Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 104.1
edited by Edwin Chen
on 2022/09/08 23:13
Change comment: There is no comment for this version
To version 56.4
edited by Xiaoling
on 2022/07/08 11:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,73 +1,61 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
... ... @@ -88,119 +88,91 @@
88 88  * - B20 @H-FDD: 800MHz
89 89  * - B28 @H-FDD: 700MHz
90 90  
91 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
100 100  
101 -* STOP Mode: 10uA @ 3.3v
102 -* Max transmit power: 350mA@3.3v
103 103  
86 +
104 104  == ​1.4  Applications ==
105 105  
106 -
107 -* Smart Buildings & Home Automation
108 -* Logistics and Supply Chain Management
109 -* Smart Metering
110 110  * Smart Agriculture
111 -* Smart Cities
112 -* Smart Factory
113 113  
114 114  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
115 115  ​
116 116  
117 -
118 -
119 -
120 120  == 1.5  Pin Definitions ==
121 121  
122 122  
123 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
124 124  
125 125  
126 126  
127 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
128 128  
129 -
130 130  == 2.1  How it works ==
131 131  
132 132  
133 133  (((
134 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
135 135  )))
136 136  
137 137  
138 138  (((
139 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
140 140  )))
141 141  
142 -(((
143 -
144 -)))
115 +[[image:image-20220708101605-2.png]]
145 145  
146 -[[image:1657328659945-416.png]]
147 -
148 148  (((
149 149  
150 150  )))
151 151  
152 152  
153 -== 2.2 ​ Configure the NDDS75 ==
154 154  
123 +== 2.2 ​ Configure the NSE01 ==
155 155  
125 +
156 156  === 2.2.1 Test Requirement ===
157 157  
158 158  
159 -(((
160 -To use NDDS75 in your city, make sure meet below requirements:
161 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
162 162  
163 163  * Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
165 165  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
167 167  (((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
169 169  )))
170 170  
171 171  
172 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
173 173  
174 174  
175 175  
176 176  === 2.2.2 Insert SIM card ===
177 177  
178 -
179 -(((
180 180  Insert the NB-IoT Card get from your provider.
181 -)))
182 182  
183 -(((
184 184  User need to take out the NB-IoT module and insert the SIM card like below:
185 -)))
186 186  
187 187  
188 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
189 189  
190 190  
191 191  
192 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
193 193  
194 -
195 195  (((
196 196  (((
197 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
198 198  )))
199 199  )))
200 200  
201 -[[image:image-20220709092052-2.png]]
202 202  
203 -
204 204  **Connection:**
205 205  
206 206   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -212,95 +212,87 @@
212 212  
213 213  In the PC, use below serial tool settings:
214 214  
215 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
216 216  * Data bits:** (% style="color:green" %)8(%%)**
217 217  * Stop bits: (% style="color:green" %)**1**
218 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
219 219  * Flow Control: (% style="color:green" %)**None**
220 220  
221 221  (((
222 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
223 223  )))
224 224  
225 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
226 226  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
227 227  
228 -(((
229 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
230 -)))
231 231  
232 232  
233 -
234 234  === 2.2.4 Use CoAP protocol to uplink data ===
235 235  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
236 236  
237 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
238 238  
239 -
240 -(((
241 241  **Use below commands:**
242 -)))
243 243  
244 -* (((
245 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
246 -)))
247 -* (((
248 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
249 -)))
250 -* (((
251 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
252 252  
253 253  
254 -
255 -)))
256 256  
257 -(((
258 258  For parameter description, please refer to AT command set
259 -)))
260 260  
261 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
262 262  
263 263  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
264 264  
265 -(((
266 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
267 -)))
211 +[[image:1657249831934-534.png]]
268 268  
269 -[[image:1657330472797-498.png]]
270 270  
271 271  
272 -
273 273  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
274 274  
217 +This feature is supported since firmware version v1.0.1
275 275  
276 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
277 277  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
278 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
279 279  
280 -[[image:1657330501006-241.png]]
281 281  
282 282  
283 -[[image:1657330533775-472.png]]
226 +[[image:1657249864775-321.png]]
284 284  
285 285  
286 286  
230 +[[image:1657249930215-289.png]]
231 +
232 +
233 +
287 287  === 2.2.6 Use MQTT protocol to uplink data ===
288 288  
236 +This feature is supported since firmware version v110
289 289  
290 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
291 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
292 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
293 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
294 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
295 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
296 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
297 297  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 +
247 +
248 +
298 298  [[image:1657249978444-674.png]]
299 299  
300 300  
301 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
302 302  
303 303  
255 +
304 304  (((
305 305  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
306 306  )))
... ... @@ -309,487 +309,665 @@
309 309  
310 310  === 2.2.7 Use TCP protocol to uplink data ===
311 311  
264 +This feature is supported since firmware version v110
312 312  
266 +
313 313  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
314 314  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
315 315  
316 -[[image:image-20220709093918-1.png]]
270 +[[image:1657250217799-140.png]]
317 317  
318 318  
319 -[[image:image-20220709093918-2.png]]
273 +[[image:1657250255956-604.png]]
320 320  
321 321  
322 -
323 323  === 2.2.8 Change Update Interval ===
324 324  
325 -
326 326  User can use below command to change the (% style="color:green" %)**uplink interval**.
327 327  
328 328  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
329 329  
282 +
330 330  (((
331 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 1 hour.**
284 +(% style="color:red" %)**NOTE:**
285 +)))
332 332  
333 -
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
334 334  )))
335 335  
336 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
337 337  
338 -**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
339 339  
293 +== 2.3 Uplink Payload ==
340 340  
341 -== 2.3  Uplink Payload ==
342 342  
296 +=== 2.3.1 MOD~=0(Default Mode) ===
343 343  
344 -=== 2.3.1 Before Firmware 1.3.2 ===
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
345 345  
346 -In this mode, uplink payload includes in total 14 bytes
300 +(((
301 +Uplink payload includes in total 11 bytes.
302 +)))
347 347  
348 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
349 -|=(% style="width: 60px;" %)(((
350 -**Size(bytes)**
351 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
352 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
353 353  
354 -(((
355 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
312 +
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
316 +
317 +(Optional)
356 356  )))
357 357  
320 +=== 2.3.2 MOD~=1(Original value) ===
358 358  
359 -[[image:1657331036973-987.png]]
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
360 360  
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
361 361  
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
332 +
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
336 +
337 +(Optional)
338 +)))
339 +
340 +=== 2.3.3 Battery Info ===
341 +
362 362  (((
363 -The payload is ASCII string, representative same HEX:
343 +Check the battery voltage for LSE01.
364 364  )))
365 365  
366 366  (((
367 -0x72403155615900640c6c19029200 where:
347 +Ex1: 0x0B45 = 2885mV
368 368  )))
369 369  
370 -* (((
371 -Device ID: 0x724031556159 = 724031556159
350 +(((
351 +Ex2: 0x0B49 = 2889mV
372 372  )))
373 -* (((
374 -Version: 0x0064=100=1.0.0
353 +
354 +
355 +
356 +=== 2.3.4 Soil Moisture ===
357 +
358 +(((
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
375 375  )))
376 376  
377 -* (((
378 -BAT: 0x0c6c = 3180 mV = 3.180V
362 +(((
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
379 379  )))
380 -* (((
381 -Signal: 0x19 = 25
382 -)))
383 -* (((
384 -Distance: 0x0292= 658 mm
385 -)))
386 -* (((
387 -Interrupt: 0x00 = 0
388 388  
366 +(((
389 389  
390 390  )))
391 391  
392 -=== **2.3.2 Since firmware v1.3.2** ===
370 +(((
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
372 +)))
393 393  
394 -In this mode, uplink payload includes 69 bytes in total by default.
395 395  
396 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
397 397  
398 -|**Size(bytes)**|**8**|2|2|1|1|1|2|4|2|4
399 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Distance|Timestamp|Distance|Timestamp.......
376 +=== 2.3.5 Soil Temperature ===
400 400  
401 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
378 +(((
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
380 +)))
402 402  
403 -[[image:image-20220908175246-1.png]]
382 +(((
383 +**Example**:
384 +)))
404 404  
405 -The payload is ASCII string, representative same HEX:
386 +(((
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
388 +)))
406 406  
407 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
390 +(((
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
392 +)))
408 408  
409 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
410 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
411 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
412 -* (% style="color:blue" %)Singal: 0x1e = 30
413 -* (% style="color:red" %)Mod: 0x01 = 1
414 -* Interrupt: 0x00= 0
415 -* Distance: 0x0039= 57 = 57
416 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
417 -* Distance,Time stamp : 00396319baf0
418 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
419 419  
420 -== 2.4  Payload Explanation and Sensor Interface ==
421 421  
396 +=== 2.3.6 Soil Conductivity (EC) ===
422 422  
423 -=== 2.4.1  Device ID ===
424 -
425 -
426 426  (((
427 -By default, the Device ID equal to the last 6 bytes of IMEI.
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
428 428  )))
429 429  
430 430  (((
431 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
432 -
433 -
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
434 434  )))
435 435  
436 436  (((
437 -**Example:**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
438 438  )))
439 439  
440 440  (((
441 -AT+DEUI=A84041F15612
411 +
442 442  )))
443 443  
444 444  (((
445 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
415 +
446 446  )))
447 447  
418 +=== 2.3.7 MOD ===
448 448  
449 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
420 +Firmware version at least v2.1 supports changing mode.
450 450  
451 -By default, the Device ID equal to the last 15 bits of IMEI.
422 +For example, bytes[10]=90
452 452  
453 -User can use **AT+DEUI** to set Device ID
424 +mod=(bytes[10]>>7)&0x01=1.
454 454  
455 -**Example:**
456 456  
457 -AT+DEUI=868411056754138
427 +**Downlink Command:**
458 458  
459 -=== 2.4.2  Version Info ===
429 +If payload = 0x0A00, workmode=0
460 460  
431 +If** **payload =** **0x0A01, workmode=1
461 461  
462 -(((
463 -Specify the software version: 0x64=100, means firmware version 1.00.
464 -)))
465 465  
466 -(((
467 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
468 -)))
469 469  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
470 470  
437 +While using TTN network, you can add the payload format to decode the payload.
471 471  
472 -=== 2.4.3  Battery Info ===
473 473  
440 +[[image:1654505570700-128.png]]
474 474  
475 475  (((
476 -Ex1: 0x0B45 = 2885mV
443 +The payload decoder function for TTN is here:
477 477  )))
478 478  
479 479  (((
480 -Ex2: 0x0B49 = 2889mV
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
481 481  )))
482 482  
483 483  
451 +== 2.4 Uplink Interval ==
484 484  
485 -=== 2.4. Signal Strength ===
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
486 486  
487 487  
456 +
457 +== 2.5 Downlink Payload ==
458 +
459 +By default, LSE50 prints the downlink payload to console port.
460 +
461 +[[image:image-20220606165544-8.png]]
462 +
463 +
488 488  (((
489 -NB-IoT Network signal Strength.
465 +(% style="color:blue" %)**Examples:**
490 490  )))
491 491  
492 492  (((
493 -**Ex1: 0x1d = 29**
469 +
494 494  )))
495 495  
472 +* (((
473 +(% style="color:blue" %)**Set TDC**
474 +)))
475 +
496 496  (((
497 -(% style="color:blue" %)**0**(%%)  -113dBm or less
477 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
498 498  )))
499 499  
500 500  (((
501 -(% style="color:blue" %)**1**(%%)  -111dBm
481 +Payload:    01 00 00 1E    TDC=30S
502 502  )))
503 503  
504 504  (((
505 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
485 +Payload:    01 00 00 3C    TDC=60S
506 506  )))
507 507  
508 508  (((
509 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
489 +
510 510  )))
511 511  
492 +* (((
493 +(% style="color:blue" %)**Reset**
494 +)))
495 +
512 512  (((
513 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
497 +If payload = 0x04FF, it will reset the LSE01
514 514  )))
515 515  
516 516  
501 +* (% style="color:blue" %)**CFM**
517 517  
518 -=== 2.4.5  Distance ===
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
519 519  
520 520  
521 -Get the distance. Flat object range 280mm - 7500mm.
522 522  
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
523 523  (((
524 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
525 525  )))
526 526  
527 527  (((
528 -(((
529 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
514 +
530 530  )))
531 -)))
532 532  
533 533  (((
534 -
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
535 535  )))
536 536  
537 537  (((
538 -
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
539 539  )))
540 540  
541 -=== 2.4.6  Digital Interrupt ===
542 542  
526 +[[image:1654505857935-743.png]]
543 543  
544 -(((
545 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
546 -)))
547 547  
548 -(((
549 -The command is:
550 -)))
529 +[[image:1654505874829-548.png]]
551 551  
552 -(((
553 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
554 -)))
555 555  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
556 556  
557 -(((
558 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
559 -)))
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
560 560  
561 561  
562 -(((
563 -Example:
564 -)))
537 +[[image:1654505905236-553.png]]
565 565  
566 -(((
567 -0x(00): Normal uplink packet.
568 -)))
569 569  
570 -(((
571 -0x(01): Interrupt Uplink Packet.
572 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
573 573  
542 +[[image:1654505925508-181.png]]
574 574  
575 575  
576 -=== 2.4.7  ​+5V Output ===
577 577  
546 +== 2.7 Frequency Plans ==
578 578  
579 -(((
580 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
581 -)))
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
582 582  
583 583  
584 -(((
585 -The 5V output time can be controlled by AT Command.
551 +=== 2.7.1 EU863-870 (EU868) ===
586 586  
587 -
588 -)))
553 +(% style="color:#037691" %)** Uplink:**
589 589  
590 -(((
591 -(% style="color:blue" %)**AT+5VT=1000**
555 +868.1 - SF7BW125 to SF12BW125
592 592  
593 -
594 -)))
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
595 595  
596 -(((
597 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
598 -)))
559 +868.5 - SF7BW125 to SF12BW125
599 599  
561 +867.1 - SF7BW125 to SF12BW125
600 600  
563 +867.3 - SF7BW125 to SF12BW125
601 601  
602 -== 2.5  Downlink Payload ==
565 +867.5 - SF7BW125 to SF12BW125
603 603  
567 +867.7 - SF7BW125 to SF12BW125
604 604  
605 -By default, NDDS75 prints the downlink payload to console port.
569 +867.9 - SF7BW125 to SF12BW125
606 606  
607 -[[image:image-20220709100028-1.png]]
571 +868.8 - FSK
608 608  
609 609  
610 -(((
611 -(% style="color:blue" %)**Examples:**
612 -)))
574 +(% style="color:#037691" %)** Downlink:**
613 613  
614 -(((
615 -
616 -)))
576 +Uplink channels 1-9 (RX1)
617 617  
618 -* (((
619 -(% style="color:blue" %)**Set TDC**
620 -)))
578 +869.525 - SF9BW125 (RX2 downlink only)
621 621  
622 -(((
623 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
624 -)))
625 625  
626 -(((
627 -Payload:    01 00 00 1E    TDC=30S
628 -)))
629 629  
630 -(((
631 -Payload:    01 00 00 3C    TDC=60S
632 -)))
582 +=== 2.7.2 US902-928(US915) ===
633 633  
634 -(((
635 -
636 -)))
584 +Used in USA, Canada and South America. Default use CHE=2
637 637  
638 -* (((
639 -(% style="color:blue" %)**Reset**
640 -)))
586 +(% style="color:#037691" %)**Uplink:**
641 641  
642 -(((
643 -If payload = 0x04FF, it will reset the NDDS75
644 -)))
588 +903.9 - SF7BW125 to SF10BW125
645 645  
590 +904.1 - SF7BW125 to SF10BW125
646 646  
647 -* (% style="color:blue" %)**INTMOD**
592 +904.3 - SF7BW125 to SF10BW125
648 648  
649 -(((
650 -Downlink Payload: 06000003, Set AT+INTMOD=3
651 -)))
594 +904.5 - SF7BW125 to SF10BW125
652 652  
596 +904.7 - SF7BW125 to SF10BW125
653 653  
654 -== 2.6 Distance alarm function(Since firmware v1.3.2) ==
598 +904.9 - SF7BW125 to SF10BW125
655 655  
656 - AT Command:
600 +905.1 - SF7BW125 to SF10BW125
657 657  
658 -AT+ LDDSALARM=min,max
602 +905.3 - SF7BW125 to SF10BW125
659 659  
660 -² When min=0, and max≠0, Alarm higher than max
661 661  
662 -² When min≠0, and max=0, Alarm lower than min
605 +(% style="color:#037691" %)**Downlink:**
663 663  
664 -² When min≠0 and max≠0, Alarm higher than max or lower than min
607 +923.3 - SF7BW500 to SF12BW500
665 665  
666 -Example:
609 +923.9 - SF7BW500 to SF12BW500
667 667  
668 -AT+ LDDSALARM=260,2000 ~/~/ Alarm when distance lower than 260.
611 +924.5 - SF7BW500 to SF12BW500
669 669  
613 +925.1 - SF7BW500 to SF12BW500
670 670  
671 -== 2.7 Set the number of data to be uploaded and the recording time ==
615 +925.7 - SF7BW500 to SF12BW500
672 672  
673 - AT Command:
617 +926.3 - SF7BW500 to SF12BW500
674 674  
675 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
619 +926.9 - SF7BW500 to SF12BW500
676 676  
677 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
621 +927.5 - SF7BW500 to SF12BW500
678 678  
679 -== 2.8 Read or Clear cached data ==
623 +923.3 - SF12BW500(RX2 downlink only)
680 680  
681 -➢ AT Command:
682 682  
683 -AT+CDP ~/~/ Read cached data
684 684  
685 -[[image:image-20220908175333-2.png]]
627 +=== 2.7.3 CN470-510 (CN470) ===
686 686  
687 -AT+CDP=0 ~/~/ Clear cached data
629 +Used in China, Default use CHE=1
688 688  
689 -== 2.9  ​LED Indicator ==
631 +(% style="color:#037691" %)**Uplink:**
690 690  
633 +486.3 - SF7BW125 to SF12BW125
691 691  
692 -The NDDS75 has an internal LED which is to show the status of different state.
635 +486.5 - SF7BW125 to SF12BW125
693 693  
637 +486.7 - SF7BW125 to SF12BW125
694 694  
695 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
696 -* Then the LED will be on for 1 second means device is boot normally.
697 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
698 -* For each uplink probe, LED will be on for 500ms.
639 +486.9 - SF7BW125 to SF12BW125
699 699  
700 -(((
701 -
702 -)))
641 +487.1 - SF7BW125 to SF12BW125
703 703  
643 +487.3 - SF7BW125 to SF12BW125
704 704  
645 +487.5 - SF7BW125 to SF12BW125
705 705  
706 -== 2.10  Firmware Change Log ==
647 +487.7 - SF7BW125 to SF12BW125
707 707  
708 708  
709 -(((
710 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
711 -)))
650 +(% style="color:#037691" %)**Downlink:**
712 712  
713 -(((
714 -
715 -)))
652 +506.7 - SF7BW125 to SF12BW125
716 716  
717 -(((
718 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
719 -)))
654 +506.9 - SF7BW125 to SF12BW125
720 720  
656 +507.1 - SF7BW125 to SF12BW125
721 721  
658 +507.3 - SF7BW125 to SF12BW125
722 722  
723 -== 2.11  Battery Analysis ==
660 +507.5 - SF7BW125 to SF12BW125
724 724  
662 +507.7 - SF7BW125 to SF12BW125
725 725  
726 -=== 2.11.1  Battery Type ===
664 +507.9 - SF7BW125 to SF12BW125
727 727  
666 +508.1 - SF7BW125 to SF12BW125
728 728  
668 +505.3 - SF12BW125 (RX2 downlink only)
669 +
670 +
671 +
672 +=== 2.7.4 AU915-928(AU915) ===
673 +
674 +Default use CHE=2
675 +
676 +(% style="color:#037691" %)**Uplink:**
677 +
678 +916.8 - SF7BW125 to SF12BW125
679 +
680 +917.0 - SF7BW125 to SF12BW125
681 +
682 +917.2 - SF7BW125 to SF12BW125
683 +
684 +917.4 - SF7BW125 to SF12BW125
685 +
686 +917.6 - SF7BW125 to SF12BW125
687 +
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
729 729  (((
730 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
731 731  )))
843 +)))
732 732  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
733 733  (((
734 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
735 735  )))
736 736  
737 737  (((
738 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
739 739  )))
740 740  
741 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
742 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
743 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
744 744  
858 +== 2.10 ​Firmware Change Log ==
859 +
745 745  (((
746 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
747 747  )))
748 748  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
749 749  
868 +(((
869 +
870 +)))
750 750  
751 -=== 2.11.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
752 752  
876 +(((
877 +
878 +)))
753 753  
754 754  (((
755 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
881 +**V1.0.**
756 756  )))
757 757  
884 +(((
885 +Release
886 +)))
758 758  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
759 759  (((
760 -Instruction to use as below:
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
761 761  )))
762 762  
763 763  (((
764 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
898 +The battery is designed to last for more than 5 years for the LSN50.
765 765  )))
766 766  
767 -
768 768  (((
769 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
770 770  )))
905 +)))
771 771  
772 772  * (((
773 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
774 774  )))
775 775  * (((
776 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 777  )))
778 778  * (((
779 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
780 780  )))
781 781  
782 -(((
783 -And the Life expectation in difference case will be shown on the right.
784 -)))
917 + [[image:image-20220610172436-1.png]]
785 785  
786 -[[image:image-20220709110451-3.png]]
787 787  
788 788  
921 +=== 2.11.2 ​Battery Note ===
789 789  
790 -=== 2.11.3  ​Battery Note ===
791 -
792 -
793 793  (((
794 794  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
795 795  )))
... ... @@ -796,217 +796,326 @@
796 796  
797 797  
798 798  
799 -=== 2.11. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
800 800  
931 +(((
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
933 +)))
801 801  
802 802  (((
803 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
804 804  )))
805 805  
939 +(((
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
941 +)))
806 806  
807 807  
808 -= 3. ​ Access NB-IoT Module =
809 809  
945 += 3. ​Using the AT Commands =
810 810  
811 -(((
812 -Users can directly access the AT command set of the NB-IoT module.
813 -)))
947 +== 3.1 Access AT Commands ==
814 814  
815 -(((
816 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
817 817  
818 -
819 -)))
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
820 820  
821 -[[image:1657333200519-600.png]]
952 +[[image:1654501986557-872.png||height="391" width="800"]]
822 822  
823 823  
955 +Or if you have below board, use below connection:
824 824  
825 -= 4.  Using the AT Commands =
826 826  
958 +[[image:1654502005655-729.png||height="503" width="801"]]
827 827  
828 -== 4.1  Access AT Commands ==
829 829  
830 830  
831 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
832 832  
833 833  
834 -AT+<CMD>?  : Help on <CMD>
965 + [[image:1654502050864-459.png||height="564" width="806"]]
835 835  
836 -AT+<CMD>         : Run <CMD>
837 837  
838 -AT+<CMD>=<value> : Set the value
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
839 839  
840 -AT+<CMD>=?  : Get the value
841 841  
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
842 842  
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
843 843  (% style="color:#037691" %)**General Commands**(%%)      
844 844  
845 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
846 846  
847 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
848 848  
849 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
850 850  
851 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
852 852  
853 -AT+CFG  : Print all configurations
854 854  
855 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
856 856  
857 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
858 858  
859 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
860 860  
861 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
862 862  
863 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
864 864  
865 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
866 866  
867 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
868 868  
869 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
870 870  
871 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
872 872  
873 -AT+TR      : Get or Set record time"
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
874 874  
875 -AT+AP    : Get or set the APN
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
876 876  
877 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
878 878  
879 -AT+DNSCFG  : Get or Set DNS Server
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
880 880  
881 -AT+GETSENSORVALUE   : Returns the current sensor measurement
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
882 882  
883 -AT+NOUD      : Get or Set the number of data to be uploaded
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
884 884  
885 -AT+CDP     : Read or Clear cached data
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
886 886  
887 -AT+LDDSALARM : Get or Set alarm of distance
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
888 888  
889 889  
890 -(% style="color:#037691" %)**COAP Management**      
1026 +(% style="color:#037691" %)**LoRa Network Management**
891 891  
892 -AT+URI            : Resource parameters
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
893 893  
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
894 894  
895 -(% style="color:#037691" %)**UDP Management**
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
896 896  
897 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
898 898  
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
899 899  
900 -(% style="color:#037691" %)**MQTT Management**
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
901 901  
902 -AT+CLIENT               : Get or Set MQTT client
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
903 903  
904 -AT+UNAME  : Get or Set MQTT Username
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
905 905  
906 -AT+PWD                  : Get or Set MQTT password
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
907 907  
908 -AT+PUBTOPIC  : Get or Set MQTT publish topic
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
909 909  
910 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
911 911  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
912 912  
913 -(% style="color:#037691" %)**Information**          
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 914  
915 -AT+FDR  : Factory Data Reset
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 916  
917 -AT+PWORD  : Serial Access Password
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 918  
919 919  
1059 +(% style="color:#037691" %)**Information** 
920 920  
921 -= ​5.  FAQ =
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
922 922  
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
923 923  
924 -== 5.1 How to Upgrade Firmware ==
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
925 925  
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
926 926  
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
927 927  (((
928 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
929 929  )))
930 930  
931 931  (((
932 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
933 933  )))
934 934  
935 935  (((
936 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
937 937  )))
938 938  
1093 +(((
1094 +
1095 +)))
939 939  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
940 940  
941 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
942 942  
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
943 943  
944 -== 6.1  ​Connection problem when uploading firmware ==
1109 +[[image:image-20220606154726-3.png]]
945 945  
946 946  
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
947 947  (((
948 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
949 949  )))
950 950  
951 -(% class="wikigeneratedid" %)
952 952  (((
953 953  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
954 954  )))
955 955  
1137 +(((
1138 +
1139 +)))
956 956  
957 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
958 958  
1145 +[[image:image-20220606154825-4.png]]
959 959  
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
960 960  (((
961 961  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
962 962  
963 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
964 964  )))
965 965  
966 966  
967 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
968 968  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
969 969  
970 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
971 971  
972 972  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
973 973  (% class="wikigeneratedid" %)
974 974  (((
975 975  
976 976  )))
977 977  
978 -= 8.  Packing Info =
1215 += 7. Packing Info =
979 979  
980 980  (((
981 981  
982 982  
983 983  (% style="color:#037691" %)**Package Includes**:
1221 +)))
984 984  
985 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
986 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
987 987  )))
988 988  
989 989  (((
990 990  
991 991  
992 -
993 993  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
994 994  
995 -* Device Size: 13.0 x 5 x 4.5 cm
996 -* Device Weight: 150g
997 -* Package Size / pcs : 15 x 12x 5.5 cm
998 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
999 999  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
1000 1000  
1001 -(((
1002 1002  
1003 -
1004 -
1005 -
1006 1006  )))
1007 1007  
1008 -= 9.  Support =
1248 += 8. Support =
1009 1009  
1010 -
1011 1011  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1012 1012  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content