Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 103.1
edited by David Huang
on 2022/09/08 18:02
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.David
1 +XWiki.Xiaoling
Content
... ... @@ -1,77 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 74  
63 +
75 75  == 1.3  Specification ==
76 76  
77 77  
... ... @@ -80,6 +80,7 @@
80 80  * Supply Voltage: 2.1v ~~ 3.6v
81 81  * Operating Temperature: -40 ~~ 85°C
82 82  
72 +
83 83  (% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 85  * - B1 @H-FDD: 2100MHz
... ... @@ -89,708 +89,719 @@
89 89  * - B20 @H-FDD: 800MHz
90 90  * - B28 @H-FDD: 700MHz
91 91  
92 -(% style="color:#037691" %)**Battery:**
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
104 104  
105 105  
90 +
106 106  == ​1.4  Applications ==
107 107  
108 -
109 -* Smart Buildings & Home Automation
110 -* Logistics and Supply Chain Management
111 -* Smart Metering
112 112  * Smart Agriculture
113 -* Smart Cities
114 -* Smart Factory
115 115  
116 116  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
117 117  ​
118 118  
98 +== 1.5  Pin Definitions ==
119 119  
120 120  
101 +[[image:1657246476176-652.png]]
121 121  
122 -== 1.5  Pin Definitions ==
123 123  
124 124  
125 -[[image:1657328609906-564.png]]
105 += 2. Configure LSE01 to connect to LoRaWAN network =
126 126  
107 +== 2.1 How it works ==
127 127  
109 +(((
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +)))
128 128  
129 -= 2.  Use NDDS75 to communicate with IoT Server =
113 +(((
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 +)))
130 130  
131 131  
132 -== 2.1  How it works ==
133 133  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
134 134  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 +
123 +
124 +[[image:1654503992078-669.png]]
125 +
126 +
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 +
129 +
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
135 135  (((
136 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
173 +Uplink payload includes in total 11 bytes.
137 137  )))
138 138  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
139 139  
140 -(((
141 -The diagram below shows the working flow in default firmware of NDDS75:
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
142 142  )))
143 143  
144 -(((
145 -
192 +=== 2.3.2 MOD~=1(Original value) ===
193 +
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
195 +
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
199 +
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
204 +
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
208 +
209 +(Optional)
146 146  )))
147 147  
148 -[[image:1657328659945-416.png]]
212 +=== 2.3.3 Battery Info ===
149 149  
150 150  (((
151 -
215 +Check the battery voltage for LSE01.
152 152  )))
153 153  
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
154 154  
155 -== 2.2 ​ Configure the NDDS75 ==
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
156 156  
157 157  
158 -=== 2.2.1 Test Requirement ===
159 159  
228 +=== 2.3.4 Soil Moisture ===
160 160  
161 161  (((
162 -To use NDDS75 in your city, make sure meet below requirements:
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
163 163  )))
164 164  
165 -* Your local operator has already distributed a NB-IoT Network there.
166 -* The local NB-IoT network used the band that NDDS75 supports.
167 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
168 168  
169 169  (((
170 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
239 +
171 171  )))
172 172  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
173 173  
174 -[[image:1657328756309-230.png]]
175 175  
176 176  
248 +=== 2.3.5 Soil Temperature ===
177 177  
178 -=== 2.2.2 Insert SIM card ===
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
179 179  
254 +(((
255 +**Example**:
256 +)))
180 180  
181 181  (((
182 -Insert the NB-IoT Card get from your provider.
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
183 183  )))
184 184  
185 185  (((
186 -User need to take out the NB-IoT module and insert the SIM card like below:
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
187 187  )))
188 188  
189 189  
190 -[[image:1657328884227-504.png]]
191 191  
268 +=== 2.3.6 Soil Conductivity (EC) ===
192 192  
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
193 193  
194 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
195 195  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
196 196  
197 197  (((
283 +
284 +)))
285 +
198 198  (((
199 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
287 +
200 200  )))
201 -)))
202 202  
203 -[[image:image-20220709092052-2.png]]
290 +=== 2.3.7 MOD ===
204 204  
292 +Firmware version at least v2.1 supports changing mode.
205 205  
206 -**Connection:**
294 +For example, bytes[10]=90
207 207  
208 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
296 +mod=(bytes[10]>>7)&0x01=1.
209 209  
210 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
211 211  
212 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
299 +**Downlink Command:**
213 213  
301 +If payload = 0x0A00, workmode=0
214 214  
215 -In the PC, use below serial tool settings:
303 +If** **payload =** **0x0A01, workmode=1
216 216  
217 -* Baud:  (% style="color:green" %)**9600**
218 -* Data bits:** (% style="color:green" %)8(%%)**
219 -* Stop bits: (% style="color:green" %)**1**
220 -* Parity:  (% style="color:green" %)**None**
221 -* Flow Control: (% style="color:green" %)**None**
222 222  
223 -(((
224 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
225 -)))
226 226  
227 -[[image:1657329814315-101.png]]
307 +=== 2.3.8 ​Decode payload in The Things Network ===
228 228  
309 +While using TTN network, you can add the payload format to decode the payload.
229 229  
311 +
312 +[[image:1654505570700-128.png]]
313 +
230 230  (((
231 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
315 +The payload decoder function for TTN is here:
232 232  )))
233 233  
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
234 234  
235 235  
236 -=== 2.2.4 Use CoAP protocol to uplink data ===
323 +== 2.4 Uplink Interval ==
237 237  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
238 238  
239 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
240 240  
241 241  
329 +== 2.5 Downlink Payload ==
330 +
331 +By default, LSE50 prints the downlink payload to console port.
332 +
333 +[[image:image-20220606165544-8.png]]
334 +
335 +
242 242  (((
243 -**Use below commands:**
337 +(% style="color:blue" %)**Examples:**
244 244  )))
245 245  
246 -* (((
247 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
340 +(((
341 +
248 248  )))
343 +
249 249  * (((
250 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
345 +(% style="color:blue" %)**Set TDC**
251 251  )))
252 -* (((
253 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
255 255  
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
354 +)))
355 +
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
359 +
360 +(((
256 256  
257 257  )))
258 258  
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
367 +
259 259  (((
260 -For parameter description, please refer to AT command set
369 +If payload = 0x04FF, it will reset the LSE01
261 261  )))
262 262  
263 -[[image:1657330452568-615.png]]
264 264  
373 +* (% style="color:blue" %)**CFM**
265 265  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
266 266  
377 +
378 +
379 +== 2.6 ​Show Data in DataCake IoT Server ==
380 +
267 267  (((
268 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
269 269  )))
270 270  
271 -[[image:1657330472797-498.png]]
385 +(((
386 +
387 +)))
272 272  
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
273 273  
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
274 274  
275 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
276 276  
398 +[[image:1654505857935-743.png]]
277 277  
278 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
279 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
280 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
281 281  
282 -[[image:1657330501006-241.png]]
401 +[[image:1654505874829-548.png]]
283 283  
284 284  
285 -[[image:1657330533775-472.png]]
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
286 286  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
287 287  
288 288  
289 -=== 2.2.6 Use MQTT protocol to uplink data ===
409 +[[image:1654505905236-553.png]]
290 290  
291 291  
292 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
293 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
294 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
295 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
296 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
297 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
298 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
299 299  
300 -[[image:1657249978444-674.png]]
414 +[[image:1654505925508-181.png]]
301 301  
302 302  
303 -[[image:1657330723006-866.png]]
304 304  
418 +== 2.7 Frequency Plans ==
305 305  
306 -(((
307 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
308 -)))
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
309 309  
310 310  
423 +=== 2.7.1 EU863-870 (EU868) ===
311 311  
312 -=== 2.2.7 Use TCP protocol to uplink data ===
425 +(% style="color:#037691" %)** Uplink:**
313 313  
427 +868.1 - SF7BW125 to SF12BW125
314 314  
315 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
316 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
317 317  
318 -[[image:image-20220709093918-1.png]]
431 +868.5 - SF7BW125 to SF12BW125
319 319  
433 +867.1 - SF7BW125 to SF12BW125
320 320  
321 -[[image:image-20220709093918-2.png]]
435 +867.3 - SF7BW125 to SF12BW125
322 322  
437 +867.5 - SF7BW125 to SF12BW125
323 323  
439 +867.7 - SF7BW125 to SF12BW125
324 324  
325 -=== 2.2.8 Change Update Interval ===
441 +867.9 - SF7BW125 to SF12BW125
326 326  
443 +868.8 - FSK
327 327  
328 -User can use below command to change the (% style="color:green" %)**uplink interval**.
329 329  
330 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
446 +(% style="color:#037691" %)** Downlink:**
331 331  
332 -(((
333 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 1 hour.**
448 +Uplink channels 1-9 (RX1)
334 334  
335 -
336 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
337 337  
338 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
339 339  
340 -**By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
341 341  
454 +=== 2.7.2 US902-928(US915) ===
342 342  
343 -== 2.3  Uplink Payload ==
456 +Used in USA, Canada and South America. Default use CHE=2
344 344  
458 +(% style="color:#037691" %)**Uplink:**
345 345  
346 -In this mode, uplink payload includes in total 14 bytes
460 +903.9 - SF7BW125 to SF10BW125
347 347  
462 +904.1 - SF7BW125 to SF10BW125
348 348  
349 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
350 -|=(% style="width: 60px;" %)(((
351 -**Size(bytes)**
352 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
353 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
464 +904.3 - SF7BW125 to SF10BW125
354 354  
355 -(((
356 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
357 -)))
466 +904.5 - SF7BW125 to SF10BW125
358 358  
468 +904.7 - SF7BW125 to SF10BW125
359 359  
360 -[[image:1657331036973-987.png]]
470 +904.9 - SF7BW125 to SF10BW125
361 361  
472 +905.1 - SF7BW125 to SF10BW125
362 362  
363 -(((
364 -The payload is ASCII string, representative same HEX:
365 -)))
474 +905.3 - SF7BW125 to SF10BW125
366 366  
367 -(((
368 -0x72403155615900640c6c19029200 where:
369 -)))
370 370  
371 -* (((
372 -Device ID: 0x724031556159 = 724031556159
373 -)))
374 -* (((
375 -Version: 0x0064=100=1.0.0
376 -)))
477 +(% style="color:#037691" %)**Downlink:**
377 377  
378 -* (((
379 -BAT: 0x0c6c = 3180 mV = 3.180V
380 -)))
381 -* (((
382 -Signal: 0x19 = 25
383 -)))
384 -* (((
385 -Distance: 0x0292= 658 mm
386 -)))
387 -* (((
388 -Interrupt: 0x00 = 0
479 +923.3 - SF7BW500 to SF12BW500
389 389  
390 -
391 -)))
481 +923.9 - SF7BW500 to SF12BW500
392 392  
393 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
483 +924.5 - SF7BW500 to SF12BW500
394 394  
395 -In this mode, uplink payload includes 69 bytes in total by default.
485 +925.1 - SF7BW500 to SF12BW500
396 396  
397 -Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
487 +925.7 - SF7BW500 to SF12BW500
398 398  
399 -|**Size(bytes)**|**8**|2|2|1|1|1|2|4|2|4
400 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Distance|Timestamp|Distance|Timestamp.......
489 +926.3 - SF7BW500 to SF12BW500
401 401  
402 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS75 uplink data.
491 +926.9 - SF7BW500 to SF12BW500
403 403  
404 -[[image:image-20220908175246-1.png]]
493 +927.5 - SF7BW500 to SF12BW500
405 405  
406 -The payload is ASCII string, representative same HEX:
495 +923.3 - SF12BW500(RX2 downlink only)
407 407  
408 -0x(% style="color:red" %)f867787050213317(% style="color:blue" %)0084(% style="color:green" %)0cf4(% style="color:red" %)1e(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//00396319bb32//**00396319baf0//**00396319ba3c**//00396319b988//**00396319b8d4**//00396319b820//**00396319b76c**//00396319b6b8//**00396319b604**//(%%) where:
409 409  
410 -* (% style="color:green" %)Device ID: f867787050213317 = f867787050213317
411 -* (% style="color:red" %)Version: 0x0084=132=1.3.2
412 -* (% style="color:green" %)BAT: 0x0cf4 = 3316 mV = 3.316V
413 -* (% style="color:blue" %)Singal: 0x1e = 30
414 -* (% style="color:red" %)Mod: 0x01 = 1
415 -* Interrupt: 0x00= 0
416 -* Distance: 0x0039= 57 = 57
417 -* Time stamp : 0x6315537b =1662342011  ([[Unix Epoch Time>>url:http://www.epochconverter.com/]])
418 -* Distance,Time stamp : 00396319baf0
419 -* (% style="color:red" %) 8 sets of recorded data: Distance,Time stamp : //**00396319ba3c**//,.......
420 420  
421 -== 2.4  Payload Explanation and Sensor Interface ==
499 +=== 2.7.3 CN470-510 (CN470) ===
422 422  
501 +Used in China, Default use CHE=1
423 423  
424 -=== 2.4.1  Device ID ===
503 +(% style="color:#037691" %)**Uplink:**
425 425  
505 +486.3 - SF7BW125 to SF12BW125
426 426  
427 -(((
428 -By default, the Device ID equal to the last 6 bytes of IMEI.
429 -)))
507 +486.5 - SF7BW125 to SF12BW125
430 430  
431 -(((
432 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
509 +486.7 - SF7BW125 to SF12BW125
433 433  
434 -
435 -)))
511 +486.9 - SF7BW125 to SF12BW125
436 436  
437 -(((
438 -**Example:**
439 -)))
513 +487.1 - SF7BW125 to SF12BW125
440 440  
441 -(((
442 -AT+DEUI=A84041F15612
443 -)))
515 +487.3 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
447 -)))
517 +487.5 - SF7BW125 to SF12BW125
448 448  
519 +487.7 - SF7BW125 to SF12BW125
449 449  
450 -**NOTE:When the firmware version is v1.3.2 and later firmware:**
451 451  
452 -By default, the Device ID equal to the last 15 bits of IMEI.
522 +(% style="color:#037691" %)**Downlink:**
453 453  
454 -User can use **AT+DEUI** to set Device ID
524 +506.7 - SF7BW125 to SF12BW125
455 455  
456 -**Example:**
526 +506.9 - SF7BW125 to SF12BW125
457 457  
458 -AT+DEUI=868411056754138
528 +507.1 - SF7BW125 to SF12BW125
459 459  
460 -=== 2.4.2  Version Info ===
530 +507.3 - SF7BW125 to SF12BW125
461 461  
532 +507.5 - SF7BW125 to SF12BW125
462 462  
463 -(((
464 -Specify the software version: 0x64=100, means firmware version 1.00.
465 -)))
534 +507.7 - SF7BW125 to SF12BW125
466 466  
467 -(((
468 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
469 -)))
536 +507.9 - SF7BW125 to SF12BW125
470 470  
538 +508.1 - SF7BW125 to SF12BW125
471 471  
540 +505.3 - SF12BW125 (RX2 downlink only)
472 472  
473 -=== 2.4.3  Battery Info ===
474 474  
475 475  
476 -(((
477 -Ex1: 0x0B45 = 2885mV
478 -)))
544 +=== 2.7.4 AU915-928(AU915) ===
479 479  
480 -(((
481 -Ex2: 0x0B49 = 2889mV
482 -)))
546 +Default use CHE=2
483 483  
548 +(% style="color:#037691" %)**Uplink:**
484 484  
550 +916.8 - SF7BW125 to SF12BW125
485 485  
486 -=== 2.4.4  Signal Strength ===
552 +917.0 - SF7BW125 to SF12BW125
487 487  
554 +917.2 - SF7BW125 to SF12BW125
488 488  
489 -(((
490 -NB-IoT Network signal Strength.
491 -)))
556 +917.4 - SF7BW125 to SF12BW125
492 492  
493 -(((
494 -**Ex1: 0x1d = 29**
495 -)))
558 +917.6 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -(% style="color:blue" %)**0**(%%)  -113dBm or less
499 -)))
560 +917.8 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -(% style="color:blue" %)**1**(%%)  -111dBm
503 -)))
562 +918.0 - SF7BW125 to SF12BW125
504 504  
505 -(((
506 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
507 -)))
564 +918.2 - SF7BW125 to SF12BW125
508 508  
509 -(((
510 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
511 -)))
512 512  
513 -(((
514 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
515 -)))
567 +(% style="color:#037691" %)**Downlink:**
516 516  
569 +923.3 - SF7BW500 to SF12BW500
517 517  
571 +923.9 - SF7BW500 to SF12BW500
518 518  
519 -=== 2.4.5  Distance ===
573 +924.5 - SF7BW500 to SF12BW500
520 520  
575 +925.1 - SF7BW500 to SF12BW500
521 521  
522 -Get the distance. Flat object range 280mm - 7500mm.
577 +925.7 - SF7BW500 to SF12BW500
523 523  
524 -(((
525 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
526 -)))
579 +926.3 - SF7BW500 to SF12BW500
527 527  
528 -(((
529 -(((
530 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
531 -)))
532 -)))
581 +926.9 - SF7BW500 to SF12BW500
533 533  
534 -(((
535 -
536 -)))
583 +927.5 - SF7BW500 to SF12BW500
537 537  
538 -(((
539 -
540 -)))
585 +923.3 - SF12BW500(RX2 downlink only)
541 541  
542 -=== 2.4.6  Digital Interrupt ===
543 543  
544 544  
545 -(((
546 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
547 -)))
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
548 548  
549 -(((
550 -The command is:
551 -)))
591 +(% style="color:#037691" %)**Default Uplink channel:**
552 552  
553 -(((
554 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
555 -)))
593 +923.2 - SF7BW125 to SF10BW125
556 556  
595 +923.4 - SF7BW125 to SF10BW125
557 557  
558 -(((
559 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
560 -)))
561 561  
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
562 562  
563 -(((
564 -Example:
565 -)))
600 +(OTAA mode, channel added by JoinAccept message)
566 566  
567 -(((
568 -0x(00): Normal uplink packet.
569 -)))
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
570 570  
571 -(((
572 -0x(01): Interrupt Uplink Packet.
573 -)))
604 +922.2 - SF7BW125 to SF10BW125
574 574  
606 +922.4 - SF7BW125 to SF10BW125
575 575  
608 +922.6 - SF7BW125 to SF10BW125
576 576  
577 -=== 2.4.7  ​+5V Output ===
610 +922.8 - SF7BW125 to SF10BW125
578 578  
612 +923.0 - SF7BW125 to SF10BW125
579 579  
580 -(((
581 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
582 -)))
614 +922.0 - SF7BW125 to SF10BW125
583 583  
584 584  
585 -(((
586 -The 5V output time can be controlled by AT Command.
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
587 587  
588 -
589 -)))
619 +923.6 - SF7BW125 to SF10BW125
590 590  
591 -(((
592 -(% style="color:blue" %)**AT+5VT=1000**
621 +923.8 - SF7BW125 to SF10BW125
593 593  
594 -
595 -)))
623 +924.0 - SF7BW125 to SF10BW125
596 596  
597 -(((
598 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
599 -)))
625 +924.2 - SF7BW125 to SF10BW125
600 600  
627 +924.4 - SF7BW125 to SF10BW125
601 601  
629 +924.6 - SF7BW125 to SF10BW125
602 602  
603 -== 2.5  Downlink Payload ==
604 604  
632 +(% style="color:#037691" %)** Downlink:**
605 605  
606 -By default, NDDS75 prints the downlink payload to console port.
634 +Uplink channels 1-8 (RX1)
607 607  
608 -[[image:image-20220709100028-1.png]]
636 +923.2 - SF10BW125 (RX2)
609 609  
610 610  
611 -(((
612 -(% style="color:blue" %)**Examples:**
613 -)))
614 614  
615 -(((
616 -
617 -)))
640 +=== 2.7.6 KR920-923 (KR920) ===
618 618  
619 -* (((
620 -(% style="color:blue" %)**Set TDC**
621 -)))
642 +Default channel:
622 622  
623 -(((
624 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
625 -)))
644 +922.1 - SF7BW125 to SF12BW125
626 626  
627 -(((
628 -Payload:    01 00 00 1E    TDC=30S
629 -)))
646 +922.3 - SF7BW125 to SF12BW125
630 630  
631 -(((
632 -Payload:    01 00 00 3C    TDC=60S
633 -)))
648 +922.5 - SF7BW125 to SF12BW125
634 634  
635 -(((
636 -
637 -)))
638 638  
639 -* (((
640 -(% style="color:blue" %)**Reset**
641 -)))
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
642 642  
643 -(((
644 -If payload = 0x04FF, it will reset the NDDS75
645 -)))
653 +922.1 - SF7BW125 to SF12BW125
646 646  
655 +922.3 - SF7BW125 to SF12BW125
647 647  
648 -* (% style="color:blue" %)**INTMOD**
657 +922.5 - SF7BW125 to SF12BW125
649 649  
650 -(((
651 -Downlink Payload: 06000003, Set AT+INTMOD=3
652 -)))
659 +922.7 - SF7BW125 to SF12BW125
653 653  
661 +922.9 - SF7BW125 to SF12BW125
654 654  
655 -== 2.6 Distance alarm function ==
663 +923.1 - SF7BW125 to SF12BW125
656 656  
657 - AT Command:
665 +923.3 - SF7BW125 to SF12BW125
658 658  
659 -AT+ LDDSALARM=min,max
660 660  
661 -² When min=0, and max≠0, Alarm higher than max
668 +(% style="color:#037691" %)**Downlink:**
662 662  
663 -² When min≠0, and max=0, Alarm lower than min
670 +Uplink channels 1-7(RX1)
664 664  
665 -² When min≠0 and max≠0, Alarm higher than max or lower than min
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
666 666  
667 -Example:
668 668  
669 -AT+ LDDSALARM=260,2000 ~/~/ Alarm when distance lower than 260.
670 670  
676 +=== 2.7.7 IN865-867 (IN865) ===
671 671  
672 -== 2.7 Set the number of data to be uploaded and the recording time ==
678 +(% style="color:#037691" %)** Uplink:**
673 673  
674 - AT Command:
680 +865.0625 - SF7BW125 to SF12BW125
675 675  
676 -AT+TR=90 ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
682 +865.4025 - SF7BW125 to SF12BW125
677 677  
678 -AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
684 +865.9850 - SF7BW125 to SF12BW125
679 679  
680 -== 2.8 Read or Clear cached data ==
681 681  
682 - AT Command:
687 +(% style="color:#037691" %) **Downlink:**
683 683  
684 -AT+CDP ~/~/ Read cached data
689 +Uplink channels 1-3 (RX1)
685 685  
686 -[[image:image-20220908175333-2.png]]
691 +866.550 - SF10BW125 (RX2)
687 687  
688 -AT+CDP=0 ~/~/ Clear cached data
689 689  
690 -== 2.9  ​LED Indicator ==
691 691  
692 692  
693 -The NDDS75 has an internal LED which is to show the status of different state.
696 +== 2.8 LED Indicator ==
694 694  
698 +The LSE01 has an internal LED which is to show the status of different state.
695 695  
696 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
697 -* Then the LED will be on for 1 second means device is boot normally.
698 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
699 -* For each uplink probe, LED will be on for 500ms.
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
700 700  
701 -(((
702 -
703 -)))
704 +== 2.9 Installation in Soil ==
704 704  
706 +**Measurement the soil surface**
705 705  
706 706  
707 -== 2.10  ​Firmware Change Log ==
709 +[[image:1654506634463-199.png]]
708 708  
709 -
710 710  (((
711 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
712 712  )))
715 +)))
713 713  
717 +
718 +
719 +[[image:1654506665940-119.png]]
720 +
714 714  (((
715 -
722 +Dig a hole with diameter > 20CM.
716 716  )))
717 717  
718 718  (((
719 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
720 720  )))
721 721  
722 722  
730 +== 2.10 ​Firmware Change Log ==
723 723  
724 -== 2.11  ​Battery Analysis ==
732 +(((
733 +**Firmware download link:**
734 +)))
725 725  
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
726 726  
727 -=== 2.11.1  ​Battery Type ===
740 +(((
741 +
742 +)))
728 728  
729 -
730 730  (((
731 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
732 732  )))
733 733  
734 734  (((
735 -The battery is designed to last for several years depends on the actually use environment and update interval. 
749 +
736 736  )))
737 737  
738 738  (((
739 -The battery related documents as below:
753 +**V1.0.**
740 740  )))
741 741  
742 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
743 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
744 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
745 -
746 746  (((
747 -[[image:image-20220709101450-2.png]]
757 +Release
748 748  )))
749 749  
750 750  
761 +== 2.11 ​Battery Analysis ==
751 751  
752 -=== 2.11. Power consumption Analyze ===
763 +=== 2.11.1 ​Battery Type ===
753 753  
754 -
755 755  (((
756 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
757 757  )))
758 758  
759 -
760 760  (((
761 -Instruction to use as below:
770 +The battery is designed to last for more than 5 years for the LSN50.
762 762  )))
763 763  
764 764  (((
765 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
766 -)))
767 -
768 -
769 769  (((
770 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
775 +The battery-related documents are as below:
771 771  )))
777 +)))
772 772  
773 773  * (((
774 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
775 775  )))
776 776  * (((
777 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
778 778  )))
779 779  * (((
780 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
781 781  )))
782 782  
783 -(((
784 -And the Life expectation in difference case will be shown on the right.
785 -)))
789 + [[image:image-20220610172436-1.png]]
786 786  
787 -[[image:image-20220709110451-3.png]]
788 788  
789 789  
793 +=== 2.11.2 ​Battery Note ===
790 790  
791 -=== 2.11.3  ​Battery Note ===
792 -
793 -
794 794  (((
795 795  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
796 796  )))
... ... @@ -797,217 +797,326 @@
797 797  
798 798  
799 799  
800 -=== 2.11. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
801 801  
803 +(((
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
805 +)))
802 802  
803 803  (((
804 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
805 805  )))
806 806  
811 +(((
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
813 +)))
807 807  
808 808  
809 -= 3. ​ Access NB-IoT Module =
810 810  
817 += 3. ​Using the AT Commands =
811 811  
812 -(((
813 -Users can directly access the AT command set of the NB-IoT module.
814 -)))
819 +== 3.1 Access AT Commands ==
815 815  
816 -(((
817 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
818 818  
819 -
820 -)))
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
821 821  
822 -[[image:1657333200519-600.png]]
824 +[[image:1654501986557-872.png||height="391" width="800"]]
823 823  
824 824  
827 +Or if you have below board, use below connection:
825 825  
826 -= 4.  Using the AT Commands =
827 827  
830 +[[image:1654502005655-729.png||height="503" width="801"]]
828 828  
829 -== 4.1  Access AT Commands ==
830 830  
831 831  
832 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
833 833  
834 834  
835 -AT+<CMD>?  : Help on <CMD>
837 + [[image:1654502050864-459.png||height="564" width="806"]]
836 836  
837 -AT+<CMD>         : Run <CMD>
838 838  
839 -AT+<CMD>=<value> : Set the value
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
840 840  
841 -AT+<CMD>=?  : Get the value
842 842  
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
843 843  
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
844 844  (% style="color:#037691" %)**General Commands**(%%)      
845 845  
846 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
847 847  
848 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
849 849  
850 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
851 851  
852 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
853 853  
854 -AT+CFG  : Print all configurations
855 855  
856 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
857 857  
858 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
859 859  
860 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
861 861  
862 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
863 863  
864 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
865 865  
866 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
867 867  
868 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
869 869  
870 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
871 871  
872 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
873 873  
874 -AT+TR      : Get or Set record time"
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
875 875  
876 -AT+AP    : Get or set the APN
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
877 877  
878 -AT+FBAND   : Get or Set whether to automatically modify the frequency band
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
879 879  
880 -AT+DNSCFG  : Get or Set DNS Server
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
881 881  
882 -AT+GETSENSORVALUE   : Returns the current sensor measurement
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
883 883  
884 -AT+NOUD      : Get or Set the number of data to be uploaded
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
885 885  
886 -AT+CDP     : Read or Clear cached data
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
887 887  
888 -AT+LDDSALARM : Get or Set alarm of distance
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
889 889  
890 890  
891 -(% style="color:#037691" %)**COAP Management**      
898 +(% style="color:#037691" %)**LoRa Network Management**
892 892  
893 -AT+URI            : Resource parameters
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
894 894  
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
895 895  
896 -(% style="color:#037691" %)**UDP Management**
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
897 897  
898 -AT+CFM          : Upload confirmation mode (only valid for UDP)
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
899 899  
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
900 900  
901 -(% style="color:#037691" %)**MQTT Management**
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
902 902  
903 -AT+CLIENT               : Get or Set MQTT client
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
904 904  
905 -AT+UNAME  : Get or Set MQTT Username
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
906 906  
907 -AT+PWD                  : Get or Set MQTT password
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
908 908  
909 -AT+PUBTOPIC  : Get or Set MQTT publish topic
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
910 910  
911 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
912 912  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
913 913  
914 -(% style="color:#037691" %)**Information**          
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
915 915  
916 -AT+FDR  : Factory Data Reset
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
917 917  
918 -AT+PWORD  : Serial Access Password
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
919 919  
920 920  
931 +(% style="color:#037691" %)**Information** 
921 921  
922 -= ​5.  FAQ =
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 923  
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 924  
925 -== 5.1 How to Upgrade Firmware ==
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 926  
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
927 927  
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
928 928  (((
929 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
930 930  )))
931 931  
932 932  (((
933 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
934 934  )))
935 935  
936 936  (((
937 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
938 938  )))
939 939  
965 +(((
966 +
967 +)))
940 940  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
941 941  
942 -= 6.  Trouble Shooting =
973 +(((
974 +
975 +)))
943 943  
977 +(((
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
944 944  
945 -== 6.1  ​Connection problem when uploading firmware ==
981 +[[image:image-20220606154726-3.png]]
946 946  
947 947  
984 +When you use the TTN network, the US915 frequency bands use are:
985 +
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
995 +
948 948  (((
949 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
950 950  )))
951 951  
952 -(% class="wikigeneratedid" %)
953 953  (((
954 954  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
955 955  )))
956 956  
1009 +(((
1010 +
1011 +)))
957 957  
958 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
959 959  
1017 +[[image:image-20220606154825-4.png]]
960 960  
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
961 961  (((
962 962  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
963 963  
964 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
965 965  )))
966 966  
967 967  
968 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
969 969  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
970 970  
971 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
972 972  
973 973  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
974 974  (% class="wikigeneratedid" %)
975 975  (((
976 976  
977 977  )))
978 978  
979 -= 8.  Packing Info =
1087 += 7. Packing Info =
980 980  
981 981  (((
982 982  
983 983  
984 984  (% style="color:#037691" %)**Package Includes**:
1093 +)))
985 985  
986 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
987 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
988 988  )))
989 989  
990 990  (((
991 991  
992 992  
993 -
994 994  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
995 995  
996 -* Device Size: 13.0 x 5 x 4.5 cm
997 -* Device Weight: 150g
998 -* Package Size / pcs : 15 x 12x 5.5 cm
999 -* Weight / pcs : 220g
1105 +* (((
1106 +Device Size: cm
1000 1000  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
1001 1001  
1002 -(((
1003 1003  
1004 -
1005 -
1006 -
1007 1007  )))
1008 1008  
1009 -= 9.  Support =
1120 += 8. Support =
1010 1010  
1011 -
1012 1012  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1013 1013  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content
image-20220908175246-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -55.7 KB
Content
image-20220908175333-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.David
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content