))
770 770  
771 771  (((
772 -The battery related documents as below:
856 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
773 773  )))
774 774  
775 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
776 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
777 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
778 778  
860 +== 2.10 ​Firmware Change Log ==
861 +
779 779  (((
780 -[[image:image-20220709101450-2.png]]
863 +**Firmware download link:**
781 781  )))
782 782  
866 +(((
867 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
868 +)))
783 783  
870 +(((
871 +
872 +)))
784 784  
785 -=== 2.11.2  Power consumption Analyze ===
874 +(((
875 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
876 +)))
786 786  
878 +(((
879 +
880 +)))
787 787  
788 788  (((
789 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
883 +**V1.0.**
790 790  )))
791 791  
886 +(((
887 +Release
888 +)))
792 792  
890 +
891 +== 2.11 ​Battery Analysis ==
892 +
893 +=== 2.11.1 ​Battery Type ===
894 +
793 793  (((
794 -Instruction to use as below:
896 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
795 795  )))
796 796  
797 797  (((
798 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
900 +The battery is designed to last for more than 5 years for the LSN50.
799 799  )))
800 800  
801 -
802 802  (((
803 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
904 +(((
905 +The battery-related documents are as below:
804 804  )))
907 +)))
805 805  
806 806  * (((
807 -Product Model
910 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
808 808  )))
809 809  * (((
810 -Uplink Interval
913 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
811 811  )))
812 812  * (((
813 -Working Mode
916 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
814 814  )))
815 815  
816 -(((
817 -And the Life expectation in difference case will be shown on the right.
818 -)))
919 + [[image:image-20220610172436-1.png]]
819 819  
820 -[[image:image-20220709110451-3.png]]
821 821  
822 822  
923 +=== 2.11.2 ​Battery Note ===
823 823  
824 -=== 2.11.3  ​Battery Note ===
825 -
826 -
827 827  (((
828 828  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
829 829  )))
... ... @@ -830,217 +830,326 @@
830 830  
831 831  
832 832  
833 -=== 2.11. Replace the battery ===
931 +=== 2.11.3 Replace the battery ===
834 834  
933 +(((
934 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
935 +)))
835 835  
836 836  (((
837 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
938 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
838 838  )))
839 839  
941 +(((
942 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
943 +)))
840 840  
841 841  
842 -= 3. ​ Access NB-IoT Module =
843 843  
947 += 3. ​Using the AT Commands =
844 844  
845 -(((
846 -Users can directly access the AT command set of the NB-IoT module.
847 -)))
949 +== 3.1 Access AT Commands ==
848 848  
849 -(((
850 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
851 851  
852 -
853 -)))
952 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
854 854  
855 -[[image:1657333200519-600.png]]
954 +[[image:1654501986557-872.png||height="391" width="800"]]
856 856  
857 857  
957 +Or if you have below board, use below connection:
858 858  
859 -= 4.  Using the AT Commands =
860 860  
960 +[[image:1654502005655-729.png||height="503" width="801"]]
861 861  
862 -== 4.1  Access AT Commands ==
863 863  
864 864  
865 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
964 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
866 866  
867 867  
868 -AT+<CMD>?  : Help on <CMD>
967 + [[image:1654502050864-459.png||height="564" width="806"]]
869 869  
870 -AT+<CMD>         : Run <CMD>
871 871  
872 -AT+<CMD>=<value> : Set the value
970 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
873 873  
874 -AT+<CMD>=?  : Get the value
875 875  
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
876 876  
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
978 +
979 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
980 +
981 +
877 877  (% style="color:#037691" %)**General Commands**(%%)      
878 878  
879 -AT  : Attention       
984 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
880 880  
881 -AT?  : Short Help     
986 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
882 882  
883 -ATZ  : MCU Reset    
988 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
884 884  
885 -AT+TDC  : Application Data Transmission Interval
990 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
886 886  
887 -AT+CFG  : Print all configurations
888 888  
889 -AT+CFGMOD           : Working mode selection
993 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
890 890  
891 -AT+INTMOD            : Set the trigger interrupt mode
995 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
892 892  
893 -AT+5VT  : Set extend the time of 5V power  
997 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
894 894  
895 -AT+PRO  : Choose agreement
999 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
896 896  
897 -AT+WEIGRE  : Get weight or set weight to 0
1001 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
898 898  
899 -AT+WEIGAP  : Get or Set the GapValue of weight
1003 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
900 900  
901 -AT+RXDL  : Extend the sending and receiving time
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
902 902  
903 -AT+CNTFAC  : Get or set counting parameters
1007 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
904 904  
905 -AT+SERVADDR  : Server Address
1009 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
906 906  
907 -AT+TR      : Get or Set record time"
1011 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
908 908  
909 -AT+AP    : Get or set the APN
1013 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
910 910  
911 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
1015 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
912 912  
913 -AT+DNSCFG  : Get or Set DNS Server
1017 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
914 914  
915 -AT+GETSENSORVALUE   : Returns the current sensor measurement
1019 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
916 916  
917 -AT+NOUD      : Get or Set the number of data to be uploaded
1021 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
918 918  
919 -AT+CDP     : Read or Clear cached data
1023 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
920 920  
921 -AT+LDDSALARM : Get or Set alarm of distance
1025 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
922 922  
923 923  
924 -(% style="color:#037691" %)**COAP Management**      
1028 +(% style="color:#037691" %)**LoRa Network Management**
925 925  
926 -AT+URI            : Resource parameters
1030 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
927 927  
1032 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
928 928  
929 -(% style="color:#037691" %)**UDP Management**
1034 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
930 930  
931 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1036 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
932 932  
1038 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
933 933  
934 -(% style="color:#037691" %)**MQTT Management**
1040 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
935 935  
936 -AT+CLIENT               : Get or Set MQTT client
1042 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
937 937  
938 -AT+UNAME  : Get or Set MQTT Username
1044 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
939 939  
940 -AT+PWD                  : Get or Set MQTT password
1046 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
941 941  
942 -AT+PUBTOPIC  : Get or Set MQTT publish topic
1048 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
943 943  
944 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
945 945  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
946 946  
947 -(% style="color:#037691" %)**Information**          
1054 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
948 948  
949 -AT+FDR  : Factory Data Reset
1056 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
950 950  
951 -AT+PWORD  : Serial Access Password
1058 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
952 952  
953 953  
1061 +(% style="color:#037691" %)**Information** 
954 954  
955 -= ​5.  FAQ =
1063 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
956 956  
1065 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
957 957  
958 -== 5.1 How to Upgrade Firmware ==
1067 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
959 959  
1069 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
960 960  
1071 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1072 +
1073 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1074 +
1075 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1076 +
1077 +
1078 += ​4. FAQ =
1079 +
1080 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1081 +
961 961  (((
962 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1083 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1084 +When downloading the images, choose the required image file for download. ​
963 963  )))
964 964  
965 965  (((
966 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1088 +
967 967  )))
968 968  
969 969  (((
970 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1092 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
971 971  )))
972 972  
1095 +(((
1096 +
1097 +)))
973 973  
1099 +(((
1100 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1101 +)))
974 974  
975 -= 6.  Trouble Shooting =
1103 +(((
1104 +
1105 +)))
976 976  
1107 +(((
1108 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1109 +)))
977 977  
978 -== 6.1  ​Connection problem when uploading firmware ==
1111 +[[image:image-20220606154726-3.png]]
979 979  
980 980  
1114 +When you use the TTN network, the US915 frequency bands use are:
1115 +
1116 +* 903.9 - SF7BW125 to SF10BW125
1117 +* 904.1 - SF7BW125 to SF10BW125
1118 +* 904.3 - SF7BW125 to SF10BW125
1119 +* 904.5 - SF7BW125 to SF10BW125
1120 +* 904.7 - SF7BW125 to SF10BW125
1121 +* 904.9 - SF7BW125 to SF10BW125
1122 +* 905.1 - SF7BW125 to SF10BW125
1123 +* 905.3 - SF7BW125 to SF10BW125
1124 +* 904.6 - SF8BW500
1125 +
981 981  (((
982 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1127 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1128 +
1129 +* (% style="color:#037691" %)**AT+CHE=2**
1130 +* (% style="color:#037691" %)**ATZ**
983 983  )))
984 984  
985 -(% class="wikigeneratedid" %)
986 986  (((
987 987  
1135 +
1136 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
988 988  )))
989 989  
1139 +(((
1140 +
1141 +)))
990 990  
991 -== 6.2  AT Command input doesn't work ==
1143 +(((
1144 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1145 +)))
992 992  
1147 +[[image:image-20220606154825-4.png]]
993 993  
1149 +
1150 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1151 +
1152 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1153 +
1154 +
1155 += 5. Trouble Shooting =
1156 +
1157 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1158 +
1159 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1160 +
1161 +
1162 +== 5.2 AT Command input doesn't work ==
1163 +
994 994  (((
995 995  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1166 +)))
996 996  
997 -
1168 +
1169 +== 5.3 Device rejoin in at the second uplink packet ==
1170 +
1171 +(% style="color:#4f81bd" %)**Issue describe as below:**
1172 +
1173 +[[image:1654500909990-784.png]]
1174 +
1175 +
1176 +(% style="color:#4f81bd" %)**Cause for this issue:**
1177 +
1178 +(((
1179 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
998 998  )))
999 999  
1000 1000  
1001 -= 7. ​ Order Info =
1183 +(% style="color:#4f81bd" %)**Solution: **
1002 1002  
1185 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1003 1003  
1004 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1187 +[[image:1654500929571-736.png||height="458" width="832"]]
1005 1005  
1006 1006  
1190 += 6. ​Order Info =
1191 +
1192 +
1193 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1194 +
1195 +
1196 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1197 +
1198 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1199 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1200 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1201 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1202 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1203 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1204 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1205 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1206 +
1207 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1208 +
1209 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1210 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1211 +
1007 1007  (% class="wikigeneratedid" %)
1008 1008  (((
1009 1009  
1010 1010  )))
1011 1011  
1012 -= 8.  Packing Info =
1217 += 7. Packing Info =
1013 1013  
1014 1014  (((
1015 1015  
1016 1016  
1017 1017  (% style="color:#037691" %)**Package Includes**:
1223 +)))
1018 1018  
1019 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1020 -* External antenna x 1
1225 +* (((
1226 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1021 1021  )))
1022 1022  
1023 1023  (((
1024 1024  
1025 1025  
1026 -
1027 1027  (% style="color:#037691" %)**Dimension and weight**:
1233 +)))
1028 1028  
1029 -* Device Size: 13.0 x 5 x 4.5 cm
1030 -* Device Weight: 150g
1031 -* Package Size / pcs : 15 x 12x 5.5 cm
1032 -* Weight / pcs : 220g
1235 +* (((
1236 +Device Size: cm
1033 1033  )))
1238 +* (((
1239 +Device Weight: g
1240 +)))
1241 +* (((
1242 +Package Size / pcs : cm
1243 +)))
1244 +* (((
1245 +Weight / pcs : g
1034 1034  
1035 -(((
1036 1036  
1037 -
1038 -
1039 -
1040 1040  )))
1041 1041  
1042 -= 9.  Support =
1250 += 8. Support =
1043 1043  
1044 -
1045 1045  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1046 1046  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content