Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 103.1
edited by David Huang
on 2022/09/08 18:02
Change comment: There is no comment for this version
To version 62.2
edited by Xiaoling
on 2022/07/08 14:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.David
1 +XWiki.Xiaoling
Content
... ... @@ -1,77 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 -
75 75  == 1.3  Specification ==
76 76  
77 77  
... ... @@ -89,120 +89,91 @@
89 89  * - B20 @H-FDD: 800MHz
90 90  * - B28 @H-FDD: 700MHz
91 91  
92 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
104 104  
105 105  
106 106  == ​1.4  Applications ==
107 107  
108 -
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 112  * Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
115 115  
116 116  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 117  ​
118 118  
119 -
120 -
121 -
122 122  == 1.5  Pin Definitions ==
123 123  
124 124  
125 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
126 126  
127 127  
128 128  
129 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
130 130  
131 -
132 132  == 2.1  How it works ==
133 133  
134 134  
135 135  (((
136 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
137 137  )))
138 138  
139 139  
140 140  (((
141 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
142 142  )))
143 143  
144 -(((
145 -
146 -)))
115 +[[image:image-20220708101605-2.png]]
147 147  
148 -[[image:1657328659945-416.png]]
149 -
150 150  (((
151 151  
152 152  )))
153 153  
154 154  
155 -== 2.2 ​ Configure the NDDS75 ==
156 156  
123 +== 2.2 ​ Configure the NSE01 ==
157 157  
125 +
158 158  === 2.2.1 Test Requirement ===
159 159  
160 160  
161 -(((
162 -To use NDDS75 in your city, make sure meet below requirements:
163 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
164 164  
165 165  * Your local operator has already distributed a NB-IoT Network there.
166 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
167 167  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
168 168  
169 169  (((
170 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
171 171  )))
172 172  
173 173  
174 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
175 175  
176 176  
177 177  
178 178  === 2.2.2 Insert SIM card ===
179 179  
180 -
181 -(((
182 182  Insert the NB-IoT Card get from your provider.
183 -)))
184 184  
185 -(((
186 186  User need to take out the NB-IoT module and insert the SIM card like below:
187 -)))
188 188  
189 189  
190 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
191 191  
192 192  
193 193  
194 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
195 195  
196 -
197 197  (((
198 198  (((
199 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
200 200  )))
201 201  )))
202 202  
203 -[[image:image-20220709092052-2.png]]
204 204  
205 -
206 206  **Connection:**
207 207  
208 208   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -221,86 +221,70 @@
221 221  * Flow Control: (% style="color:green" %)**None**
222 222  
223 223  (((
224 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
225 225  )))
226 226  
227 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
228 228  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
229 229  
230 -(((
231 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
232 -)))
233 233  
234 234  
235 -
236 236  === 2.2.4 Use CoAP protocol to uplink data ===
237 237  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
238 238  
239 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
240 240  
241 -
242 -(((
243 243  **Use below commands:**
244 -)))
245 245  
246 -* (((
247 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
248 -)))
249 -* (((
250 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
251 -)))
252 -* (((
253 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
255 -
256 -
257 -)))
258 -
259 -(((
260 260  For parameter description, please refer to AT command set
261 -)))
262 262  
263 -[[image:1657330452568-615.png]]
204 +[[image:1657249793983-486.png]]
264 264  
265 265  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
266 266  
267 -(((
268 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
269 -)))
209 +[[image:1657249831934-534.png]]
270 270  
271 -[[image:1657330472797-498.png]]
272 272  
273 273  
274 -
275 275  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
276 276  
215 +This feature is supported since firmware version v1.0.1
277 277  
278 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
217 +
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
279 279  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
280 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
281 281  
282 -[[image:1657330501006-241.png]]
222 +[[image:1657249864775-321.png]]
283 283  
284 284  
285 -[[image:1657330533775-472.png]]
225 +[[image:1657249930215-289.png]]
286 286  
287 287  
288 288  
289 289  === 2.2.6 Use MQTT protocol to uplink data ===
290 290  
231 +This feature is supported since firmware version v110
291 291  
292 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
293 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
294 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
295 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
296 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
297 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
298 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
299 299  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 +
300 300  [[image:1657249978444-674.png]]
301 301  
302 302  
303 -[[image:1657330723006-866.png]]
245 +[[image:1657249990869-686.png]]
304 304  
305 305  
306 306  (((
... ... @@ -311,225 +311,177 @@
311 311  
312 312  === 2.2.7 Use TCP protocol to uplink data ===
313 313  
256 +This feature is supported since firmware version v110
314 314  
258 +
315 315  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
316 316  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
317 317  
318 -[[image:image-20220709093918-1.png]]
262 +[[image:1657250217799-140.png]]
319 319  
320 320  
321 -[[image:image-20220709093918-2.png]]
265 +[[image:1657250255956-604.png]]
322 322  
323 323  
324 324  
325 325  === 2.2.8 Change Update Interval ===
326 326  
327 -
328 328  User can use below command to change the (% style="color:green" %)**uplink interval**.
329 329  
330 330  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
331 331  
332 332  (((
333 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 1 hour.**
276 +(% style="color:red" %)**NOTE:**
277 +)))
334 334  
335 -
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
336 336  )))
337 337  
338 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
339 339  
340 -**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
341 341  
342 -
343 343  == 2.3  Uplink Payload ==
344 344  
287 +In this mode, uplink payload includes in total 18 bytes
345 345  
346 -In this mode, uplink payload includes in total 14 bytes
347 -
348 -
349 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
350 -|=(% style="width: 60px;" %)(((
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
351 351  **Size(bytes)**
352 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
353 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
354 354  
355 -(((
356 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
357 -)))
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
358 358  
359 359  
360 -[[image:1657331036973-987.png]]
298 +[[image:image-20220708111918-4.png]]
361 361  
362 362  
363 -(((
364 364  The payload is ASCII string, representative same HEX:
365 -)))
366 366  
367 -(((
368 -0x72403155615900640c6c19029200 where:
369 -)))
303 +0x72403155615900640c7817075e0a8c02f900 where:
370 370  
371 -* (((
372 -Device ID: 0x724031556159 = 724031556159
373 -)))
374 -* (((
375 -Version: 0x0064=100=1.0.0
376 -)))
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
377 377  
378 -* (((
379 -BAT: 0x0c6c = 3180 mV = 3.180V
380 -)))
381 -* (((
382 -Signal: 0x19 = 25
383 -)))
384 -* (((
385 -Distance: 0x0292= 658 mm
386 -)))
387 -* (((
388 -Interrupt: 0x00 = 0
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
389 389  
390 -
391 -)))
315 +== 2.4  Payload Explanation and Sensor Interface ==
392 392  
393 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
394 394  
395 -In this mode, uplink payload includes 69 bytes in total by default.
318 +=== 2.4.1  Device ID ===
396 396  
397 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
398 398  
399 -|**Size(bytes)**|**8**|2|2|1|1|1|2|4|2|4
400 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Distance|Timestamp|Distance|Timestamp.......
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
401 401  
402 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
324 +**Example:**
403 403  
404 -[[image:image-20220908175246-1.png]]
326 +AT+DEUI=A84041F15612
405 405  
406 -The payload is ASCII string, representative same HEX:
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
407 407  
408 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
409 409  
410 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
411 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
412 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
413 -* (% style="color:blue" %)Singal: 0x1e = 30
414 -* (% style="color:red" %)Mod: 0x01 = 1
415 -* Interrupt: 0x00= 0
416 -* Distance: 0x0039= 57 = 57
417 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
418 -* Distance,Time stamp : 00396319baf0
419 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
420 420  
421 -== 2.4  Payload Explanation and Sensor Interface ==
332 +=== 2.4.2  Version Info ===
422 422  
334 +Specify the software version: 0x64=100, means firmware version 1.00.
423 423  
424 -=== 2.4.1  Device ID ===
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
425 425  
426 426  
427 -(((
428 -By default, the Device ID equal to the last 6 bytes of IMEI.
429 -)))
430 430  
431 -(((
432 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
340 +=== 2.4.3  Battery Info ===
433 433  
434 -
435 -)))
436 -
437 437  (((
438 -**Example:**
343 +Check the battery voltage for LSE01.
439 439  )))
440 440  
441 441  (((
442 -AT+DEUI=A84041F15612
347 +Ex1: 0x0B45 = 2885mV
443 443  )))
444 444  
445 445  (((
446 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
351 +Ex2: 0x0B49 = 2889mV
447 447  )))
448 448  
449 449  
450 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
451 451  
452 -By default, the Device ID equal to the last 15 bits of IMEI.
356 +=== 2.4.4  Signal Strength ===
453 453  
454 -User can use **AT+DEUI** to set Device ID
358 +NB-IoT Network signal Strength.
455 455  
456 -**Example:**
360 +**Ex1: 0x1d = 29**
457 457  
458 -AT+DEUI=868411056754138
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
459 459  
460 -=== 2.4.2  Version Info ===
364 +(% style="color:blue" %)**1**(%%)  -111dBm
461 461  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
462 462  
463 -(((
464 -Specify the software version: 0x64=100, means firmware version 1.00.
465 -)))
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
466 466  
467 -(((
468 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
469 -)))
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
470 470  
471 471  
472 472  
473 -=== 2.4.3  Battery Info ===
374 +=== 2.4.5  Soil Moisture ===
474 474  
475 -
476 476  (((
477 -Ex1: 0x0B45 = 2885mV
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
478 478  )))
479 479  
480 480  (((
481 -Ex2: 0x0B49 = 2889mV
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
482 482  )))
483 483  
484 -
485 -
486 -=== 2.4.4  Signal Strength ===
487 -
488 -
489 489  (((
490 -NB-IoT Network signal Strength.
385 +
491 491  )))
492 492  
493 493  (((
494 -**Ex1: 0x1d = 29**
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
495 495  )))
496 496  
497 -(((
498 -(% style="color:blue" %)**0**(%%)  -113dBm or less
499 -)))
500 500  
393 +
394 +=== 2.4.6  Soil Temperature ===
395 +
501 501  (((
502 -(% style="color:blue" %)**1**(%%)  -111dBm
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
503 503  )))
504 504  
505 505  (((
506 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
401 +**Example**:
507 507  )))
508 508  
509 509  (((
510 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
511 511  )))
512 512  
513 513  (((
514 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
515 515  )))
516 516  
517 517  
518 518  
519 -=== 2.4.5  Distance ===
414 +=== 2.4.7  Soil Conductivity (EC) ===
520 520  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
521 521  
522 -Get the distance. Flat object range 280mm - 7500mm.
523 -
524 524  (((
525 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
526 526  )))
527 527  
528 528  (((
529 -(((
530 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
531 531  )))
532 -)))
533 533  
534 534  (((
535 535  
... ... @@ -539,73 +539,45 @@
539 539  
540 540  )))
541 541  
542 -=== 2.4.6  Digital Interrupt ===
436 +=== 2.4.8  Digital Interrupt ===
543 543  
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
544 544  
545 -(((
546 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
547 -)))
548 -
549 -(((
550 550  The command is:
551 -)))
552 552  
553 -(((
554 554  (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
555 -)))
556 556  
557 557  
558 -(((
559 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
560 -)))
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
561 561  
562 562  
563 -(((
564 564  Example:
565 -)))
566 566  
567 -(((
568 568  0x(00): Normal uplink packet.
569 -)))
570 570  
571 -(((
572 572  0x(01): Interrupt Uplink Packet.
573 -)))
574 574  
575 575  
576 576  
577 -=== 2.4.7  ​+5V Output ===
456 +=== 2.4.9  ​+5V Output ===
578 578  
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
579 579  
580 -(((
581 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
582 -)))
583 583  
584 -
585 -(((
586 586  The 5V output time can be controlled by AT Command.
587 587  
588 -
589 -)))
590 -
591 -(((
592 592  (% style="color:blue" %)**AT+5VT=1000**
593 593  
594 -
595 -)))
596 -
597 -(((
598 598  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
599 -)))
600 600  
601 601  
602 602  
603 603  == 2.5  Downlink Payload ==
604 604  
471 +By default, NSE01 prints the downlink payload to console port.
605 605  
606 -By default, NDDS75 prints the downlink payload to console port.
473 +[[image:image-20220708133731-5.png]]
607 607  
608 -[[image:image-20220709100028-1.png]]
609 609  
610 610  
611 611  (((
... ... @@ -641,156 +641,121 @@
641 641  )))
642 642  
643 643  (((
644 -If payload = 0x04FF, it will reset the NDDS75
510 +If payload = 0x04FF, it will reset the NSE01
645 645  )))
646 646  
647 647  
648 648  * (% style="color:blue" %)**INTMOD**
649 649  
650 -(((
651 651  Downlink Payload: 06000003, Set AT+INTMOD=3
652 -)))
653 653  
654 654  
655 -== 2.6 Distance alarm function ==
656 656  
657 - AT Command:
520 +== 2.6  ​LED Indicator ==
658 658  
659 -AT+ LDDSALARM=min,max
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
660 660  
661 -² When min=0, and max≠0, Alarm higher than max
662 662  
663 -² When min≠0, and max=0, Alarm lower than min
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
664 664  
665 -² When min≠0 and max≠0, Alarm higher than max or lower than min
666 666  
667 -Example:
668 668  
669 -AT+ LDDSALARM=260,2000 ~/~/ Alarm when distance lower than 260.
670 670  
535 +== 2.7  Installation in Soil ==
671 671  
672 -== 2.7 Set the number of data to be uploaded and the recording time ==
537 +__**Measurement the soil surface**__
673 673  
674 - AT Command:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
675 675  
676 -AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
541 +[[image:1657259653666-883.png]] ​
677 677  
678 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
679 679  
680 -== 2.8 Read or Clear cached data ==
544 +(((
545 +
681 681  
682 -➢ AT Command:
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
683 683  
684 -AT+CDP ~/~/ Read cached data
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
685 685  
686 -[[image:image-20220908175333-2.png]]
556 +[[image:1654506665940-119.png]]
687 687  
688 -AT+CDP=0 ~/~/ Clear cached data
689 -
690 -== 2.9  ​LED Indicator ==
691 -
692 -
693 -The NDDS75 has an internal LED which is to show the status of different state.
694 -
695 -
696 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
697 -* Then the LED will be on for 1 second means device is boot normally.
698 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
699 -* For each uplink probe, LED will be on for 500ms.
700 -
701 701  (((
702 702  
703 703  )))
704 704  
705 705  
563 +== 2.8  ​Firmware Change Log ==
706 706  
707 -== 2.10  ​Firmware Change Log ==
708 708  
566 +Download URL & Firmware Change log
709 709  
710 -(((
711 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
712 -)))
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
713 713  
714 -(((
715 -
716 -)))
717 717  
718 -(((
719 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
720 -)))
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
721 721  
722 722  
723 723  
724 -== 2.11  ​Battery Analysis ==
575 +== 2.9  ​Battery Analysis ==
725 725  
577 +=== 2.9.1  ​Battery Type ===
726 726  
727 -=== 2.11.1  ​Battery Type ===
728 728  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
729 729  
730 -(((
731 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
732 -)))
733 733  
734 -(((
735 -The battery is designed to last for several years depends on the actually use environment and update interval. 
736 -)))
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
737 737  
738 -(((
585 +
739 739  The battery related documents as below:
740 -)))
741 741  
742 742  * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
743 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
744 744  * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
745 745  
746 746  (((
747 -[[image:image-20220709101450-2.png]]
593 +[[image:image-20220708140453-6.png]]
748 748  )))
749 749  
750 750  
751 751  
752 -=== 2.11.2  Power consumption Analyze ===
598 +=== 2.9.2  Power consumption Analyze ===
753 753  
754 -
755 -(((
756 756  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 -)))
758 758  
759 759  
760 -(((
761 761  Instruction to use as below:
762 -)))
763 763  
764 -(((
765 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
766 -)))
767 767  
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
768 768  
769 -(((
770 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
771 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
772 772  
773 -* (((
774 -Product Model
775 -)))
776 -* (((
777 -Uplink Interval
778 -)))
779 -* (((
780 -Working Mode
781 -)))
782 782  
783 -(((
784 -And the Life expectation in difference case will be shown on the right.
785 -)))
611 +Step 2: Open it and choose
786 786  
787 -[[image:image-20220709110451-3.png]]
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
788 788  
617 +And the Life expectation in difference case will be shown on the right.
789 789  
619 +[[image:image-20220708141352-7.jpeg]]
790 790  
791 -=== 2.11.3  ​Battery Note ===
792 792  
793 793  
623 +=== 2.9.3  ​Battery Note ===
624 +
794 794  (((
795 795  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
796 796  )))
... ... @@ -797,217 +797,318 @@
797 797  
798 798  
799 799  
800 -=== 2.11.4  Replace the battery ===
631 +=== 2.9.4  Replace the battery ===
801 801  
802 -
803 803  (((
804 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
805 805  )))
806 806  
807 807  
808 808  
809 -= 3. ​ Access NB-IoT Module =
639 += 3. ​Using the AT Commands =
810 810  
641 +== 3.1 Access AT Commands ==
811 811  
812 -(((
813 -Users can directly access the AT command set of the NB-IoT module.
814 -)))
815 815  
816 -(((
817 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
644 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
818 818  
819 -
820 -)))
646 +[[image:1654501986557-872.png||height="391" width="800"]]
821 821  
822 -[[image:1657333200519-600.png]]
823 823  
649 +Or if you have below board, use below connection:
824 824  
825 825  
826 -= 4.  Using the AT Commands =
652 +[[image:1654502005655-729.png||height="503" width="801"]]
827 827  
828 828  
829 -== 4.1  Access AT Commands ==
830 830  
656 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
831 831  
832 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
833 833  
659 + [[image:1654502050864-459.png||height="564" width="806"]]
834 834  
835 -AT+<CMD>?  : Help on <CMD>
836 836  
837 -AT+<CMD>         : Run <CMD>
662 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
838 838  
839 -AT+<CMD>=<value> : Set the value
840 840  
841 -AT+<CMD>=?  : Get the value
665 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
842 842  
667 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
843 843  
669 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
670 +
671 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
672 +
673 +
844 844  (% style="color:#037691" %)**General Commands**(%%)      
845 845  
846 -AT  : Attention       
676 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
847 847  
848 -AT?  : Short Help     
678 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
849 849  
850 -ATZ  : MCU Reset    
680 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
851 851  
852 -AT+TDC  : Application Data Transmission Interval
682 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
853 853  
854 -AT+CFG  : Print all configurations
855 855  
856 -AT+CFGMOD           : Working mode selection
685 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
857 857  
858 -AT+INTMOD            : Set the trigger interrupt mode
687 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
859 859  
860 -AT+5VT  : Set extend the time of 5V power  
689 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
861 861  
862 -AT+PRO  : Choose agreement
691 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
863 863  
864 -AT+WEIGRE  : Get weight or set weight to 0
693 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
865 865  
866 -AT+WEIGAP  : Get or Set the GapValue of weight
695 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
867 867  
868 -AT+RXDL  : Extend the sending and receiving time
697 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
869 869  
870 -AT+CNTFAC  : Get or set counting parameters
699 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
871 871  
872 -AT+SERVADDR  : Server Address
701 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
873 873  
874 -AT+TR      : Get or Set record time"
703 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
875 875  
876 -AT+AP    : Get or set the APN
705 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
877 877  
878 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
707 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
879 879  
880 -AT+DNSCFG  : Get or Set DNS Server
709 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
881 881  
882 -AT+GETSENSORVALUE   : Returns the current sensor measurement
711 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
883 883  
884 -AT+NOUD      : Get or Set the number of data to be uploaded
713 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
885 885  
886 -AT+CDP     : Read or Clear cached data
715 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
887 887  
888 -AT+LDDSALARM : Get or Set alarm of distance
717 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
889 889  
890 890  
891 -(% style="color:#037691" %)**COAP Management**      
720 +(% style="color:#037691" %)**LoRa Network Management**
892 892  
893 -AT+URI            : Resource parameters
722 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
894 894  
724 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
895 895  
896 -(% style="color:#037691" %)**UDP Management**
726 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
897 897  
898 -AT+CFM          : Upload confirmation mode (only valid for UDP)
728 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
899 899  
730 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
900 900  
901 -(% style="color:#037691" %)**MQTT Management**
732 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
902 902  
903 -AT+CLIENT               : Get or Set MQTT client
734 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
904 904  
905 -AT+UNAME  : Get or Set MQTT Username
736 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
906 906  
907 -AT+PWD                  : Get or Set MQTT password
738 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
908 908  
909 -AT+PUBTOPIC  : Get or Set MQTT publish topic
740 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
910 910  
911 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
742 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
912 912  
744 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
913 913  
914 -(% style="color:#037691" %)**Information**          
746 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
915 915  
916 -AT+FDR  : Factory Data Reset
748 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
917 917  
918 -AT+PWORD  : Serial Access Password
750 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
919 919  
920 920  
753 +(% style="color:#037691" %)**Information** 
921 921  
922 -= ​5.  FAQ =
755 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 923  
757 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 924  
925 -== 5.1 How to Upgrade Firmware ==
759 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 926  
761 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
927 927  
763 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
764 +
765 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
766 +
767 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
768 +
769 +
770 += ​4. FAQ =
771 +
772 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
773 +
928 928  (((
929 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
775 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
776 +When downloading the images, choose the required image file for download. ​
930 930  )))
931 931  
932 932  (((
933 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
780 +
934 934  )))
935 935  
936 936  (((
937 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
784 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
938 938  )))
939 939  
787 +(((
788 +
789 +)))
940 940  
791 +(((
792 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
793 +)))
941 941  
942 -= 6.  Trouble Shooting =
795 +(((
796 +
797 +)))
943 943  
799 +(((
800 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
801 +)))
944 944  
945 -== 6.1  ​Connection problem when uploading firmware ==
803 +[[image:image-20220606154726-3.png]]
946 946  
947 947  
806 +When you use the TTN network, the US915 frequency bands use are:
807 +
808 +* 903.9 - SF7BW125 to SF10BW125
809 +* 904.1 - SF7BW125 to SF10BW125
810 +* 904.3 - SF7BW125 to SF10BW125
811 +* 904.5 - SF7BW125 to SF10BW125
812 +* 904.7 - SF7BW125 to SF10BW125
813 +* 904.9 - SF7BW125 to SF10BW125
814 +* 905.1 - SF7BW125 to SF10BW125
815 +* 905.3 - SF7BW125 to SF10BW125
816 +* 904.6 - SF8BW500
817 +
948 948  (((
949 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
819 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
820 +
821 +* (% style="color:#037691" %)**AT+CHE=2**
822 +* (% style="color:#037691" %)**ATZ**
950 950  )))
951 951  
952 -(% class="wikigeneratedid" %)
953 953  (((
954 954  
827 +
828 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
955 955  )))
956 956  
831 +(((
832 +
833 +)))
957 957  
958 -== 6.2  AT Command input doesn't work ==
835 +(((
836 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
837 +)))
959 959  
839 +[[image:image-20220606154825-4.png]]
960 960  
841 +
842 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
843 +
844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
845 +
846 +
847 += 5. Trouble Shooting =
848 +
849 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
850 +
851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
852 +
853 +
854 +== 5.2 AT Command input doesn't work ==
855 +
961 961  (((
962 962  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
858 +)))
963 963  
964 -
860 +
861 +== 5.3 Device rejoin in at the second uplink packet ==
862 +
863 +(% style="color:#4f81bd" %)**Issue describe as below:**
864 +
865 +[[image:1654500909990-784.png]]
866 +
867 +
868 +(% style="color:#4f81bd" %)**Cause for this issue:**
869 +
870 +(((
871 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
965 965  )))
966 966  
967 967  
968 -= 7. ​ Order Info =
875 +(% style="color:#4f81bd" %)**Solution: **
969 969  
877 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
970 970  
971 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
879 +[[image:1654500929571-736.png||height="458" width="832"]]
972 972  
973 973  
882 += 6. ​Order Info =
883 +
884 +
885 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
886 +
887 +
888 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
889 +
890 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
891 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
892 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
893 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
894 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
895 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
896 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
897 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
898 +
899 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
900 +
901 +* (% style="color:red" %)**4**(%%): 4000mAh battery
902 +* (% style="color:red" %)**8**(%%): 8500mAh battery
903 +
974 974  (% class="wikigeneratedid" %)
975 975  (((
976 976  
977 977  )))
978 978  
979 -= 8.  Packing Info =
909 += 7. Packing Info =
980 980  
981 981  (((
982 982  
983 983  
984 984  (% style="color:#037691" %)**Package Includes**:
915 +)))
985 985  
986 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
987 -* External antenna x 1
917 +* (((
918 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
988 988  )))
989 989  
990 990  (((
991 991  
992 992  
993 -
994 994  (% style="color:#037691" %)**Dimension and weight**:
925 +)))
995 995  
996 -* Device Size: 13.0 x 5 x 4.5 cm
997 -* Device Weight: 150g
998 -* Package Size / pcs : 15 x 12x 5.5 cm
999 -* Weight / pcs : 220g
927 +* (((
928 +Device Size: cm
1000 1000  )))
930 +* (((
931 +Device Weight: g
932 +)))
933 +* (((
934 +Package Size / pcs : cm
935 +)))
936 +* (((
937 +Weight / pcs : g
1001 1001  
1002 -(((
1003 1003  
1004 -
1005 -
1006 -
1007 1007  )))
1008 1008  
1009 -= 9.  Support =
942 += 8. Support =
1010 1010  
1011 -
1012 1012  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1013 1013  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content