Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 104.2
edited by Xiaoling
on 2022/09/09 10:26
Change comment: There is no comment for this version
To version 45.2
edited by Xiaoling
on 2022/07/08 10:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,77 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 74  
63 +
75 75  == 1.3  Specification ==
76 76  
77 77  
... ... @@ -80,6 +80,7 @@
80 80  * Supply Voltage: 2.1v ~~ 3.6v
81 81  * Operating Temperature: -40 ~~ 85°C
82 82  
72 +
83 83  (% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 85  * - B1 @H-FDD: 2100MHz
... ... @@ -89,737 +89,727 @@
89 89  * - B20 @H-FDD: 800MHz
90 90  * - B28 @H-FDD: 700MHz
91 91  
92 -(% style="color:#037691" %)**Battery:**
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
104 104  
105 105  
90 +
106 106  == ​1.4  Applications ==
107 107  
108 -
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 112  * Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
115 115  
116 116  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 117  ​
118 118  
119 -
120 -
121 -
122 122  == 1.5  Pin Definitions ==
123 123  
124 124  
125 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
126 126  
127 127  
128 128  
129 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2.  Use NSE01 to communicate with IoT Server =
130 130  
131 -
132 132  == 2.1  How it works ==
133 133  
134 134  
135 135  (((
136 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
137 137  )))
138 138  
139 139  
140 140  (((
141 -The diagram below shows the working flow in default firmware of NDDS75:
116 +The diagram below shows the working flow in default firmware of NSE01:
142 142  )))
143 143  
119 +[[image:image-20220708101605-2.png]]
120 +
144 144  (((
145 145  
146 146  )))
147 147  
148 -[[image:1657328659945-416.png]]
149 149  
150 -(((
151 -
152 -)))
153 153  
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
154 154  
155 -== 2.2 Configure the NDDS75 ==
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
156 156  
157 157  
158 -=== 2.2.1 Test Requirement ===
132 +[[image:1654503992078-669.png]]
159 159  
160 160  
161 -(((
162 -To use NDDS75 in your city, make sure meet below requirements:
163 -)))
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
164 164  
165 -* Your local operator has already distributed a NB-IoT Network there.
166 -* The local NB-IoT network used the band that NDDS75 supports.
167 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
168 168  
169 -(((
170 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
171 -)))
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
172 172  
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
173 173  
174 -[[image:1657328756309-230.png]]
142 +[[image:image-20220606163732-6.jpeg]]
175 175  
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176 176  
146 +**Add APP EUI in the application**
177 177  
178 -=== 2.2.2 Insert SIM card ===
179 179  
149 +[[image:1654504596150-405.png]]
180 180  
181 -(((
182 -Insert the NB-IoT Card get from your provider.
183 -)))
184 184  
185 -(((
186 -User need to take out the NB-IoT module and insert the SIM card like below:
187 -)))
188 188  
153 +**Add APP KEY and DEV EUI**
189 189  
190 -[[image:1657328884227-504.png]]
155 +[[image:1654504683289-357.png]]
191 191  
192 192  
193 193  
194 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
195 195  
196 196  
197 -(((
198 -(((
199 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
200 -)))
201 -)))
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
202 202  
203 -[[image:image-20220709092052-2.png]]
164 +[[image:image-20220606163915-7.png]]
204 204  
205 205  
206 -**Connection:**
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207 207  
208 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
169 +[[image:1654504778294-788.png]]
209 209  
210 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
211 211  
212 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
213 213  
173 +== 2.3 Uplink Payload ==
214 214  
215 -In the PC, use below serial tool settings:
216 216  
217 -* Baud:  (% style="color:green" %)**9600**
218 -* Data bits:** (% style="color:green" %)8(%%)**
219 -* Stop bits: (% style="color:green" %)**1**
220 -* Parity:  (% style="color:green" %)**None**
221 -* Flow Control: (% style="color:green" %)**None**
176 +=== 2.3.1 MOD~=0(Default Mode) ===
222 222  
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
223 223  (((
224 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
181 +Uplink payload includes in total 11 bytes.
225 225  )))
226 226  
227 -[[image:1657329814315-101.png]]
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
228 228  
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
229 229  
230 -(((
231 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
232 232  )))
233 233  
200 +=== 2.3.2 MOD~=1(Original value) ===
234 234  
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
235 235  
236 -=== 2.2.4 Use CoAP protocol to uplink data ===
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
237 237  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
238 238  
239 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
240 240  
217 +(Optional)
218 +)))
241 241  
220 +=== 2.3.3 Battery Info ===
221 +
242 242  (((
243 -**Use below commands:**
223 +Check the battery voltage for LSE01.
244 244  )))
245 245  
246 -* (((
247 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
226 +(((
227 +Ex1: 0x0B45 = 2885mV
248 248  )))
249 -* (((
250 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
229 +
230 +(((
231 +Ex2: 0x0B49 = 2889mV
251 251  )))
252 -* (((
253 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
255 255  
256 -
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
257 257  )))
258 258  
259 259  (((
260 -For parameter description, please refer to AT command set
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
261 261  
246 +(((
262 262  
263 263  )))
264 264  
265 -[[image:1657330452568-615.png]]
266 -
267 -
268 -
269 269  (((
270 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
271 -
272 -
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
273 273  )))
274 274  
275 -[[image:1657330472797-498.png]]
276 276  
277 277  
256 +=== 2.3.5 Soil Temperature ===
278 278  
279 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
280 280  
262 +(((
263 +**Example**:
264 +)))
281 281  
282 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
284 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
285 285  
286 -[[image:1657330501006-241.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
287 287  
288 288  
289 -[[image:1657330533775-472.png]]
290 290  
276 +=== 2.3.6 Soil Conductivity (EC) ===
291 291  
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
292 292  
293 -=== 2.2.6 Use MQTT protocol to uplink data ===
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
294 294  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
295 295  
296 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
297 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
298 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
299 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
300 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
301 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
302 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
290 +(((
291 +
292 +)))
303 303  
304 -[[image:1657249978444-674.png]]
305 -
306 -
307 -[[image:1657330723006-866.png]]
308 -
309 -
310 310  (((
311 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
295 +
312 312  )))
313 313  
298 +=== 2.3.7 MOD ===
314 314  
300 +Firmware version at least v2.1 supports changing mode.
315 315  
316 -=== 2.2.7 Use TCP protocol to uplink data ===
302 +For example, bytes[10]=90
317 317  
304 +mod=(bytes[10]>>7)&0x01=1.
318 318  
319 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
320 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
321 321  
322 -[[image:image-20220709093918-1.png]]
307 +**Downlink Command:**
323 323  
309 +If payload = 0x0A00, workmode=0
324 324  
325 -[[image:image-20220709093918-2.png]]
311 +If** **payload =** **0x0A01, workmode=1
326 326  
327 327  
328 328  
329 -=== 2.2.8 Change Update Interval ===
315 +=== 2.3.8 ​Decode payload in The Things Network ===
330 330  
317 +While using TTN network, you can add the payload format to decode the payload.
331 331  
332 -User can use below command to change the (% style="color:green" %)**uplink interval**.
333 333  
334 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
320 +[[image:1654505570700-128.png]]
335 335  
336 336  (((
337 -(% style="color:red" %)**NOTE 1: By default, the device will send an uplink message every 1 hour.**
323 +The payload decoder function for TTN is here:
324 +)))
338 338  
339 -
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
340 340  )))
341 341  
342 -(% style="color:red" %)**NOTE 2: When the firmware version is v1.3.2 and later firmware:**
343 343  
344 -(% style="color:red" %)**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
331 +== 2.4 Uplink Interval ==
345 345  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
346 346  
347 347  
348 -== 2.3  Uplink Payload ==
349 349  
337 +== 2.5 Downlink Payload ==
350 350  
351 -=== 2.3.1  Before Firmware 1.3.2 ===
339 +By default, LSE50 prints the downlink payload to console port.
352 352  
341 +[[image:image-20220606165544-8.png]]
353 353  
354 -In this mode, uplink payload includes in total 14 bytes
355 355  
356 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
357 -|=(% style="width: 60px;" %)(((
358 -**Size(bytes)**
359 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
360 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
344 +(((
345 +(% style="color:blue" %)**Examples:**
346 +)))
361 361  
362 362  (((
363 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
349 +
364 364  )))
365 365  
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
366 366  
367 -[[image:1657331036973-987.png]]
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
368 368  
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
369 369  
370 370  (((
371 -The payload is **ASCII** string, representative same HEX:
365 +Payload:    01 00 00 3C    TDC=60S
372 372  )))
373 373  
374 374  (((
375 -0x72403155615900640c6c19029200 where:
369 +
376 376  )))
377 377  
378 378  * (((
379 -Device ID: 0x724031556159 = 724031556159
373 +(% style="color:blue" %)**Reset**
380 380  )))
381 -* (((
382 -Version:  0x0064=100=1.0.0
375 +
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
383 383  )))
384 384  
385 -* (((
386 -BAT:  0x0c6c = 3180 mV = 3.180V
380 +
381 +* (% style="color:blue" %)**CFM**
382 +
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
384 +
385 +
386 +
387 +== 2.6 ​Show Data in DataCake IoT Server ==
388 +
389 +(((
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
387 387  )))
388 -* (((
389 -Signal: 0x19 = 25
392 +
393 +(((
394 +
390 390  )))
391 -* (((
392 -Distance: 0x0292= 658 mm
396 +
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
393 393  )))
394 -* (((
395 -Interrupt: 0x00 = 0
396 396  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
397 397  
398 398  
406 +[[image:1654505857935-743.png]]
399 399  
400 -
401 -)))
402 402  
403 -=== **2.3.2  Since firmware v1.3.2** ===
409 +[[image:1654505874829-548.png]]
404 404  
405 405  
406 -In this mode, uplink payload includes 69 bytes in total by default.
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
407 407  
408 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
409 409  
410 -(% border="2" style="background-color:#ffffcc; color:green; width:896px" %)
411 -|(% style="width:95px" %)**Size(bytes)**|(% style="width:84px" %)**8**|(% style="width:44px" %)2|(% style="width:48px" %)2|(% style="width:123px" %)1|(% style="width:55px" %)1|(% style="width:80px" %)1|(% style="width:77px" %)2|(% style="width:94px" %)4|(% style="width:77px" %)2|(% style="width:116px" %)4
412 -|(% style="width:95px" %)**Value**|(% style="width:84px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:48px" %)BAT|(% style="width:123px" %)Signal Strength|(% style="width:55px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:77px" %)Distance|(% style="width:94px" %)Timestamp|(% style="width:77px" %)Distance|(% style="width:116px" %)Timestamp.......
413 413  
414 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
417 +[[image:1654505905236-553.png]]
415 415  
416 -[[image:image-20220908175246-1.png]]
417 417  
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
418 418  
419 -The payload is ASCII string, representative same HEX:
422 +[[image:1654505925508-181.png]]
420 420  
421 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
422 422  
423 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
424 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
425 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
426 -* (% style="color:blue" %)Singal: 0x1e = 30
427 -* (% style="color:red" %)Mod: 0x01 = 1
428 -* Interrupt: 0x00= 0
429 -* Distance: 0x0039= 57 = 57
430 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
431 -* Distance,Time stamp : 00396319baf0
432 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
433 433  
426 +== 2.7 Frequency Plans ==
434 434  
435 -== 2.4  Payload Explanation and Sensor Interface ==
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
436 436  
437 437  
438 -=== 2.4.1  Device ID ===
431 +=== 2.7.1 EU863-870 (EU868) ===
439 439  
433 +(% style="color:#037691" %)** Uplink:**
440 440  
441 -(((
442 -By default, the Device ID equal to the last 6 bytes of IMEI.
443 -)))
435 +868.1 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
447 447  
448 -
449 -)))
439 +868.5 - SF7BW125 to SF12BW125
450 450  
451 -(((
452 -(% style="color:blue" %)**Example :**
453 -)))
441 +867.1 - SF7BW125 to SF12BW125
454 454  
455 -(((
456 -AT+DEUI=A84041F15612
457 -)))
443 +867.3 - SF7BW125 to SF12BW125
458 458  
459 -(((
460 -The Device ID is stored in a none-erase area, Upgrade the firmware or run (% style="color:blue" %)**AT+FDR**(%%) won't erase Device ID.
461 -)))
445 +867.5 - SF7BW125 to SF12BW125
462 462  
447 +867.7 - SF7BW125 to SF12BW125
463 463  
464 -(% style="color:red" %)**NOTE: When the firmware version is v1.3.2 and later firmware:**
449 +867.9 - SF7BW125 to SF12BW125
465 465  
466 -(% style="color:red" %)**By default, the Device ID equal to the last 15 bits of IMEI.**
451 +868.8 - FSK
467 467  
468 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
469 469  
454 +(% style="color:#037691" %)** Downlink:**
470 470  
471 -(% style="color:blue" %)**Example :**
456 +Uplink channels 1-9 (RX1)
472 472  
473 -AT+DEUI=868411056754138
458 +869.525 - SF9BW125 (RX2 downlink only)
474 474  
475 475  
476 476  
477 -=== 2.4.2  Version Info ===
462 +=== 2.7.2 US902-928(US915) ===
478 478  
464 +Used in USA, Canada and South America. Default use CHE=2
479 479  
480 -(((
481 -Specify the software version: 0x64=100, means firmware version 1.00.
482 -)))
466 +(% style="color:#037691" %)**Uplink:**
483 483  
484 -(((
485 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
486 -)))
468 +903.9 - SF7BW125 to SF10BW125
487 487  
470 +904.1 - SF7BW125 to SF10BW125
488 488  
472 +904.3 - SF7BW125 to SF10BW125
489 489  
490 -=== 2.4. Battery Info ===
474 +904.5 - SF7BW125 to SF10BW125
491 491  
476 +904.7 - SF7BW125 to SF10BW125
492 492  
493 -(((
494 -Ex1: 0x0B45 = 2885mV
495 -)))
478 +904.9 - SF7BW125 to SF10BW125
496 496  
497 -(((
498 -Ex2: 0x0B49 = 2889mV
499 -)))
480 +905.1 - SF7BW125 to SF10BW125
500 500  
482 +905.3 - SF7BW125 to SF10BW125
501 501  
502 502  
503 -=== 2.4.4  Signal Strength ===
485 +(% style="color:#037691" %)**Downlink:**
504 504  
487 +923.3 - SF7BW500 to SF12BW500
505 505  
506 -(((
507 -NB-IoT Network signal Strength.
508 -)))
489 +923.9 - SF7BW500 to SF12BW500
509 509  
510 -(((
511 -**Ex1: 0x1d = 29**
512 -)))
491 +924.5 - SF7BW500 to SF12BW500
513 513  
514 -(((
515 -(% style="color:blue" %)**0**(%%)  -113dBm or less
516 -)))
493 +925.1 - SF7BW500 to SF12BW500
517 517  
518 -(((
519 -(% style="color:blue" %)**1**(%%)  -111dBm
520 -)))
495 +925.7 - SF7BW500 to SF12BW500
521 521  
522 -(((
523 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
524 -)))
497 +926.3 - SF7BW500 to SF12BW500
525 525  
526 -(((
527 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
528 -)))
499 +926.9 - SF7BW500 to SF12BW500
529 529  
530 -(((
531 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
532 -)))
501 +927.5 - SF7BW500 to SF12BW500
533 533  
503 +923.3 - SF12BW500(RX2 downlink only)
534 534  
535 535  
536 -=== 2.4.5  Distance ===
537 537  
507 +=== 2.7.3 CN470-510 (CN470) ===
538 538  
539 -Get the distance. Flat object range 280mm - 7500mm.
509 +Used in China, Default use CHE=1
540 540  
541 -(((
542 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
543 -)))
511 +(% style="color:#037691" %)**Uplink:**
544 544  
545 -(((
546 -(((
547 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
548 -)))
549 -)))
513 +486.3 - SF7BW125 to SF12BW125
550 550  
551 -(((
552 -
553 -)))
515 +486.5 - SF7BW125 to SF12BW125
554 554  
555 -(((
556 -
557 -)))
517 +486.7 - SF7BW125 to SF12BW125
558 558  
559 -=== 2.4.6  Digital Interrupt ===
519 +486.9 - SF7BW125 to SF12BW125
560 560  
521 +487.1 - SF7BW125 to SF12BW125
561 561  
562 -(((
563 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
564 -)))
523 +487.3 - SF7BW125 to SF12BW125
565 565  
566 -(((
567 -The command is:
568 -)))
525 +487.5 - SF7BW125 to SF12BW125
569 569  
570 -(((
571 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
572 -)))
527 +487.7 - SF7BW125 to SF12BW125
573 573  
574 574  
575 -(((
576 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
577 -)))
530 +(% style="color:#037691" %)**Downlink:**
578 578  
532 +506.7 - SF7BW125 to SF12BW125
579 579  
580 -(((
581 -Example:
582 -)))
534 +506.9 - SF7BW125 to SF12BW125
583 583  
584 -(((
585 -0x(00): Normal uplink packet.
586 -)))
536 +507.1 - SF7BW125 to SF12BW125
587 587  
588 -(((
589 -0x(01): Interrupt Uplink Packet.
590 -)))
538 +507.3 - SF7BW125 to SF12BW125
591 591  
540 +507.5 - SF7BW125 to SF12BW125
592 592  
542 +507.7 - SF7BW125 to SF12BW125
593 593  
594 -=== 2.4.7  ​+5V Output ===
544 +507.9 - SF7BW125 to SF12BW125
595 595  
546 +508.1 - SF7BW125 to SF12BW125
596 596  
597 -(((
598 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
599 -)))
548 +505.3 - SF12BW125 (RX2 downlink only)
600 600  
601 601  
602 -(((
603 -The 5V output time can be controlled by AT Command.
604 604  
605 -
606 -)))
552 +=== 2.7.4 AU915-928(AU915) ===
607 607  
608 -(((
609 -(% style="color:blue" %)**AT+5VT=1000**
554 +Default use CHE=2
610 610  
611 -
612 -)))
556 +(% style="color:#037691" %)**Uplink:**
613 613  
614 -(((
615 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
616 -)))
558 +916.8 - SF7BW125 to SF12BW125
617 617  
560 +917.0 - SF7BW125 to SF12BW125
618 618  
562 +917.2 - SF7BW125 to SF12BW125
619 619  
620 -== 2.5  Downlink Payload ==
564 +917.4 - SF7BW125 to SF12BW125
621 621  
566 +917.6 - SF7BW125 to SF12BW125
622 622  
623 -By default, NDDS75 prints the downlink payload to console port.
568 +917.8 - SF7BW125 to SF12BW125
624 624  
625 -[[image:image-20220709100028-1.png]]
570 +918.0 - SF7BW125 to SF12BW125
626 626  
572 +918.2 - SF7BW125 to SF12BW125
627 627  
628 -(((
629 -(% style="color:blue" %)**Examples:**
630 -)))
631 631  
632 -(((
633 -
634 -)))
575 +(% style="color:#037691" %)**Downlink:**
635 635  
636 -* (((
637 -(% style="color:blue" %)**Set TDC**
638 -)))
577 +923.3 - SF7BW500 to SF12BW500
639 639  
640 -(((
641 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
642 -)))
579 +923.9 - SF7BW500 to SF12BW500
643 643  
644 -(((
645 -Payload:    01 00 00 1E    TDC=30S
646 -)))
581 +924.5 - SF7BW500 to SF12BW500
647 647  
648 -(((
649 -Payload:    01 00 00 3C    TDC=60S
650 -)))
583 +925.1 - SF7BW500 to SF12BW500
651 651  
652 -(((
653 -
654 -)))
585 +925.7 - SF7BW500 to SF12BW500
655 655  
656 -* (((
657 -(% style="color:blue" %)**Reset**
658 -)))
587 +926.3 - SF7BW500 to SF12BW500
659 659  
660 -(((
661 -If payload = 0x04FF, it will reset the NDDS75
662 -)))
589 +926.9 - SF7BW500 to SF12BW500
663 663  
591 +927.5 - SF7BW500 to SF12BW500
664 664  
665 -* (% style="color:blue" %)**INTMOD**
593 +923.3 - SF12BW500(RX2 downlink only)
666 666  
667 -(((
668 -Downlink Payload: 06000003, Set AT+INTMOD=3
669 -)))
670 670  
671 671  
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
672 672  
673 -== 2.6  Distance alarm function(Since firmware v1.3.2) ==
599 +(% style="color:#037691" %)**Default Uplink channel:**
674 674  
601 +923.2 - SF7BW125 to SF10BW125
675 675  
676 -(% style="color:blue" %)** ➢ AT Command:**
603 +923.4 - SF7BW125 to SF10BW125
677 677  
678 -(% style="color:#037691" %)** AT+ LDDSALARM=min,max**
679 679  
680 -² When min=0, and max≠0, Alarm higher than max
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
681 681  
682 -² When min≠0, and max=0, Alarm lower than min
608 +(OTAA mode, channel added by JoinAccept message)
683 683  
684 -² When min≠0 and max≠0, Alarm higher than max or lower than min
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
685 685  
612 +922.2 - SF7BW125 to SF10BW125
686 686  
687 -(% style="color:blue" %)** Example:**
614 +922.4 - SF7BW125 to SF10BW125
688 688  
689 -**AT+ LDDSALARM=260,2000**  ~/~/ Alarm when distance lower than 260.
616 +922.6 - SF7BW125 to SF10BW125
690 690  
618 +922.8 - SF7BW125 to SF10BW125
691 691  
620 +923.0 - SF7BW125 to SF10BW125
692 692  
693 -== 2. Set the number of data to be uploaded and the recording time ==
622 +922.0 - SF7BW125 to SF10BW125
694 694  
695 695  
696 -(% style="color:blue" %)** AT Command:**
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
697 697  
698 -(% style="color:#037691" %)** AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
627 +923.6 - SF7BW125 to SF10BW125
699 699  
700 -(% style="color:#037691" %)** AT+NOUD=8** (%%) ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
629 +923.8 - SF7BW125 to SF10BW125
701 701  
631 +924.0 - SF7BW125 to SF10BW125
702 702  
633 +924.2 - SF7BW125 to SF10BW125
703 703  
704 -== 2. Read or Clear cached data ==
635 +924.4 - SF7BW125 to SF10BW125
705 705  
637 +924.6 - SF7BW125 to SF10BW125
706 706  
707 -(% style="color:blue" %)** ➢ AT Command:**
708 708  
709 -(% style="color:#037691" %)** AT+CDP ** (%%) ~/~/ Read cached data
640 +(% style="color:#037691" %)** Downlink:**
710 710  
642 +Uplink channels 1-8 (RX1)
711 711  
712 -[[image:image-20220908175333-2.png]]
644 +923.2 - SF10BW125 (RX2)
713 713  
714 714  
715 -(% style="color:#037691" %)** AT+CDP=0**  (%%) ~/~/ Clear cached data
716 716  
648 +=== 2.7.6 KR920-923 (KR920) ===
717 717  
650 +Default channel:
718 718  
719 -== 2. ​LED Indicator ==
652 +922.1 - SF7BW125 to SF12BW125
720 720  
654 +922.3 - SF7BW125 to SF12BW125
721 721  
722 -The NDDS75 has an internal LED which is to show the status of different state.
656 +922.5 - SF7BW125 to SF12BW125
723 723  
724 724  
725 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
726 -* Then the LED will be on for 1 second means device is boot normally.
727 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
728 -* For each uplink probe, LED will be on for 500ms.
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
729 729  
730 -(((
731 -
732 -)))
661 +922.1 - SF7BW125 to SF12BW125
733 733  
663 +922.3 - SF7BW125 to SF12BW125
734 734  
665 +922.5 - SF7BW125 to SF12BW125
735 735  
736 -== 2.10  Firmware Change Log ==
667 +922.7 - SF7BW125 to SF12BW125
737 737  
669 +922.9 - SF7BW125 to SF12BW125
738 738  
739 -(((
740 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
741 -)))
671 +923.1 - SF7BW125 to SF12BW125
742 742  
743 -(((
744 -
745 -)))
673 +923.3 - SF7BW125 to SF12BW125
746 746  
747 -(((
748 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
749 -)))
750 750  
676 +(% style="color:#037691" %)**Downlink:**
751 751  
678 +Uplink channels 1-7(RX1)
752 752  
753 -== 2.11  ​Battery Analysis ==
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
754 754  
755 755  
756 -=== 2.11.1  ​Battery Type ===
757 757  
684 +=== 2.7.7 IN865-867 (IN865) ===
758 758  
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
759 759  (((
760 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
761 761  )))
723 +)))
762 762  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
763 763  (((
764 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
765 765  )))
766 766  
767 767  (((
768 -The battery related documents as below:
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
769 769  )))
770 770  
771 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
772 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
773 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
774 774  
738 +== 2.10 ​Firmware Change Log ==
739 +
775 775  (((
776 -[[image:image-20220709101450-2.png]]
741 +**Firmware download link:**
777 777  )))
778 778  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
779 779  
748 +(((
749 +
750 +)))
780 780  
781 -=== 2.11.2  Power consumption Analyze ===
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
782 782  
756 +(((
757 +
758 +)))
783 783  
784 784  (((
785 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +**V1.0.**
786 786  )))
787 787  
764 +(((
765 +Release
766 +)))
788 788  
768 +
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
789 789  (((
790 -Instruction to use as below:
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
791 791  )))
792 792  
793 793  (((
794 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
778 +The battery is designed to last for more than 5 years for the LSN50.
795 795  )))
796 796  
797 -
798 798  (((
799 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
800 800  )))
785 +)))
801 801  
802 802  * (((
803 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
804 804  )))
805 805  * (((
806 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
807 807  )))
808 808  * (((
809 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
810 810  )))
811 811  
812 -(((
813 -And the Life expectation in difference case will be shown on the right.
814 -)))
797 + [[image:image-20220610172436-1.png]]
815 815  
816 -[[image:image-20220709110451-3.png]]
817 817  
818 818  
801 +=== 2.11.2 ​Battery Note ===
819 819  
820 -=== 2.11.3  ​Battery Note ===
821 -
822 -
823 823  (((
824 824  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
825 825  )))
... ... @@ -826,217 +826,326 @@
826 826  
827 827  
828 828  
829 -=== 2.11. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
830 830  
811 +(((
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
813 +)))
831 831  
832 832  (((
833 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
834 834  )))
835 835  
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
836 836  
837 837  
838 -= 3. ​ Access NB-IoT Module =
839 839  
825 += 3. ​Using the AT Commands =
840 840  
841 -(((
842 -Users can directly access the AT command set of the NB-IoT module.
843 -)))
827 +== 3.1 Access AT Commands ==
844 844  
845 -(((
846 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
847 847  
848 -
849 -)))
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
850 850  
851 -[[image:1657333200519-600.png]]
832 +[[image:1654501986557-872.png||height="391" width="800"]]
852 852  
853 853  
835 +Or if you have below board, use below connection:
854 854  
855 -= 4.  Using the AT Commands =
856 856  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
857 857  
858 -== 4.1  Access AT Commands ==
859 859  
860 860  
861 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
862 862  
863 863  
864 -AT+<CMD>?  : Help on <CMD>
845 + [[image:1654502050864-459.png||height="564" width="806"]]
865 865  
866 -AT+<CMD>         : Run <CMD>
867 867  
868 -AT+<CMD>=<value> : Set the value
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
869 869  
870 -AT+<CMD>=?  : Get the value
871 871  
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
872 872  
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
873 873  (% style="color:#037691" %)**General Commands**(%%)      
874 874  
875 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
876 876  
877 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
878 878  
879 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
880 880  
881 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
882 882  
883 -AT+CFG  : Print all configurations
884 884  
885 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
886 886  
887 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
888 888  
889 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
890 890  
891 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
892 892  
893 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
894 894  
895 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
896 896  
897 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
898 898  
899 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
900 900  
901 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
902 902  
903 -AT+TR      : Get or Set record time"
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
904 904  
905 -AT+AP    : Get or set the APN
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
906 906  
907 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
908 908  
909 -AT+DNSCFG  : Get or Set DNS Server
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
910 910  
911 -AT+GETSENSORVALUE   : Returns the current sensor measurement
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
912 912  
913 -AT+NOUD      : Get or Set the number of data to be uploaded
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
914 914  
915 -AT+CDP     : Read or Clear cached data
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
916 916  
917 -AT+LDDSALARM : Get or Set alarm of distance
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
918 918  
919 919  
920 -(% style="color:#037691" %)**COAP Management**      
906 +(% style="color:#037691" %)**LoRa Network Management**
921 921  
922 -AT+URI            : Resource parameters
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
923 923  
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
924 924  
925 -(% style="color:#037691" %)**UDP Management**
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
926 926  
927 -AT+CFM          : Upload confirmation mode (only valid for UDP)
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
928 928  
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
929 929  
930 -(% style="color:#037691" %)**MQTT Management**
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
931 931  
932 -AT+CLIENT               : Get or Set MQTT client
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
933 933  
934 -AT+UNAME  : Get or Set MQTT Username
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
935 935  
936 -AT+PWD                  : Get or Set MQTT password
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
937 937  
938 -AT+PUBTOPIC  : Get or Set MQTT publish topic
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
939 939  
940 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
941 941  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
942 942  
943 -(% style="color:#037691" %)**Information**          
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
944 944  
945 -AT+FDR  : Factory Data Reset
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
946 946  
947 -AT+PWORD  : Serial Access Password
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
948 948  
949 949  
939 +(% style="color:#037691" %)**Information** 
950 950  
951 -= ​5.  FAQ =
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
952 952  
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
953 953  
954 -== 5.1 How to Upgrade Firmware ==
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
955 955  
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
956 956  
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
957 957  (((
958 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
959 959  )))
960 960  
961 961  (((
962 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
963 963  )))
964 964  
965 965  (((
966 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
967 967  )))
968 968  
973 +(((
974 +
975 +)))
969 969  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
970 970  
971 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
972 972  
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
973 973  
974 -== 6.1  ​Connection problem when uploading firmware ==
989 +[[image:image-20220606154726-3.png]]
975 975  
976 976  
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
977 977  (((
978 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
979 979  )))
980 980  
981 -(% class="wikigeneratedid" %)
982 982  (((
983 983  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
984 984  )))
985 985  
1017 +(((
1018 +
1019 +)))
986 986  
987 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
988 988  
1025 +[[image:image-20220606154825-4.png]]
989 989  
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
990 990  (((
991 991  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
992 992  
993 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
994 994  )))
995 995  
996 996  
997 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
998 998  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
999 999  
1000 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
1001 1001  
1002 1002  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
1003 1003  (% class="wikigeneratedid" %)
1004 1004  (((
1005 1005  
1006 1006  )))
1007 1007  
1008 -= 8.  Packing Info =
1095 += 7. Packing Info =
1009 1009  
1010 1010  (((
1011 1011  
1012 1012  
1013 1013  (% style="color:#037691" %)**Package Includes**:
1101 +)))
1014 1014  
1015 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
1016 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1017 1017  )))
1018 1018  
1019 1019  (((
1020 1020  
1021 1021  
1022 -
1023 1023  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
1024 1024  
1025 -* Device Size: 13.0 x 5 x 4.5 cm
1026 -* Device Weight: 150g
1027 -* Package Size / pcs : 15 x 12x 5.5 cm
1028 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
1029 1029  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
1030 1030  
1031 -(((
1032 1032  
1033 -
1034 -
1035 -
1036 1036  )))
1037 1037  
1038 -= 9.  Support =
1128 += 8. Support =
1039 1039  
1040 -
1041 1041  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1042 1042  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content