Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 104.3
edited by Xiaoling
on 2022/09/09 11:50
Change comment: There is no comment for this version
To version 40.4
edited by Xiaoling
on 2022/06/30 10:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,10 +1,16 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
10 10  {{toc/}}
... ... @@ -14,813 +14,770 @@
14 14  
15 15  
16 16  
17 -= 1.  Introduction =
23 += 1. Introduction =
18 18  
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 -
22 22  (((
23 23  
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 28  )))
29 29  
30 30  (((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 32  )))
33 33  
34 34  (((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 36  )))
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 40  )))
41 41  
42 42  (((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 44  )))
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
50 50  
51 -
52 -)))
50 +[[image:1654503236291-817.png]]
53 53  
54 -[[image:1657327959271-447.png]]
55 55  
53 +[[image:1654503265560-120.png]]
56 56  
57 57  
58 -== 1.2 ​ Features ==
59 59  
57 +== 1.2 ​Features ==
60 60  
61 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
62 62  * Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
71 -* Micro SIM card slot for NB-IoT SIM
72 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
73 73  
74 -== 1.3  Specification ==
75 75  
72 +== 1.3 Specification ==
76 76  
77 -(% style="color:#037691" %)**Common DC Characteristics:**
74 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 78  
79 -* Supply Voltage: 2.1v ~~ 3.6v
80 -* Operating Temperature: -40 ~~ 85°C
76 +[[image:image-20220606162220-5.png]]
81 81  
82 -(% style="color:#037691" %)**NB-IoT Spec:**
83 83  
84 -* - B1 @H-FDD: 2100MHz
85 -* - B3 @H-FDD: 1800MHz
86 -* - B8 @H-FDD: 900MHz
87 -* - B5 @H-FDD: 850MHz
88 -* - B20 @H-FDD: 800MHz
89 -* - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
80 +== ​1.4 Applications ==
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
82 +* Smart Agriculture
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
84 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 +​
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
87 +== 1.5 Firmware Change log ==
103 103  
104 -== ​1.4  Applications ==
105 105  
90 +**LSE01 v1.0 :**  Release
106 106  
107 -* Smart Buildings & Home Automation
108 -* Logistics and Supply Chain Management
109 -* Smart Metering
110 -* Smart Agriculture
111 -* Smart Cities
112 -* Smart Factory
113 113  
114 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
115 -​
116 116  
94 += 2. Configure LSE01 to connect to LoRaWAN network =
117 117  
96 +== 2.1 How it works ==
118 118  
98 +(((
99 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 +)))
119 119  
120 -== 1.5  Pin Definitions ==
102 +(((
103 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 +)))
121 121  
122 122  
123 -[[image:1657328609906-564.png]]
124 124  
108 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
125 125  
110 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 126  
127 -= 2.  Use NDDS75 to communicate with IoT Server =
128 128  
113 +[[image:1654503992078-669.png]]
129 129  
130 -== 2.1  How it works ==
131 131  
116 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 132  
133 -(((
134 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
135 -)))
136 136  
119 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
137 137  
138 -(((
139 -The diagram below shows the working flow in default firmware of NDDS75:
140 -)))
121 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 141  
142 -(((
143 -
144 -)))
123 +[[image:image-20220606163732-6.jpeg]]
145 145  
146 -[[image:1657328659945-416.png]]
125 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
147 147  
148 -(((
149 -
150 -)))
127 +**Add APP EUI in the application**
151 151  
152 152  
153 -== 2.2 ​ Configure the NDDS75 ==
130 +[[image:1654504596150-405.png]]
154 154  
155 155  
156 -=== 2.2.1 Test Requirement ===
157 157  
134 +**Add APP KEY and DEV EUI**
158 158  
159 -(((
160 -To use NDDS75 in your city, make sure meet below requirements:
161 -)))
136 +[[image:1654504683289-357.png]]
162 162  
163 -* Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NDDS75 supports.
165 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
167 -(((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
169 -)))
170 170  
140 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
171 171  
172 -[[image:1657328756309-230.png]]
173 173  
143 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
174 174  
145 +[[image:image-20220606163915-7.png]]
175 175  
176 -=== 2.2.2 Insert SIM card ===
177 177  
148 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
178 178  
179 -(((
180 -Insert the NB-IoT Card get from your provider.
181 -)))
150 +[[image:1654504778294-788.png]]
182 182  
183 -(((
184 -User need to take out the NB-IoT module and insert the SIM card like below:
185 -)))
186 186  
187 187  
188 -[[image:1657328884227-504.png]]
154 +== 2.3 Uplink Payload ==
189 189  
190 190  
157 +=== 2.3.1 MOD~=0(Default Mode) ===
191 191  
192 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
159 +LSE01 will uplink payload via LoRaWAN with below payload format
193 193  
194 -
195 195  (((
196 -(((
197 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
162 +Uplink payload includes in total 11 bytes.
198 198  )))
199 -)))
200 200  
201 -[[image:image-20220709092052-2.png]]
165 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 +|(((
167 +**Size**
202 202  
169 +**(bytes)**
170 +)))|**2**|**2**|**2**|**2**|**2**|**1**
171 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 +Temperature
203 203  
204 -**Connection:**
174 +(Reserve, Ignore now)
175 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 +MOD & Digital Interrupt
205 205  
206 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
178 +(Optional)
179 +)))
207 207  
208 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
209 209  
210 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
182 +=== 2.3.2 MOD~=1(Original value) ===
211 211  
184 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
212 212  
213 -In the PC, use below serial tool settings:
186 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 +|(((
188 +**Size**
214 214  
215 -* Baud:  (% style="color:green" %)**9600**
216 -* Data bits:** (% style="color:green" %)8(%%)**
217 -* Stop bits: (% style="color:green" %)**1**
218 -* Parity:  (% style="color:green" %)**None**
219 -* Flow Control: (% style="color:green" %)**None**
190 +**(bytes)**
191 +)))|**2**|**2**|**2**|**2**|**2**|**1**
192 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 +Temperature
220 220  
221 -(((
222 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
195 +(Reserve, Ignore now)
196 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 +MOD & Digital Interrupt
198 +
199 +(Optional)
223 223  )))
224 224  
225 -[[image:1657329814315-101.png]]
226 226  
203 +=== 2.3.3 Battery Info ===
227 227  
228 228  (((
229 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
206 +Check the battery voltage for LSE01.
230 230  )))
231 231  
209 +(((
210 +Ex1: 0x0B45 = 2885mV
211 +)))
232 232  
213 +(((
214 +Ex2: 0x0B49 = 2889mV
215 +)))
233 233  
234 -=== 2.2.4 Use CoAP protocol to uplink data ===
235 235  
236 236  
237 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
219 +=== 2.3.4 Soil Moisture ===
238 238  
221 +(((
222 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 +)))
239 239  
240 240  (((
241 -**Use below commands:**
226 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
242 242  )))
243 243  
244 -* (((
245 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
229 +(((
230 +
246 246  )))
247 -* (((
248 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
232 +
233 +(((
234 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
249 249  )))
250 -* (((
251 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
252 252  
253 253  
254 -
238 +
239 +=== 2.3.5 Soil Temperature ===
240 +
241 +(((
242 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
255 255  )))
256 256  
257 257  (((
258 -For parameter description, please refer to AT command set
246 +**Example**:
247 +)))
259 259  
260 -
249 +(((
250 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
261 261  )))
262 262  
263 -[[image:1657330452568-615.png]]
253 +(((
254 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 +)))
264 264  
265 265  
266 266  
259 +=== 2.3.6 Soil Conductivity (EC) ===
260 +
267 267  (((
268 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
262 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 +)))
269 269  
270 -
265 +(((
266 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
271 271  )))
272 272  
273 -[[image:1657330472797-498.png]]
269 +(((
270 +Generally, the EC value of irrigation water is less than 800uS / cm.
271 +)))
274 274  
273 +(((
274 +
275 +)))
275 275  
277 +(((
278 +
279 +)))
276 276  
277 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
281 +=== 2.3.7 MOD ===
278 278  
283 +Firmware version at least v2.1 supports changing mode.
279 279  
280 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
281 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
282 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
285 +For example, bytes[10]=90
283 283  
284 -[[image:1657330501006-241.png]]
287 +mod=(bytes[10]>>7)&0x01=1.
285 285  
286 286  
287 -[[image:1657330533775-472.png]]
290 +**Downlink Command:**
288 288  
292 +If payload = 0x0A00, workmode=0
289 289  
294 +If** **payload =** **0x0A01, workmode=1
290 290  
291 -=== 2.2.6 Use MQTT protocol to uplink data ===
292 292  
293 293  
294 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
295 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
296 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
297 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
298 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
299 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
300 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
298 +=== 2.3.8 ​Decode payload in The Things Network ===
301 301  
302 -[[image:1657249978444-674.png]]
300 +While using TTN network, you can add the payload format to decode the payload.
303 303  
304 304  
305 -[[image:1657330723006-866.png]]
303 +[[image:1654505570700-128.png]]
306 306  
305 +(((
306 +The payload decoder function for TTN is here:
307 +)))
307 307  
308 308  (((
309 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
310 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
310 310  )))
311 311  
312 312  
314 +== 2.4 Uplink Interval ==
313 313  
314 -=== 2.2.7 Use TCP protocol to uplink data ===
316 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
315 315  
316 316  
317 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
318 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
319 319  
320 -[[image:image-20220709093918-1.png]]
320 +== 2.5 Downlink Payload ==
321 321  
322 +By default, LSE50 prints the downlink payload to console port.
322 322  
323 -[[image:image-20220709093918-2.png]]
324 +[[image:image-20220606165544-8.png]]
324 324  
325 325  
327 +(((
328 +(% style="color:blue" %)**Examples:**
329 +)))
326 326  
327 -=== 2.2.8 Change Update Interval ===
331 +(((
332 +
333 +)))
328 328  
335 +* (((
336 +(% style="color:blue" %)**Set TDC**
337 +)))
329 329  
330 -User can use below command to change the (% style="color:green" %)**uplink interval**.
339 +(((
340 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 +)))
331 331  
332 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
343 +(((
344 +Payload:    01 00 00 1E    TDC=30S
345 +)))
333 333  
334 334  (((
335 -(% style="color:red" %)**NOTE 1: By default, the device will send an uplink message every 1 hour.**
348 +Payload:    01 00 00 3C    TDC=60S
349 +)))
336 336  
351 +(((
337 337  
338 338  )))
339 339  
340 -(% style="color:red" %)**NOTE 2: When the firmware version is v1.3.2 and later firmware:**
355 +* (((
356 +(% style="color:blue" %)**Reset**
357 +)))
341 341  
342 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
359 +(((
360 +If payload = 0x04FF, it will reset the LSE01
361 +)))
343 343  
344 344  
364 +* (% style="color:blue" %)**CFM**
345 345  
346 -== 2.3  Uplink Payload ==
366 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
347 347  
348 348  
349 -=== 2.3.1  Before Firmware 1.3.2 ===
350 350  
370 +== 2.6 ​Show Data in DataCake IoT Server ==
351 351  
352 -In this mode, uplink payload includes in total 14 bytes
353 -
354 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
355 -|=(% style="width: 60px;" %)(((
356 -**Size(bytes)**
357 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
358 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
359 -
360 360  (((
361 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
373 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
362 362  )))
363 363  
364 -
365 -[[image:1657331036973-987.png]]
366 -
367 -
368 368  (((
369 -The payload is **ASCII** string, representative same HEX:
377 +
370 370  )))
371 371  
372 372  (((
373 -0x72403155615900640c6c19029200 where:
381 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
374 374  )))
375 375  
376 -* (((
377 -Device ID: 0x724031556159 = 724031556159
384 +(((
385 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
378 378  )))
379 -* (((
380 -Version:  0x0064=100=1.0.0
381 -)))
382 382  
383 -* (((
384 -BAT:  0x0c6c = 3180 mV = 3.180V
385 -)))
386 -* (((
387 -Signal: 0x19 = 25
388 -)))
389 -* (((
390 -Distance: 0x0292= 658 mm
391 -)))
392 -* (((
393 -Interrupt: 0x00 = 0
394 394  
389 +[[image:1654505857935-743.png]]
395 395  
396 396  
392 +[[image:1654505874829-548.png]]
397 397  
398 -
399 -)))
400 400  
401 -=== **2.3.2  Since firmware v1.3.2** ===
395 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
402 402  
397 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
403 403  
404 -In this mode, uplink payload includes 69 bytes in total by default.
405 405  
406 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
400 +[[image:1654505905236-553.png]]
407 407  
408 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
409 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
410 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
411 411  
412 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
403 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
413 413  
414 -[[image:image-20220908175246-1.png]]
405 +[[image:1654505925508-181.png]]
415 415  
416 416  
417 -The payload is ASCII string, representative same HEX:
418 418  
419 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
409 +== 2.7 Frequency Plans ==
420 420  
421 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
422 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
423 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
424 -* (% style="color:blue" %)Singal: 0x1e = 30
425 -* (% style="color:red" %)Mod: 0x01 = 1
426 -* Interrupt: 0x00= 0
427 -* Distance: 0x0039= 57 = 57
428 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
429 -* Distance,Time stamp : 00396319baf0
430 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
411 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
431 431  
432 432  
414 +=== 2.7.1 EU863-870 (EU868) ===
433 433  
416 +(% style="color:#037691" %)** Uplink:**
434 434  
418 +868.1 - SF7BW125 to SF12BW125
435 435  
436 -== 2. Payload Explanation and Sensor Interface ==
420 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
437 437  
422 +868.5 - SF7BW125 to SF12BW125
438 438  
439 -=== 2.4.1  Device ID ===
424 +867.1 - SF7BW125 to SF12BW125
440 440  
426 +867.3 - SF7BW125 to SF12BW125
441 441  
442 -(((
443 -By default, the Device ID equal to the last 6 bytes of IMEI.
444 -)))
428 +867.5 - SF7BW125 to SF12BW125
445 445  
446 -(((
447 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
430 +867.7 - SF7BW125 to SF12BW125
448 448  
449 -
450 -)))
432 +867.9 - SF7BW125 to SF12BW125
451 451  
452 -(((
453 -(% style="color:blue" %)**Example :**
454 -)))
434 +868.8 - FSK
455 455  
456 -(((
457 -AT+DEUI=A84041F15612
458 -)))
459 459  
460 -(((
461 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
462 -)))
437 +(% style="color:#037691" %)** Downlink:**
463 463  
439 +Uplink channels 1-9 (RX1)
464 464  
465 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
441 +869.525 - SF9BW125 (RX2 downlink only)
466 466  
467 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
468 468  
469 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
470 470  
445 +=== 2.7.2 US902-928(US915) ===
471 471  
472 -(% style="color:blue" %)**Example :**
447 +Used in USA, Canada and South America. Default use CHE=2
473 473  
474 -AT+DEUI=868411056754138
449 +(% style="color:#037691" %)**Uplink:**
475 475  
451 +903.9 - SF7BW125 to SF10BW125
476 476  
453 +904.1 - SF7BW125 to SF10BW125
477 477  
478 -=== 2.4.2  Version Info ===
455 +904.3 - SF7BW125 to SF10BW125
479 479  
457 +904.5 - SF7BW125 to SF10BW125
480 480  
481 -(((
482 -Specify the software version: 0x64=100, means firmware version 1.00.
483 -)))
459 +904.7 - SF7BW125 to SF10BW125
484 484  
485 -(((
486 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
487 -)))
461 +904.9 - SF7BW125 to SF10BW125
488 488  
463 +905.1 - SF7BW125 to SF10BW125
489 489  
465 +905.3 - SF7BW125 to SF10BW125
490 490  
491 -=== 2.4.3  Battery Info ===
492 492  
468 +(% style="color:#037691" %)**Downlink:**
493 493  
494 -(((
495 -Ex1: 0x0B45 = 2885mV
496 -)))
470 +923.3 - SF7BW500 to SF12BW500
497 497  
498 -(((
499 -Ex2: 0x0B49 = 2889mV
500 -)))
472 +923.9 - SF7BW500 to SF12BW500
501 501  
474 +924.5 - SF7BW500 to SF12BW500
502 502  
476 +925.1 - SF7BW500 to SF12BW500
503 503  
504 -=== 2.4.4  Signal Strength ===
478 +925.7 - SF7BW500 to SF12BW500
505 505  
480 +926.3 - SF7BW500 to SF12BW500
506 506  
507 -(((
508 -NB-IoT Network signal Strength.
509 -)))
482 +926.9 - SF7BW500 to SF12BW500
510 510  
511 -(((
512 -**Ex1: 0x1d = 29**
513 -)))
484 +927.5 - SF7BW500 to SF12BW500
514 514  
515 -(((
516 -(% style="color:blue" %)**0**(%%)  -113dBm or less
517 -)))
486 +923.3 - SF12BW500(RX2 downlink only)
518 518  
519 -(((
520 -(% style="color:blue" %)**1**(%%)  -111dBm
521 -)))
522 522  
523 -(((
524 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
525 -)))
526 526  
527 -(((
528 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
529 -)))
490 +=== 2.7.3 CN470-510 (CN470) ===
530 530  
531 -(((
532 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
533 -)))
492 +Used in China, Default use CHE=1
534 534  
494 +(% style="color:#037691" %)**Uplink:**
535 535  
496 +486.3 - SF7BW125 to SF12BW125
536 536  
537 -=== 2.4.5  Distance ===
498 +486.5 - SF7BW125 to SF12BW125
538 538  
500 +486.7 - SF7BW125 to SF12BW125
539 539  
540 -Get the distance. Flat object range 280mm - 7500mm.
502 +486.9 - SF7BW125 to SF12BW125
541 541  
542 -(((
543 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
544 -)))
504 +487.1 - SF7BW125 to SF12BW125
545 545  
546 -(((
547 -(((
548 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
549 -)))
550 -)))
506 +487.3 - SF7BW125 to SF12BW125
551 551  
552 -(((
553 -
554 -)))
508 +487.5 - SF7BW125 to SF12BW125
555 555  
556 -(((
557 -
558 -)))
510 +487.7 - SF7BW125 to SF12BW125
559 559  
560 -=== 2.4.6  Digital Interrupt ===
561 561  
513 +(% style="color:#037691" %)**Downlink:**
562 562  
563 -(((
564 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
565 -)))
515 +506.7 - SF7BW125 to SF12BW125
566 566  
567 -(((
568 -The command is:
569 -)))
517 +506.9 - SF7BW125 to SF12BW125
570 570  
571 -(((
572 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
573 -)))
519 +507.1 - SF7BW125 to SF12BW125
574 574  
521 +507.3 - SF7BW125 to SF12BW125
575 575  
576 -(((
577 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
578 -)))
523 +507.5 - SF7BW125 to SF12BW125
579 579  
525 +507.7 - SF7BW125 to SF12BW125
580 580  
581 -(((
582 -Example:
583 -)))
527 +507.9 - SF7BW125 to SF12BW125
584 584  
585 -(((
586 -0x(00): Normal uplink packet.
587 -)))
529 +508.1 - SF7BW125 to SF12BW125
588 588  
589 -(((
590 -0x(01): Interrupt Uplink Packet.
591 -)))
531 +505.3 - SF12BW125 (RX2 downlink only)
592 592  
593 593  
594 594  
595 -=== 2.4.7  ​+5V Output ===
535 +=== 2.7.4 AU915-928(AU915) ===
596 596  
537 +Default use CHE=2
597 597  
598 -(((
599 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
600 -)))
539 +(% style="color:#037691" %)**Uplink:**
601 601  
541 +916.8 - SF7BW125 to SF12BW125
602 602  
603 -(((
604 -The 5V output time can be controlled by AT Command.
543 +917.0 - SF7BW125 to SF12BW125
605 605  
606 -
607 -)))
545 +917.2 - SF7BW125 to SF12BW125
608 608  
609 -(((
610 -(% style="color:blue" %)**AT+5VT=1000**
547 +917.4 - SF7BW125 to SF12BW125
611 611  
612 -
613 -)))
549 +917.6 - SF7BW125 to SF12BW125
614 614  
615 -(((
616 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
617 -)))
551 +917.8 - SF7BW125 to SF12BW125
618 618  
553 +918.0 - SF7BW125 to SF12BW125
619 619  
555 +918.2 - SF7BW125 to SF12BW125
620 620  
621 -== 2.5  Downlink Payload ==
622 622  
558 +(% style="color:#037691" %)**Downlink:**
623 623  
624 -By default, NDDS75 prints the downlink payload to console port.
560 +923.3 - SF7BW500 to SF12BW500
625 625  
626 -[[image:image-20220709100028-1.png]]
562 +923.9 - SF7BW500 to SF12BW500
627 627  
564 +924.5 - SF7BW500 to SF12BW500
628 628  
629 -(((
630 -(% style="color:blue" %)**Examples:**
631 -)))
566 +925.1 - SF7BW500 to SF12BW500
632 632  
633 -(((
634 -
635 -)))
568 +925.7 - SF7BW500 to SF12BW500
636 636  
637 -* (((
638 -(% style="color:blue" %)**Set TDC**
639 -)))
570 +926.3 - SF7BW500 to SF12BW500
640 640  
641 -(((
642 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
643 -)))
572 +926.9 - SF7BW500 to SF12BW500
644 644  
645 -(((
646 -Payload:    01 00 00 1E    TDC=30S
647 -)))
574 +927.5 - SF7BW500 to SF12BW500
648 648  
649 -(((
650 -Payload:    01 00 00 3C    TDC=60S
651 -)))
576 +923.3 - SF12BW500(RX2 downlink only)
652 652  
653 -(((
654 -
655 -)))
656 656  
657 -* (((
658 -(% style="color:blue" %)**Reset**
659 -)))
660 660  
661 -(((
662 -If payload = 0x04FF, it will reset the NDDS75
663 -)))
580 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
664 664  
582 +(% style="color:#037691" %)**Default Uplink channel:**
665 665  
666 -* (% style="color:blue" %)**INTMOD**
584 +923.2 - SF7BW125 to SF10BW125
667 667  
668 -(((
669 -Downlink Payload: 06000003, Set AT+INTMOD=3
670 -)))
586 +923.4 - SF7BW125 to SF10BW125
671 671  
672 672  
589 +(% style="color:#037691" %)**Additional Uplink Channel**:
673 673  
674 -== 2.6  Distance alarm function(Since firmware v1.3.2) ==
591 +(OTAA mode, channel added by JoinAccept message)
675 675  
593 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
676 676  
677 -(% style="color:blue" %)** ➢ AT Command:**
595 +922.2 - SF7BW125 to SF10BW125
678 678  
679 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
597 +922.4 - SF7BW125 to SF10BW125
680 680  
681 -² When min=0, and max≠0, Alarm higher than max
599 +922.6 - SF7BW125 to SF10BW125
682 682  
683 -² When min≠0, and max=0, Alarm lower than min
601 +922.8 - SF7BW125 to SF10BW125
684 684  
685 -² When min≠0 and max≠0, Alarm higher than max or lower than min
603 +923.0 - SF7BW125 to SF10BW125
686 686  
605 +922.0 - SF7BW125 to SF10BW125
687 687  
688 -(% style="color:blue" %)** Example:**
689 689  
690 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
608 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
691 691  
610 +923.6 - SF7BW125 to SF10BW125
692 692  
612 +923.8 - SF7BW125 to SF10BW125
693 693  
694 -== 2. Set the number of data to be uploaded and the recording time ==
614 +924.0 - SF7BW125 to SF10BW125
695 695  
616 +924.2 - SF7BW125 to SF10BW125
696 696  
697 -(% style="color:blue" %)** ➢ AT Command:**
618 +924.4 - SF7BW125 to SF10BW125
698 698  
699 -(% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
620 +924.6 - SF7BW125 to SF10BW125
700 700  
701 -(% style="color:#037691" %)** AT+NOUD=8** (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
702 702  
623 +(% style="color:#037691" %)** Downlink:**
703 703  
625 +Uplink channels 1-8 (RX1)
704 704  
705 -== 2. Read or Clear cached data ==
627 +923.2 - SF10BW125 (RX2)
706 706  
707 707  
708 -(% style="color:blue" %)** ➢ AT Command:**
709 709  
710 -(% style="color:#037691" %)** AT+CDP ** (%%) ~/~/ Read cached data
631 +=== 2.7.6 KR920-923 (KR920) ===
711 711  
633 +Default channel:
712 712  
713 -[[image:image-20220908175333-2.png]]
635 +922.1 - SF7BW125 to SF12BW125
714 714  
637 +922.3 - SF7BW125 to SF12BW125
715 715  
716 -(% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/ Clear cached data
639 +922.5 - SF7BW125 to SF12BW125
717 717  
718 718  
642 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
719 719  
720 -== 2. ​LED Indicator ==
644 +922.1 - SF7BW125 to SF12BW125
721 721  
646 +922.3 - SF7BW125 to SF12BW125
722 722  
723 -The NDDS75 has an internal LED which is to show the status of different state.
648 +922.5 - SF7BW125 to SF12BW125
724 724  
650 +922.7 - SF7BW125 to SF12BW125
725 725  
726 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
727 -* Then the LED will be on for 1 second means device is boot normally.
728 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
729 -* For each uplink probe, LED will be on for 500ms.
652 +922.9 - SF7BW125 to SF12BW125
730 730  
731 -(((
732 -
733 -)))
654 +923.1 - SF7BW125 to SF12BW125
734 734  
656 +923.3 - SF7BW125 to SF12BW125
735 735  
736 736  
737 -== 2.10  ​Firmware Change Log ==
659 +(% style="color:#037691" %)**Downlink:**
738 738  
661 +Uplink channels 1-7(RX1)
739 739  
740 -(((
741 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
742 -)))
663 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
743 743  
744 -(((
745 -
746 -)))
747 747  
748 -(((
749 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
750 -)))
751 751  
667 +=== 2.7.7 IN865-867 (IN865) ===
752 752  
669 +(% style="color:#037691" %)** Uplink:**
753 753  
754 -== 2.11  Battery Analysis ==
671 +865.0625 - SF7BW125 to SF12BW125
755 755  
673 +865.4025 - SF7BW125 to SF12BW125
756 756  
757 -=== 2.11.1  Battery Type ===
675 +865.9850 - SF7BW125 to SF12BW125
758 758  
759 759  
678 +(% style="color:#037691" %) **Downlink:**
679 +
680 +Uplink channels 1-3 (RX1)
681 +
682 +866.550 - SF10BW125 (RX2)
683 +
684 +
685 +
686 +
687 +== 2.8 LED Indicator ==
688 +
689 +The LSE01 has an internal LED which is to show the status of different state.
690 +
691 +* Blink once when device power on.
692 +* Solid ON for 5 seconds once device successful Join the network.
693 +* Blink once when device transmit a packet.
694 +
695 +
696 +== 2.9 Installation in Soil ==
697 +
698 +**Measurement the soil surface**
699 +
700 +
701 +[[image:1654506634463-199.png]] ​
702 +
760 760  (((
761 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
704 +(((
705 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
762 762  )))
707 +)))
763 763  
709 +
710 +
711 +[[image:1654506665940-119.png]]
712 +
764 764  (((
765 -The battery is designed to last for several years depends on the actually use environment and update interval. 
714 +Dig a hole with diameter > 20CM.
766 766  )))
767 767  
768 768  (((
769 -The battery related documents as below:
718 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
770 770  )))
771 771  
772 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
773 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
774 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
775 775  
722 +== 2.10 ​Firmware Change Log ==
723 +
776 776  (((
777 -[[image:image-20220709101450-2.png]]
725 +**Firmware download link:**
778 778  )))
779 779  
728 +(((
729 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
730 +)))
780 780  
732 +(((
733 +
734 +)))
781 781  
782 -=== 2.11.2  Power consumption Analyze ===
736 +(((
737 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
738 +)))
783 783  
740 +(((
741 +
742 +)))
784 784  
785 785  (((
786 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
745 +**V1.0.**
787 787  )))
788 788  
748 +(((
749 +Release
750 +)))
789 789  
752 +
753 +== 2.11 ​Battery Analysis ==
754 +
755 +=== 2.11.1 ​Battery Type ===
756 +
790 790  (((
791 -Instruction to use as below:
758 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
792 792  )))
793 793  
794 794  (((
795 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
762 +The battery is designed to last for more than 5 years for the LSN50.
796 796  )))
797 797  
798 -
799 799  (((
800 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
766 +(((
767 +The battery-related documents are as below:
801 801  )))
769 +)))
802 802  
803 803  * (((
804 -Product Model
772 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
805 805  )))
806 806  * (((
807 -Uplink Interval
775 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
808 808  )))
809 809  * (((
810 -Working Mode
778 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
811 811  )))
812 812  
813 -(((
814 -And the Life expectation in difference case will be shown on the right.
815 -)))
781 + [[image:image-20220610172436-1.png]]
816 816  
817 -[[image:image-20220709110451-3.png]]
818 818  
819 819  
785 +=== 2.11.2 ​Battery Note ===
820 820  
821 -=== 2.11.3  ​Battery Note ===
822 -
823 -
824 824  (((
825 825  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
826 826  )))
... ... @@ -827,217 +827,326 @@
827 827  
828 828  
829 829  
830 -=== 2.11. Replace the battery ===
793 +=== 2.11.3 Replace the battery ===
831 831  
795 +(((
796 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
797 +)))
832 832  
833 833  (((
834 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
800 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
835 835  )))
836 836  
803 +(((
804 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
805 +)))
837 837  
838 838  
839 -= 3. ​ Access NB-IoT Module =
840 840  
809 += 3. ​Using the AT Commands =
841 841  
842 -(((
843 -Users can directly access the AT command set of the NB-IoT module.
844 -)))
811 +== 3.1 Access AT Commands ==
845 845  
846 -(((
847 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
848 848  
849 -
850 -)))
814 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
851 851  
852 -[[image:1657333200519-600.png]]
816 +[[image:1654501986557-872.png||height="391" width="800"]]
853 853  
854 854  
819 +Or if you have below board, use below connection:
855 855  
856 -= 4.  Using the AT Commands =
857 857  
822 +[[image:1654502005655-729.png||height="503" width="801"]]
858 858  
859 -== 4.1  Access AT Commands ==
860 860  
861 861  
862 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
826 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
863 863  
864 864  
865 -AT+<CMD>?  : Help on <CMD>
829 + [[image:1654502050864-459.png||height="564" width="806"]]
866 866  
867 -AT+<CMD>         : Run <CMD>
868 868  
869 -AT+<CMD>=<value> : Set the value
832 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
870 870  
871 -AT+<CMD>=?  : Get the value
872 872  
835 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
873 873  
837 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
838 +
839 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
840 +
841 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
842 +
843 +
874 874  (% style="color:#037691" %)**General Commands**(%%)      
875 875  
876 -AT  : Attention       
846 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
877 877  
878 -AT?  : Short Help     
848 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
879 879  
880 -ATZ  : MCU Reset    
850 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
881 881  
882 -AT+TDC  : Application Data Transmission Interval
852 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
883 883  
884 -AT+CFG  : Print all configurations
885 885  
886 -AT+CFGMOD           : Working mode selection
855 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
887 887  
888 -AT+INTMOD            : Set the trigger interrupt mode
857 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
889 889  
890 -AT+5VT  : Set extend the time of 5V power  
859 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
891 891  
892 -AT+PRO  : Choose agreement
861 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
893 893  
894 -AT+WEIGRE  : Get weight or set weight to 0
863 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
895 895  
896 -AT+WEIGAP  : Get or Set the GapValue of weight
865 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
897 897  
898 -AT+RXDL  : Extend the sending and receiving time
867 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
899 899  
900 -AT+CNTFAC  : Get or set counting parameters
869 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
901 901  
902 -AT+SERVADDR  : Server Address
871 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
903 903  
904 -AT+TR      : Get or Set record time"
873 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
905 905  
906 -AT+AP    : Get or set the APN
875 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
907 907  
908 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
877 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
909 909  
910 -AT+DNSCFG  : Get or Set DNS Server
879 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
911 911  
912 -AT+GETSENSORVALUE   : Returns the current sensor measurement
881 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
913 913  
914 -AT+NOUD      : Get or Set the number of data to be uploaded
883 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
915 915  
916 -AT+CDP     : Read or Clear cached data
885 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
917 917  
918 -AT+LDDSALARM : Get or Set alarm of distance
887 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
919 919  
920 920  
921 -(% style="color:#037691" %)**COAP Management**      
890 +(% style="color:#037691" %)**LoRa Network Management**
922 922  
923 -AT+URI            : Resource parameters
892 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
924 924  
894 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
925 925  
926 -(% style="color:#037691" %)**UDP Management**
896 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
927 927  
928 -AT+CFM          : Upload confirmation mode (only valid for UDP)
898 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
929 929  
900 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
930 930  
931 -(% style="color:#037691" %)**MQTT Management**
902 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
932 932  
933 -AT+CLIENT               : Get or Set MQTT client
904 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
934 934  
935 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
936 936  
937 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
938 938  
939 -AT+PUBTOPIC  : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
940 940  
941 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
942 942  
914 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
943 943  
944 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
945 945  
946 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
947 947  
948 -AT+PWORD  : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
949 949  
950 950  
923 +(% style="color:#037691" %)**Information** 
951 951  
952 -= ​5.  FAQ =
925 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
953 953  
927 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
954 954  
955 -== 5.1 How to Upgrade Firmware ==
929 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
956 956  
931 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
957 957  
933 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
936 +
937 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
938 +
939 +
940 += ​4. FAQ =
941 +
942 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
943 +
958 958  (((
959 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
945 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
946 +When downloading the images, choose the required image file for download. ​
960 960  )))
961 961  
962 962  (((
963 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
950 +
964 964  )))
965 965  
966 966  (((
967 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
954 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
968 968  )))
969 969  
957 +(((
958 +
959 +)))
970 970  
961 +(((
962 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
963 +)))
971 971  
972 -= 6.  Trouble Shooting =
965 +(((
966 +
967 +)))
973 973  
969 +(((
970 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
971 +)))
974 974  
975 -== 6.1  ​Connection problem when uploading firmware ==
973 +[[image:image-20220606154726-3.png]]
976 976  
977 977  
976 +When you use the TTN network, the US915 frequency bands use are:
977 +
978 +* 903.9 - SF7BW125 to SF10BW125
979 +* 904.1 - SF7BW125 to SF10BW125
980 +* 904.3 - SF7BW125 to SF10BW125
981 +* 904.5 - SF7BW125 to SF10BW125
982 +* 904.7 - SF7BW125 to SF10BW125
983 +* 904.9 - SF7BW125 to SF10BW125
984 +* 905.1 - SF7BW125 to SF10BW125
985 +* 905.3 - SF7BW125 to SF10BW125
986 +* 904.6 - SF8BW500
987 +
978 978  (((
979 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
989 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
990 +
991 +* (% style="color:#037691" %)**AT+CHE=2**
992 +* (% style="color:#037691" %)**ATZ**
980 980  )))
981 981  
982 -(% class="wikigeneratedid" %)
983 983  (((
984 984  
997 +
998 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
985 985  )))
986 986  
1001 +(((
1002 +
1003 +)))
987 987  
988 -== 6.2  AT Command input doesn't work ==
1005 +(((
1006 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1007 +)))
989 989  
1009 +[[image:image-20220606154825-4.png]]
990 990  
1011 +
1012 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1013 +
1014 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1015 +
1016 +
1017 += 5. Trouble Shooting =
1018 +
1019 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1020 +
1021 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1022 +
1023 +
1024 +== 5.2 AT Command input doesn’t work ==
1025 +
991 991  (((
992 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1028 +)))
993 993  
994 -
1030 +
1031 +== 5.3 Device rejoin in at the second uplink packet ==
1032 +
1033 +(% style="color:#4f81bd" %)**Issue describe as below:**
1034 +
1035 +[[image:1654500909990-784.png]]
1036 +
1037 +
1038 +(% style="color:#4f81bd" %)**Cause for this issue:**
1039 +
1040 +(((
1041 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
995 995  )))
996 996  
997 997  
998 -= 7. ​ Order Info =
1045 +(% style="color:#4f81bd" %)**Solution: **
999 999  
1047 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1000 1000  
1001 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1049 +[[image:1654500929571-736.png||height="458" width="832"]]
1002 1002  
1003 1003  
1052 += 6. ​Order Info =
1053 +
1054 +
1055 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1056 +
1057 +
1058 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1059 +
1060 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1061 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1062 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1063 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1064 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1065 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1066 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1067 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1068 +
1069 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1070 +
1071 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1072 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1073 +
1004 1004  (% class="wikigeneratedid" %)
1005 1005  (((
1006 1006  
1007 1007  )))
1008 1008  
1009 -= 8.  Packing Info =
1079 += 7. Packing Info =
1010 1010  
1011 1011  (((
1012 1012  
1013 1013  
1014 1014  (% style="color:#037691" %)**Package Includes**:
1085 +)))
1015 1015  
1016 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1017 -* External antenna x 1
1087 +* (((
1088 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1018 1018  )))
1019 1019  
1020 1020  (((
1021 1021  
1022 1022  
1023 -
1024 1024  (% style="color:#037691" %)**Dimension and weight**:
1095 +)))
1025 1025  
1026 -* Device Size: 13.0 x 5 x 4.5 cm
1027 -* Device Weight: 150g
1028 -* Package Size / pcs : 15 x 12x 5.5 cm
1029 -* Weight / pcs : 220g
1097 +* (((
1098 +Device Size: cm
1030 1030  )))
1100 +* (((
1101 +Device Weight: g
1102 +)))
1103 +* (((
1104 +Package Size / pcs : cm
1105 +)))
1106 +* (((
1107 +Weight / pcs : g
1031 1031  
1032 -(((
1033 1033  
1034 -
1035 -
1036 -
1037 1037  )))
1038 1038  
1039 -= 9.  Support =
1112 += 8. Support =
1040 1040  
1041 -
1042 1042  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1043 1043  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content