Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 104.3
edited by Xiaoling
on 2022/09/09 11:50
Change comment: There is no comment for this version
To version 57.1
edited by Xiaoling
on 2022/07/08 11:19
Change comment: Uploaded new attachment "image-20220708111918-4.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,73 +1,61 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
... ... @@ -88,119 +88,91 @@
88 88  * - B20 @H-FDD: 800MHz
89 89  * - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
103 103  
86 +
104 104  == ​1.4  Applications ==
105 105  
106 -
107 -* Smart Buildings & Home Automation
108 -* Logistics and Supply Chain Management
109 -* Smart Metering
110 110  * Smart Agriculture
111 -* Smart Cities
112 -* Smart Factory
113 113  
114 114  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
115 115  ​
116 116  
117 -
118 -
119 -
120 120  == 1.5  Pin Definitions ==
121 121  
122 122  
123 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
124 124  
125 125  
126 126  
127 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
128 128  
129 -
130 130  == 2.1  How it works ==
131 131  
132 132  
133 133  (((
134 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
135 135  )))
136 136  
137 137  
138 138  (((
139 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
140 140  )))
141 141  
142 -(((
143 -
144 -)))
115 +[[image:image-20220708101605-2.png]]
145 145  
146 -[[image:1657328659945-416.png]]
147 -
148 148  (((
149 149  
150 150  )))
151 151  
152 152  
153 -== 2.2 ​ Configure the NDDS75 ==
154 154  
123 +== 2.2 ​ Configure the NSE01 ==
155 155  
125 +
156 156  === 2.2.1 Test Requirement ===
157 157  
158 158  
159 -(((
160 -To use NDDS75 in your city, make sure meet below requirements:
161 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
162 162  
163 163  * Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
165 165  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
167 167  (((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
169 169  )))
170 170  
171 171  
172 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
173 173  
174 174  
175 175  
176 176  === 2.2.2 Insert SIM card ===
177 177  
178 -
179 -(((
180 180  Insert the NB-IoT Card get from your provider.
181 -)))
182 182  
183 -(((
184 184  User need to take out the NB-IoT module and insert the SIM card like below:
185 -)))
186 186  
187 187  
188 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
189 189  
190 190  
191 191  
192 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
193 193  
194 -
195 195  (((
196 196  (((
197 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
198 198  )))
199 199  )))
200 200  
201 -[[image:image-20220709092052-2.png]]
202 202  
203 -
204 204  **Connection:**
205 205  
206 206   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -212,99 +212,87 @@
212 212  
213 213  In the PC, use below serial tool settings:
214 214  
215 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
216 216  * Data bits:** (% style="color:green" %)8(%%)**
217 217  * Stop bits: (% style="color:green" %)**1**
218 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
219 219  * Flow Control: (% style="color:green" %)**None**
220 220  
221 221  (((
222 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
223 223  )))
224 224  
225 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
226 226  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
227 227  
228 -(((
229 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
230 -)))
231 231  
232 232  
233 -
234 234  === 2.2.4 Use CoAP protocol to uplink data ===
235 235  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
236 236  
237 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
238 238  
239 -
240 -(((
241 241  **Use below commands:**
242 -)))
243 243  
244 -* (((
245 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
246 -)))
247 -* (((
248 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
249 -)))
250 -* (((
251 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
252 252  
253 253  
254 -
255 -)))
256 256  
257 -(((
258 258  For parameter description, please refer to AT command set
259 259  
260 -
261 -)))
206 +[[image:1657249793983-486.png]]
262 262  
263 -[[image:1657330452568-615.png]]
264 264  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
265 265  
211 +[[image:1657249831934-534.png]]
266 266  
267 -(((
268 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
269 269  
270 -
271 -)))
272 272  
273 -[[image:1657330472797-498.png]]
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
274 274  
217 +This feature is supported since firmware version v1.0.1
275 275  
276 276  
277 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
278 278  
279 279  
280 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
282 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
283 283  
284 -[[image:1657330501006-241.png]]
226 +[[image:1657249864775-321.png]]
285 285  
286 286  
287 -[[image:1657330533775-472.png]]
288 288  
230 +[[image:1657249930215-289.png]]
289 289  
290 290  
233 +
291 291  === 2.2.6 Use MQTT protocol to uplink data ===
292 292  
236 +This feature is supported since firmware version v110
293 293  
294 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
295 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
296 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
297 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
298 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
299 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
300 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
301 301  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
302 302  [[image:1657249978444-674.png]]
303 303  
304 304  
305 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
306 306  
307 307  
255 +
308 308  (((
309 309  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
310 310  )))
... ... @@ -313,514 +313,665 @@
313 313  
314 314  === 2.2.7 Use TCP protocol to uplink data ===
315 315  
264 +This feature is supported since firmware version v110
316 316  
266 +
317 317  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
318 318  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
319 319  
320 -[[image:image-20220709093918-1.png]]
270 +[[image:1657250217799-140.png]]
321 321  
322 322  
323 -[[image:image-20220709093918-2.png]]
273 +[[image:1657250255956-604.png]]
324 324  
325 325  
326 -
327 327  === 2.2.8 Change Update Interval ===
328 328  
329 -
330 330  User can use below command to change the (% style="color:green" %)**uplink interval**.
331 331  
332 332  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
333 333  
282 +
334 334  (((
335 -(% style="color:red" %)**NOTE 1: By default, the device will send an uplink message every 1 hour.**
284 +(% style="color:red" %)**NOTE:**
285 +)))
336 336  
337 -
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
338 338  )))
339 339  
340 -(% style="color:red" %)**NOTE 2: When the firmware version is v1.3.2 and later firmware:**
341 341  
342 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
343 343  
293 +== 2.3 Uplink Payload ==
344 344  
345 345  
346 -== 2.3  Uplink Payload ==
296 +=== 2.3.1 MOD~=0(Default Mode) ===
347 347  
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
348 348  
349 -=== 2.3.1  Before Firmware 1.3.2 ===
300 +(((
301 +Uplink payload includes in total 11 bytes.
302 +)))
350 350  
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
351 351  
352 -In this mode, uplink payload includes in total 14 bytes
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
353 353  
354 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
355 -|=(% style="width: 60px;" %)(((
356 -**Size(bytes)**
357 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
358 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
359 359  
360 -(((
361 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
317 +(Optional)
362 362  )))
363 363  
320 +=== 2.3.2 MOD~=1(Original value) ===
364 364  
365 -[[image:1657331036973-987.png]]
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
366 366  
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
367 367  
368 -(((
369 -The payload is **ASCII** string, representative same HEX:
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
332 +
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
336 +
337 +(Optional)
370 370  )))
371 371  
340 +=== 2.3.3 Battery Info ===
341 +
372 372  (((
373 -0x72403155615900640c6c19029200 where:
343 +Check the battery voltage for LSE01.
374 374  )))
375 375  
376 -* (((
377 -Device ID: 0x724031556159 = 724031556159
346 +(((
347 +Ex1: 0x0B45 = 2885mV
378 378  )))
379 -* (((
380 -Version:  0x0064=100=1.0.0
381 -)))
382 382  
383 -* (((
384 -BAT:  0x0c6c = 3180 mV = 3.180V
350 +(((
351 +Ex2: 0x0B49 = 2889mV
385 385  )))
386 -* (((
387 -Signal: 0x19 = 25
388 -)))
389 -* (((
390 -Distance: 0x0292= 658 mm
391 -)))
392 -* (((
393 -Interrupt: 0x00 = 0
394 394  
395 395  
396 396  
356 +=== 2.3.4 Soil Moisture ===
397 397  
398 -
358 +(((
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
399 399  )))
400 400  
401 -=== **2.3.2  Since firmware v1.3.2** ===
362 +(((
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
364 +)))
402 402  
366 +(((
367 +
368 +)))
403 403  
404 -In this mode, uplink payload includes 69 bytes in total by default.
370 +(((
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
372 +)))
405 405  
406 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
407 407  
408 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
409 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
410 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
411 411  
412 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
376 +=== 2.3.5 Soil Temperature ===
413 413  
414 -[[image:image-20220908175246-1.png]]
378 +(((
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
380 +)))
415 415  
382 +(((
383 +**Example**:
384 +)))
416 416  
417 -The payload is ASCII string, representative same HEX:
386 +(((
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
388 +)))
418 418  
419 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
390 +(((
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
392 +)))
420 420  
421 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
422 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
423 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
424 -* (% style="color:blue" %)Singal: 0x1e = 30
425 -* (% style="color:red" %)Mod: 0x01 = 1
426 -* Interrupt: 0x00= 0
427 -* Distance: 0x0039= 57 = 57
428 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
429 -* Distance,Time stamp : 00396319baf0
430 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
431 431  
432 432  
396 +=== 2.3.6 Soil Conductivity (EC) ===
433 433  
434 -
435 -
436 -== 2.4  Payload Explanation and Sensor Interface ==
437 -
438 -
439 -=== 2.4.1  Device ID ===
440 -
441 -
442 442  (((
443 -By default, the Device ID equal to the last 6 bytes of IMEI.
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
444 444  )))
445 445  
446 446  (((
447 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
448 -
449 -
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
450 450  )))
451 451  
452 452  (((
453 -(% style="color:blue" %)**Example :**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
454 454  )))
455 455  
456 456  (((
457 -AT+DEUI=A84041F15612
411 +
458 458  )))
459 459  
460 460  (((
461 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
415 +
462 462  )))
463 463  
418 +=== 2.3.7 MOD ===
464 464  
465 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
420 +Firmware version at least v2.1 supports changing mode.
466 466  
467 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
422 +For example, bytes[10]=90
468 468  
469 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
424 +mod=(bytes[10]>>7)&0x01=1.
470 470  
471 471  
472 -(% style="color:blue" %)**Example :**
427 +**Downlink Command:**
473 473  
474 -AT+DEUI=868411056754138
429 +If payload = 0x0A00, workmode=0
475 475  
431 +If** **payload =** **0x0A01, workmode=1
476 476  
477 477  
478 -=== 2.4.2  Version Info ===
479 479  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
480 480  
437 +While using TTN network, you can add the payload format to decode the payload.
438 +
439 +
440 +[[image:1654505570700-128.png]]
441 +
481 481  (((
482 -Specify the software version: 0x64=100, means firmware version 1.00.
443 +The payload decoder function for TTN is here:
483 483  )))
484 484  
485 485  (((
486 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
487 487  )))
488 488  
489 489  
451 +== 2.4 Uplink Interval ==
490 490  
491 -=== 2.4.3  Battery Info ===
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
492 492  
493 493  
494 -(((
495 -Ex1: 0x0B45 = 2885mV
496 -)))
497 497  
498 -(((
499 -Ex2: 0x0B49 = 2889mV
500 -)))
457 +== 2.5 Downlink Payload ==
501 501  
459 +By default, LSE50 prints the downlink payload to console port.
502 502  
461 +[[image:image-20220606165544-8.png]]
503 503  
504 -=== 2.4.4  Signal Strength ===
505 505  
506 -
507 507  (((
508 -NB-IoT Network signal Strength.
465 +(% style="color:blue" %)**Examples:**
509 509  )))
510 510  
511 511  (((
512 -**Ex1: 0x1d = 29**
469 +
513 513  )))
514 514  
472 +* (((
473 +(% style="color:blue" %)**Set TDC**
474 +)))
475 +
515 515  (((
516 -(% style="color:blue" %)**0**(%%)  -113dBm or less
477 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
517 517  )))
518 518  
519 519  (((
520 -(% style="color:blue" %)**1**(%%)  -111dBm
481 +Payload:    01 00 00 1E    TDC=30S
521 521  )))
522 522  
523 523  (((
524 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
485 +Payload:    01 00 00 3C    TDC=60S
525 525  )))
526 526  
527 527  (((
528 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
489 +
529 529  )))
530 530  
492 +* (((
493 +(% style="color:blue" %)**Reset**
494 +)))
495 +
531 531  (((
532 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
497 +If payload = 0x04FF, it will reset the LSE01
533 533  )))
534 534  
535 535  
501 +* (% style="color:blue" %)**CFM**
536 536  
537 -=== 2.4.5  Distance ===
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
538 538  
539 539  
540 -Get the distance. Flat object range 280mm - 7500mm.
541 541  
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
542 542  (((
543 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
544 544  )))
545 545  
546 546  (((
547 -(((
548 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
514 +
549 549  )))
550 -)))
551 551  
552 552  (((
553 -
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
554 554  )))
555 555  
556 556  (((
557 -
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
558 558  )))
559 559  
560 -=== 2.4.6  Digital Interrupt ===
561 561  
526 +[[image:1654505857935-743.png]]
562 562  
563 -(((
564 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
565 -)))
566 566  
567 -(((
568 -The command is:
569 -)))
529 +[[image:1654505874829-548.png]]
570 570  
571 -(((
572 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
573 -)))
574 574  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
575 575  
576 -(((
577 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
578 -)))
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
579 579  
580 580  
581 -(((
582 -Example:
583 -)))
537 +[[image:1654505905236-553.png]]
584 584  
585 -(((
586 -0x(00): Normal uplink packet.
587 -)))
588 588  
589 -(((
590 -0x(01): Interrupt Uplink Packet.
591 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
592 592  
542 +[[image:1654505925508-181.png]]
593 593  
594 594  
595 -=== 2.4.7  ​+5V Output ===
596 596  
546 +== 2.7 Frequency Plans ==
597 597  
598 -(((
599 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
600 -)))
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
601 601  
602 602  
603 -(((
604 -The 5V output time can be controlled by AT Command.
551 +=== 2.7.1 EU863-870 (EU868) ===
605 605  
606 -
607 -)))
553 +(% style="color:#037691" %)** Uplink:**
608 608  
609 -(((
610 -(% style="color:blue" %)**AT+5VT=1000**
555 +868.1 - SF7BW125 to SF12BW125
611 611  
612 -
613 -)))
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
614 614  
615 -(((
616 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
617 -)))
559 +868.5 - SF7BW125 to SF12BW125
618 618  
561 +867.1 - SF7BW125 to SF12BW125
619 619  
563 +867.3 - SF7BW125 to SF12BW125
620 620  
621 -== 2.5  Downlink Payload ==
565 +867.5 - SF7BW125 to SF12BW125
622 622  
567 +867.7 - SF7BW125 to SF12BW125
623 623  
624 -By default, NDDS75 prints the downlink payload to console port.
569 +867.9 - SF7BW125 to SF12BW125
625 625  
626 -[[image:image-20220709100028-1.png]]
571 +868.8 - FSK
627 627  
628 628  
629 -(((
630 -(% style="color:blue" %)**Examples:**
631 -)))
574 +(% style="color:#037691" %)** Downlink:**
632 632  
633 -(((
634 -
635 -)))
576 +Uplink channels 1-9 (RX1)
636 636  
637 -* (((
638 -(% style="color:blue" %)**Set TDC**
639 -)))
578 +869.525 - SF9BW125 (RX2 downlink only)
640 640  
641 -(((
642 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
643 -)))
644 644  
645 -(((
646 -Payload:    01 00 00 1E    TDC=30S
647 -)))
648 648  
649 -(((
650 -Payload:    01 00 00 3C    TDC=60S
651 -)))
582 +=== 2.7.2 US902-928(US915) ===
652 652  
653 -(((
654 -
655 -)))
584 +Used in USA, Canada and South America. Default use CHE=2
656 656  
657 -* (((
658 -(% style="color:blue" %)**Reset**
659 -)))
586 +(% style="color:#037691" %)**Uplink:**
660 660  
661 -(((
662 -If payload = 0x04FF, it will reset the NDDS75
663 -)))
588 +903.9 - SF7BW125 to SF10BW125
664 664  
590 +904.1 - SF7BW125 to SF10BW125
665 665  
666 -* (% style="color:blue" %)**INTMOD**
592 +904.3 - SF7BW125 to SF10BW125
667 667  
668 -(((
669 -Downlink Payload: 06000003, Set AT+INTMOD=3
670 -)))
594 +904.5 - SF7BW125 to SF10BW125
671 671  
596 +904.7 - SF7BW125 to SF10BW125
672 672  
598 +904.9 - SF7BW125 to SF10BW125
673 673  
674 -== 2. Distance alarm function(Since firmware v1.3.2) ==
600 +905.1 - SF7BW125 to SF10BW125
675 675  
602 +905.3 - SF7BW125 to SF10BW125
676 676  
677 -(% style="color:blue" %)** ➢ AT Command:**
678 678  
679 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
605 +(% style="color:#037691" %)**Downlink:**
680 680  
681 -² When min=0, and max≠0, Alarm higher than max
607 +923.3 - SF7BW500 to SF12BW500
682 682  
683 -² When min≠0, and max=0, Alarm lower than min
609 +923.9 - SF7BW500 to SF12BW500
684 684  
685 -² When min≠0 and max≠0, Alarm higher than max or lower than min
611 +924.5 - SF7BW500 to SF12BW500
686 686  
613 +925.1 - SF7BW500 to SF12BW500
687 687  
688 -(% style="color:blue" %)** Example:**
615 +925.7 - SF7BW500 to SF12BW500
689 689  
690 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
617 +926.3 - SF7BW500 to SF12BW500
691 691  
619 +926.9 - SF7BW500 to SF12BW500
692 692  
621 +927.5 - SF7BW500 to SF12BW500
693 693  
694 -== 2. Set the number of data to be uploaded and the recording time ==
623 +923.3 - SF12BW500(RX2 downlink only)
695 695  
696 696  
697 -(% style="color:blue" %)** ➢ AT Command:**
698 698  
699 -(% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
627 +=== 2.7.3 CN470-510 (CN470) ===
700 700  
701 -(% style="color:#037691" %)** AT+NOUD=8** (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
629 +Used in China, Default use CHE=1
702 702  
631 +(% style="color:#037691" %)**Uplink:**
703 703  
633 +486.3 - SF7BW125 to SF12BW125
704 704  
705 -== 2.8  Read or Clear cached data ==
635 +486.5 - SF7BW125 to SF12BW125
706 706  
637 +486.7 - SF7BW125 to SF12BW125
707 707  
708 -(% style="color:blue" %)** ➢ AT Command:**
639 +486.9 - SF7BW125 to SF12BW125
709 709  
710 -(% style="color:#037691" %)** AT+CDP ** (%%) ~/~/ Read cached data
641 +487.1 - SF7BW125 to SF12BW125
711 711  
643 +487.3 - SF7BW125 to SF12BW125
712 712  
713 -[[image:image-20220908175333-2.png]]
645 +487.5 - SF7BW125 to SF12BW125
714 714  
647 +487.7 - SF7BW125 to SF12BW125
715 715  
716 -(% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/ Clear cached data
717 717  
650 +(% style="color:#037691" %)**Downlink:**
718 718  
652 +506.7 - SF7BW125 to SF12BW125
719 719  
720 -== 2.9  ​LED Indicator ==
654 +506.9 - SF7BW125 to SF12BW125
721 721  
656 +507.1 - SF7BW125 to SF12BW125
722 722  
723 -The NDDS75 has an internal LED which is to show the status of different state.
658 +507.3 - SF7BW125 to SF12BW125
724 724  
660 +507.5 - SF7BW125 to SF12BW125
725 725  
726 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
727 -* Then the LED will be on for 1 second means device is boot normally.
728 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
729 -* For each uplink probe, LED will be on for 500ms.
662 +507.7 - SF7BW125 to SF12BW125
730 730  
731 -(((
732 -
733 -)))
664 +507.9 - SF7BW125 to SF12BW125
734 734  
666 +508.1 - SF7BW125 to SF12BW125
735 735  
668 +505.3 - SF12BW125 (RX2 downlink only)
736 736  
737 -== 2.10  ​Firmware Change Log ==
738 738  
739 739  
740 -(((
741 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
742 -)))
672 +=== 2.7.4 AU915-928(AU915) ===
743 743  
744 -(((
745 -
746 -)))
674 +Default use CHE=2
747 747  
748 -(((
749 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
750 -)))
676 +(% style="color:#037691" %)**Uplink:**
751 751  
678 +916.8 - SF7BW125 to SF12BW125
752 752  
680 +917.0 - SF7BW125 to SF12BW125
753 753  
754 -== 2.1 Battery Analysis ==
682 +917.2 - SF7BW125 to SF12BW125
755 755  
684 +917.4 - SF7BW125 to SF12BW125
756 756  
757 -=== 2.11. Battery Type ===
686 +917.6 - SF7BW125 to SF12BW125
758 758  
688 +917.8 - SF7BW125 to SF12BW125
759 759  
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
760 760  (((
761 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
762 762  )))
843 +)))
763 763  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
764 764  (((
765 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
766 766  )))
767 767  
768 768  (((
769 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
770 770  )))
771 771  
772 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
773 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
774 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
775 775  
858 +== 2.10 ​Firmware Change Log ==
859 +
776 776  (((
777 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
778 778  )))
779 779  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
780 780  
868 +(((
869 +
870 +)))
781 781  
782 -=== 2.11.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
783 783  
876 +(((
877 +
878 +)))
784 784  
785 785  (((
786 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
881 +**V1.0.**
787 787  )))
788 788  
884 +(((
885 +Release
886 +)))
789 789  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
790 790  (((
791 -Instruction to use as below:
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
792 792  )))
793 793  
794 794  (((
795 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
898 +The battery is designed to last for more than 5 years for the LSN50.
796 796  )))
797 797  
798 -
799 799  (((
800 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
801 801  )))
905 +)))
802 802  
803 803  * (((
804 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
805 805  )))
806 806  * (((
807 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
808 808  )))
809 809  * (((
810 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
811 811  )))
812 812  
813 -(((
814 -And the Life expectation in difference case will be shown on the right.
815 -)))
917 + [[image:image-20220610172436-1.png]]
816 816  
817 -[[image:image-20220709110451-3.png]]
818 818  
819 819  
921 +=== 2.11.2 ​Battery Note ===
820 820  
821 -=== 2.11.3  ​Battery Note ===
822 -
823 -
824 824  (((
825 825  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
826 826  )))
... ... @@ -827,217 +827,326 @@
827 827  
828 828  
829 829  
830 -=== 2.11. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
831 831  
931 +(((
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
933 +)))
832 832  
833 833  (((
834 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
835 835  )))
836 836  
939 +(((
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
941 +)))
837 837  
838 838  
839 -= 3. ​ Access NB-IoT Module =
840 840  
945 += 3. ​Using the AT Commands =
841 841  
842 -(((
843 -Users can directly access the AT command set of the NB-IoT module.
844 -)))
947 +== 3.1 Access AT Commands ==
845 845  
846 -(((
847 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
848 848  
849 -
850 -)))
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
851 851  
852 -[[image:1657333200519-600.png]]
952 +[[image:1654501986557-872.png||height="391" width="800"]]
853 853  
854 854  
955 +Or if you have below board, use below connection:
855 855  
856 -= 4.  Using the AT Commands =
857 857  
958 +[[image:1654502005655-729.png||height="503" width="801"]]
858 858  
859 -== 4.1  Access AT Commands ==
860 860  
861 861  
862 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
863 863  
864 864  
865 -AT+<CMD>?  : Help on <CMD>
965 + [[image:1654502050864-459.png||height="564" width="806"]]
866 866  
867 -AT+<CMD>         : Run <CMD>
868 868  
869 -AT+<CMD>=<value> : Set the value
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
870 870  
871 -AT+<CMD>=?  : Get the value
872 872  
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
873 873  
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
874 874  (% style="color:#037691" %)**General Commands**(%%)      
875 875  
876 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
877 877  
878 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
879 879  
880 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
881 881  
882 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
883 883  
884 -AT+CFG  : Print all configurations
885 885  
886 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
887 887  
888 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
889 889  
890 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
891 891  
892 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
893 893  
894 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
895 895  
896 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
897 897  
898 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
899 899  
900 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
901 901  
902 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
903 903  
904 -AT+TR      : Get or Set record time"
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
905 905  
906 -AT+AP    : Get or set the APN
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
907 907  
908 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
909 909  
910 -AT+DNSCFG  : Get or Set DNS Server
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
911 911  
912 -AT+GETSENSORVALUE   : Returns the current sensor measurement
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
913 913  
914 -AT+NOUD      : Get or Set the number of data to be uploaded
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
915 915  
916 -AT+CDP     : Read or Clear cached data
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
917 917  
918 -AT+LDDSALARM : Get or Set alarm of distance
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
919 919  
920 920  
921 -(% style="color:#037691" %)**COAP Management**      
1026 +(% style="color:#037691" %)**LoRa Network Management**
922 922  
923 -AT+URI            : Resource parameters
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
924 924  
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
925 925  
926 -(% style="color:#037691" %)**UDP Management**
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
927 927  
928 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
929 929  
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
930 930  
931 -(% style="color:#037691" %)**MQTT Management**
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
932 932  
933 -AT+CLIENT               : Get or Set MQTT client
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
934 934  
935 -AT+UNAME  : Get or Set MQTT Username
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
936 936  
937 -AT+PWD                  : Get or Set MQTT password
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
938 938  
939 -AT+PUBTOPIC  : Get or Set MQTT publish topic
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
940 940  
941 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
942 942  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
943 943  
944 -(% style="color:#037691" %)**Information**          
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
945 945  
946 -AT+FDR  : Factory Data Reset
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
947 947  
948 -AT+PWORD  : Serial Access Password
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
949 949  
950 950  
1059 +(% style="color:#037691" %)**Information** 
951 951  
952 -= ​5.  FAQ =
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
953 953  
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
954 954  
955 -== 5.1 How to Upgrade Firmware ==
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
956 956  
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
957 957  
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
958 958  (((
959 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
960 960  )))
961 961  
962 962  (((
963 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
964 964  )))
965 965  
966 966  (((
967 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
968 968  )))
969 969  
1093 +(((
1094 +
1095 +)))
970 970  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
971 971  
972 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
973 973  
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
974 974  
975 -== 6.1  ​Connection problem when uploading firmware ==
1109 +[[image:image-20220606154726-3.png]]
976 976  
977 977  
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
978 978  (((
979 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
980 980  )))
981 981  
982 -(% class="wikigeneratedid" %)
983 983  (((
984 984  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
985 985  )))
986 986  
1137 +(((
1138 +
1139 +)))
987 987  
988 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
989 989  
1145 +[[image:image-20220606154825-4.png]]
990 990  
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
991 991  (((
992 992  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
993 993  
994 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
995 995  )))
996 996  
997 997  
998 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
999 999  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1000 1000  
1001 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
1002 1002  
1003 1003  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
1004 1004  (% class="wikigeneratedid" %)
1005 1005  (((
1006 1006  
1007 1007  )))
1008 1008  
1009 -= 8.  Packing Info =
1215 += 7. Packing Info =
1010 1010  
1011 1011  (((
1012 1012  
1013 1013  
1014 1014  (% style="color:#037691" %)**Package Includes**:
1221 +)))
1015 1015  
1016 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1017 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1018 1018  )))
1019 1019  
1020 1020  (((
1021 1021  
1022 1022  
1023 -
1024 1024  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
1025 1025  
1026 -* Device Size: 13.0 x 5 x 4.5 cm
1027 -* Device Weight: 150g
1028 -* Package Size / pcs : 15 x 12x 5.5 cm
1029 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
1030 1030  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
1031 1031  
1032 -(((
1033 1033  
1034 -
1035 -
1036 -
1037 1037  )))
1038 1038  
1039 -= 9.  Support =
1248 += 8. Support =
1040 1040  
1041 -
1042 1042  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1043 1043  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content