Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 100.6
edited by Xiaoling
on 2022/09/06 17:42
Change comment: There is no comment for this version
To version 57.1
edited by Xiaoling
on 2022/07/08 11:19
Change comment: Uploaded new attachment "image-20220708111918-4.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,79 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 -
75 -
76 -
77 77  == 1.3  Specification ==
78 78  
79 79  
... ... @@ -82,8 +82,6 @@
82 82  * Supply Voltage: 2.1v ~~ 3.6v
83 83  * Operating Temperature: -40 ~~ 85°C
84 84  
85 -
86 -
87 87  (% style="color:#037691" %)**NB-IoT Spec:**
88 88  
89 89  * - B1 @H-FDD: 2100MHz
... ... @@ -93,128 +93,91 @@
93 93  * - B20 @H-FDD: 800MHz
94 94  * - B28 @H-FDD: 700MHz
95 95  
79 +(% style="color:#037691" %)**Probe Specification:**
96 96  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
97 97  
98 -(% style="color:#037691" %)**Battery:**
83 +[[image:image-20220708101224-1.png]]
99 99  
100 -* Li/SOCI2 un-chargeable battery
101 -* Capacity: 8500mAh
102 -* Self Discharge: <1% / Year @ 25°C
103 -* Max continuously current: 130mA
104 -* Max boost current: 2A, 1 second
105 105  
106 106  
107 -
108 -(% style="color:#037691" %)**Power Consumption**
109 -
110 -* STOP Mode: 10uA @ 3.3v
111 -* Max transmit power: 350mA@3.3v
112 -
113 -
114 -
115 -
116 116  == ​1.4  Applications ==
117 117  
118 -
119 -* Smart Buildings & Home Automation
120 -* Logistics and Supply Chain Management
121 -* Smart Metering
122 122  * Smart Agriculture
123 -* Smart Cities
124 -* Smart Factory
125 125  
126 126  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
127 127  ​
128 128  
129 -
130 -
131 -
132 132  == 1.5  Pin Definitions ==
133 133  
134 134  
135 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
136 136  
137 137  
138 138  
139 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
140 140  
141 -
142 142  == 2.1  How it works ==
143 143  
144 144  
145 145  (((
146 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
147 147  )))
148 148  
149 149  
150 150  (((
151 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
152 152  )))
153 153  
154 -(((
155 -
156 -)))
115 +[[image:image-20220708101605-2.png]]
157 157  
158 -[[image:1657328659945-416.png]]
159 -
160 160  (((
161 161  
162 162  )))
163 163  
164 164  
165 -== 2.2 ​ Configure the NDDS75 ==
166 166  
123 +== 2.2 ​ Configure the NSE01 ==
167 167  
125 +
168 168  === 2.2.1 Test Requirement ===
169 169  
170 170  
171 -(((
172 -To use NDDS75 in your city, make sure meet below requirements:
173 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
174 174  
175 175  * Your local operator has already distributed a NB-IoT Network there.
176 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
177 177  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
178 178  
179 -
180 -
181 181  (((
182 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
183 183  )))
184 184  
185 185  
186 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
187 187  
188 188  
189 189  
190 190  === 2.2.2 Insert SIM card ===
191 191  
192 -
193 -(((
194 194  Insert the NB-IoT Card get from your provider.
195 -)))
196 196  
197 -(((
198 198  User need to take out the NB-IoT module and insert the SIM card like below:
199 -)))
200 200  
201 201  
202 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
203 203  
204 204  
205 205  
206 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
207 207  
208 -
209 209  (((
210 210  (((
211 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
212 212  )))
213 213  )))
214 214  
215 -[[image:image-20220709092052-2.png]]
216 216  
217 -
218 218  **Connection:**
219 219  
220 220   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -226,99 +226,87 @@
226 226  
227 227  In the PC, use below serial tool settings:
228 228  
229 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
230 230  * Data bits:** (% style="color:green" %)8(%%)**
231 231  * Stop bits: (% style="color:green" %)**1**
232 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
233 233  * Flow Control: (% style="color:green" %)**None**
234 234  
235 235  (((
236 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
237 237  )))
238 238  
239 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
240 240  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
241 241  
242 -(((
243 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
244 -)))
245 245  
246 246  
247 -
248 248  === 2.2.4 Use CoAP protocol to uplink data ===
249 249  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
250 250  
251 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
252 252  
253 -
254 -(((
255 255  **Use below commands:**
256 -)))
257 257  
258 -* (((
259 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
260 -)))
261 -* (((
262 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
263 -)))
264 -* (((
265 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
266 266  
267 267  
268 -
269 -)))
270 270  
271 -(((
272 272  For parameter description, please refer to AT command set
273 -)))
274 274  
275 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
276 276  
277 277  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
278 278  
279 -(((
280 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
281 -)))
211 +[[image:1657249831934-534.png]]
282 282  
283 -[[image:1657330472797-498.png]]
284 284  
285 285  
286 -
287 287  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
288 288  
217 +This feature is supported since firmware version v1.0.1
289 289  
290 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
291 291  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
292 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
293 293  
294 294  
295 295  
296 -[[image:1657330501006-241.png]]
226 +[[image:1657249864775-321.png]]
297 297  
298 298  
299 -[[image:1657330533775-472.png]]
300 300  
230 +[[image:1657249930215-289.png]]
301 301  
302 302  
233 +
303 303  === 2.2.6 Use MQTT protocol to uplink data ===
304 304  
236 +This feature is supported since firmware version v110
305 305  
306 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
307 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
308 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
309 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
310 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
311 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
312 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
313 313  
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
314 314  
315 315  
248 +
316 316  [[image:1657249978444-674.png]]
317 317  
318 318  
319 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
320 320  
321 321  
255 +
322 322  (((
323 323  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
324 324  )))
... ... @@ -327,189 +327,151 @@
327 327  
328 328  === 2.2.7 Use TCP protocol to uplink data ===
329 329  
264 +This feature is supported since firmware version v110
330 330  
266 +
331 331  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
332 332  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
333 333  
270 +[[image:1657250217799-140.png]]
334 334  
335 335  
336 -[[image:image-20220709093918-1.png]]
273 +[[image:1657250255956-604.png]]
337 337  
338 338  
339 -[[image:image-20220709093918-2.png]]
340 -
341 -
342 -
343 343  === 2.2.8 Change Update Interval ===
344 344  
345 -
346 346  User can use below command to change the (% style="color:green" %)**uplink interval**.
347 347  
348 348  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
349 349  
350 350  
283 +(((
284 +(% style="color:red" %)**NOTE:**
285 +)))
351 351  
352 352  (((
353 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 1 hour.**
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
354 354  )))
355 355  
356 356  
357 357  
358 -== 2.3  Uplink Payload ==
293 +== 2.3 Uplink Payload ==
359 359  
360 360  
361 -In this mode, uplink payload includes in total 14 bytes
296 +=== 2.3.1 MOD~=0(Default Mode) ===
362 362  
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
363 363  
364 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
365 -|=(% style="width: 60px;" %)(((
366 -**Size(bytes)**
367 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
368 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
369 -
370 370  (((
371 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
301 +Uplink payload includes in total 11 bytes.
372 372  )))
373 373  
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
374 374  
375 -[[image:1657331036973-987.png]]
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
376 376  
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
377 377  
378 -(((
379 -The payload is ASCII string, representative same HEX:
317 +(Optional)
380 380  )))
381 381  
382 -(((
383 -0x72403155615900640c6c19029200 where:
384 -)))
320 +=== 2.3.2 MOD~=1(Original value) ===
385 385  
386 -* (((
387 -Device ID: 0x724031556159 = 724031556159
388 -)))
389 -* (((
390 -Version: 0x0064=100=1.0.0
391 -)))
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
392 392  
393 -* (((
394 -BAT: 0x0c6c = 3180 mV = 3.180V
395 -)))
396 -* (((
397 -Signal: 0x19 = 25
398 -)))
399 -* (((
400 -Distance: 0x0292= 658 mm
401 -)))
402 -* (((
403 -Interrupt: 0x00 = 0
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
404 404  
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
405 405  
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
406 406  
407 -
337 +(Optional)
408 408  )))
409 409  
410 -== 2. Payload Explanation and Sensor Interface ==
340 +=== 2.3.3 Battery Info ===
411 411  
412 -
413 -=== 2.4.1  Device ID ===
414 -
415 -
416 416  (((
417 -By default, the Device ID equal to the last 6 bytes of IMEI.
343 +Check the battery voltage for LSE01.
418 418  )))
419 419  
420 420  (((
421 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
422 -
423 -
347 +Ex1: 0x0B45 = 2885mV
424 424  )))
425 425  
426 426  (((
427 -**Example:**
351 +Ex2: 0x0B49 = 2889mV
428 428  )))
429 429  
430 -(((
431 -AT+DEUI=A84041F15612
432 -)))
433 433  
434 -(((
435 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
436 -)))
437 437  
356 +=== 2.3.4 Soil Moisture ===
438 438  
439 -
440 -=== 2.4.2  Version Info ===
441 -
442 -
443 443  (((
444 -Specify the software version: 0x64=100, means firmware version 1.00.
359 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
445 445  )))
446 446  
447 447  (((
448 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
449 449  )))
450 450  
451 -
452 -
453 -=== 2.4.3  Battery Info ===
454 -
455 -
456 456  (((
457 -Ex1: 0x0B45 = 2885mV
367 +
458 458  )))
459 459  
460 460  (((
461 -Ex2: 0x0B49 = 2889mV
371 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
462 462  )))
463 463  
464 464  
465 465  
466 -=== 2.4. Signal Strength ===
376 +=== 2.3.5 Soil Temperature ===
467 467  
468 -
469 469  (((
470 -NB-IoT Network signal Strength.
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
471 471  )))
472 472  
473 473  (((
474 -**Ex1: 0x1d = 29**
383 +**Example**:
475 475  )))
476 476  
477 477  (((
478 -(% style="color:blue" %)**0**(%%)  -113dBm or less
387 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
479 479  )))
480 480  
481 481  (((
482 -(% style="color:blue" %)**1**(%%)  -111dBm
391 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
483 483  )))
484 484  
485 -(((
486 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
487 -)))
488 488  
489 -(((
490 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
491 -)))
492 492  
396 +=== 2.3.6 Soil Conductivity (EC) ===
397 +
493 493  (((
494 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
399 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
495 495  )))
496 496  
497 -
498 -
499 -=== 2.4.5  Distance ===
500 -
501 -
502 -Get the distance. Flat object range 280mm - 7500mm.
503 -
504 504  (((
505 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
506 506  )))
507 507  
508 508  (((
509 -(((
510 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
407 +Generally, the EC value of irrigation water is less than 800uS / cm.
511 511  )))
512 -)))
513 513  
514 514  (((
515 515  
... ... @@ -519,75 +519,52 @@
519 519  
520 520  )))
521 521  
522 -=== 2.4. Digital Interrupt ===
418 +=== 2.3.7 MOD ===
523 523  
420 +Firmware version at least v2.1 supports changing mode.
524 524  
525 -(((
526 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
527 -)))
422 +For example, bytes[10]=90
528 528  
529 -(((
530 -The command is:
531 -)))
424 +mod=(bytes[10]>>7)&0x01=1.
532 532  
533 -(((
534 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
535 -)))
536 536  
427 +**Downlink Command:**
537 537  
538 -(((
539 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
540 -)))
429 +If payload = 0x0A00, workmode=0
541 541  
431 +If** **payload =** **0x0A01, workmode=1
542 542  
543 -(((
544 -Example:
545 -)))
546 546  
547 -(((
548 -0x(00): Normal uplink packet.
549 -)))
550 550  
551 -(((
552 -0x(01): Interrupt Uplink Packet.
553 -)))
435 +=== 2.3.8 ​Decode payload in The Things Network ===
554 554  
437 +While using TTN network, you can add the payload format to decode the payload.
555 555  
556 556  
557 -=== 2.4.7  ​+5V Output ===
440 +[[image:1654505570700-128.png]]
558 558  
559 -
560 560  (((
561 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
443 +The payload decoder function for TTN is here:
562 562  )))
563 563  
564 -
565 565  (((
566 -The 5V output time can be controlled by AT Command.
567 -
568 -
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
569 569  )))
570 570  
571 -(((
572 -(% style="color:blue" %)**AT+5VT=1000**
573 573  
574 -
575 -)))
451 +== 2.4 Uplink Interval ==
576 576  
577 -(((
578 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
579 -)))
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
580 580  
581 581  
582 582  
583 -== 2.5  Downlink Payload ==
457 +== 2.5 Downlink Payload ==
584 584  
459 +By default, LSE50 prints the downlink payload to console port.
585 585  
586 -By default, NDDS75 prints the downlink payload to console port.
461 +[[image:image-20220606165544-8.png]]
587 587  
588 -[[image:image-20220709100028-1.png]]
589 589  
590 -
591 591  (((
592 592  (% style="color:blue" %)**Examples:**
593 593  )))
... ... @@ -601,7 +601,7 @@
601 601  )))
602 602  
603 603  (((
604 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
477 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
605 605  )))
606 606  
607 607  (((
... ... @@ -621,122 +621,432 @@
621 621  )))
622 622  
623 623  (((
624 -If payload = 0x04FF, it will reset the NDDS75
497 +If payload = 0x04FF, it will reset the LSE01
625 625  )))
626 626  
627 627  
628 -* (% style="color:blue" %)**INTMOD**
501 +* (% style="color:blue" %)**CFM**
629 629  
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
504 +
505 +
506 +
507 +== 2.6 ​Show Data in DataCake IoT Server ==
508 +
630 630  (((
631 -Downlink Payload: 06000003, Set AT+INTMOD=3
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
632 632  )))
633 633  
513 +(((
514 +
515 +)))
634 634  
517 +(((
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
519 +)))
635 635  
636 -== 2.6  ​LED Indicator ==
521 +(((
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 +)))
637 637  
638 638  
639 -The NDDS75 has an internal LED which is to show the status of different state.
526 +[[image:1654505857935-743.png]]
640 640  
641 641  
642 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
643 -* Then the LED will be on for 1 second means device is boot normally.
644 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
645 -* For each uplink probe, LED will be on for 500ms.
529 +[[image:1654505874829-548.png]]
646 646  
647 -(((
648 -
649 -)))
650 650  
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
651 651  
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
652 652  
653 -== 2.7  ​Firmware Change Log ==
654 654  
537 +[[image:1654505905236-553.png]]
655 655  
656 -(((
657 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
658 -)))
659 659  
660 -(((
661 -
662 -)))
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
663 663  
664 -(((
665 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
666 -)))
542 +[[image:1654505925508-181.png]]
667 667  
668 668  
669 669  
670 -== 2. ​Battery Analysis ==
546 +== 2.7 Frequency Plans ==
671 671  
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
672 672  
673 -=== 2.8.1  ​Battery Type ===
674 674  
551 +=== 2.7.1 EU863-870 (EU868) ===
675 675  
553 +(% style="color:#037691" %)** Uplink:**
554 +
555 +868.1 - SF7BW125 to SF12BW125
556 +
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
558 +
559 +868.5 - SF7BW125 to SF12BW125
560 +
561 +867.1 - SF7BW125 to SF12BW125
562 +
563 +867.3 - SF7BW125 to SF12BW125
564 +
565 +867.5 - SF7BW125 to SF12BW125
566 +
567 +867.7 - SF7BW125 to SF12BW125
568 +
569 +867.9 - SF7BW125 to SF12BW125
570 +
571 +868.8 - FSK
572 +
573 +
574 +(% style="color:#037691" %)** Downlink:**
575 +
576 +Uplink channels 1-9 (RX1)
577 +
578 +869.525 - SF9BW125 (RX2 downlink only)
579 +
580 +
581 +
582 +=== 2.7.2 US902-928(US915) ===
583 +
584 +Used in USA, Canada and South America. Default use CHE=2
585 +
586 +(% style="color:#037691" %)**Uplink:**
587 +
588 +903.9 - SF7BW125 to SF10BW125
589 +
590 +904.1 - SF7BW125 to SF10BW125
591 +
592 +904.3 - SF7BW125 to SF10BW125
593 +
594 +904.5 - SF7BW125 to SF10BW125
595 +
596 +904.7 - SF7BW125 to SF10BW125
597 +
598 +904.9 - SF7BW125 to SF10BW125
599 +
600 +905.1 - SF7BW125 to SF10BW125
601 +
602 +905.3 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**Downlink:**
606 +
607 +923.3 - SF7BW500 to SF12BW500
608 +
609 +923.9 - SF7BW500 to SF12BW500
610 +
611 +924.5 - SF7BW500 to SF12BW500
612 +
613 +925.1 - SF7BW500 to SF12BW500
614 +
615 +925.7 - SF7BW500 to SF12BW500
616 +
617 +926.3 - SF7BW500 to SF12BW500
618 +
619 +926.9 - SF7BW500 to SF12BW500
620 +
621 +927.5 - SF7BW500 to SF12BW500
622 +
623 +923.3 - SF12BW500(RX2 downlink only)
624 +
625 +
626 +
627 +=== 2.7.3 CN470-510 (CN470) ===
628 +
629 +Used in China, Default use CHE=1
630 +
631 +(% style="color:#037691" %)**Uplink:**
632 +
633 +486.3 - SF7BW125 to SF12BW125
634 +
635 +486.5 - SF7BW125 to SF12BW125
636 +
637 +486.7 - SF7BW125 to SF12BW125
638 +
639 +486.9 - SF7BW125 to SF12BW125
640 +
641 +487.1 - SF7BW125 to SF12BW125
642 +
643 +487.3 - SF7BW125 to SF12BW125
644 +
645 +487.5 - SF7BW125 to SF12BW125
646 +
647 +487.7 - SF7BW125 to SF12BW125
648 +
649 +
650 +(% style="color:#037691" %)**Downlink:**
651 +
652 +506.7 - SF7BW125 to SF12BW125
653 +
654 +506.9 - SF7BW125 to SF12BW125
655 +
656 +507.1 - SF7BW125 to SF12BW125
657 +
658 +507.3 - SF7BW125 to SF12BW125
659 +
660 +507.5 - SF7BW125 to SF12BW125
661 +
662 +507.7 - SF7BW125 to SF12BW125
663 +
664 +507.9 - SF7BW125 to SF12BW125
665 +
666 +508.1 - SF7BW125 to SF12BW125
667 +
668 +505.3 - SF12BW125 (RX2 downlink only)
669 +
670 +
671 +
672 +=== 2.7.4 AU915-928(AU915) ===
673 +
674 +Default use CHE=2
675 +
676 +(% style="color:#037691" %)**Uplink:**
677 +
678 +916.8 - SF7BW125 to SF12BW125
679 +
680 +917.0 - SF7BW125 to SF12BW125
681 +
682 +917.2 - SF7BW125 to SF12BW125
683 +
684 +917.4 - SF7BW125 to SF12BW125
685 +
686 +917.6 - SF7BW125 to SF12BW125
687 +
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
676 676  (((
677 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
678 678  )))
843 +)))
679 679  
845 +
846 +
847 +[[image:1654506665940-119.png]]
848 +
680 680  (((
681 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
682 682  )))
683 683  
684 684  (((
685 -The battery related documents as below:
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
686 686  )))
687 687  
688 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
689 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
690 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
691 691  
858 +== 2.10 ​Firmware Change Log ==
859 +
692 692  (((
693 -[[image:image-20220709101450-2.png]]
861 +**Firmware download link:**
694 694  )))
695 695  
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
696 696  
868 +(((
869 +
870 +)))
697 697  
698 -=== 2.8.2  Power consumption Analyze ===
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
699 699  
876 +(((
877 +
878 +)))
700 700  
701 701  (((
702 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
881 +**V1.0.**
703 703  )))
704 704  
884 +(((
885 +Release
886 +)))
705 705  
888 +
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
706 706  (((
707 -Instruction to use as below:
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
708 708  )))
709 709  
710 710  (((
711 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
898 +The battery is designed to last for more than 5 years for the LSN50.
712 712  )))
713 713  
714 -
715 715  (((
716 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
717 717  )))
905 +)))
718 718  
719 719  * (((
720 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
721 721  )))
722 722  * (((
723 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
724 724  )))
725 725  * (((
726 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
727 727  )))
728 728  
729 -(((
730 -And the Life expectation in difference case will be shown on the right.
731 -)))
917 + [[image:image-20220610172436-1.png]]
732 732  
733 -[[image:image-20220709110451-3.png]]
734 734  
735 735  
921 +=== 2.11.2 ​Battery Note ===
736 736  
737 -=== 2.8.3  ​Battery Note ===
738 -
739 -
740 740  (((
741 741  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
742 742  )))
... ... @@ -743,203 +743,326 @@
743 743  
744 744  
745 745  
746 -=== 2.8. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
747 747  
931 +(((
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
933 +)))
748 748  
749 749  (((
750 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
751 751  )))
752 752  
939 +(((
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
941 +)))
753 753  
754 754  
755 -= 3. ​ Access NB-IoT Module =
756 756  
945 += 3. ​Using the AT Commands =
757 757  
758 -(((
759 -Users can directly access the AT command set of the NB-IoT module.
760 -)))
947 +== 3.1 Access AT Commands ==
761 761  
762 -(((
763 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
764 764  
765 -
766 -)))
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
767 767  
768 -[[image:1657333200519-600.png]]
952 +[[image:1654501986557-872.png||height="391" width="800"]]
769 769  
770 770  
955 +Or if you have below board, use below connection:
771 771  
772 -= 4.  Using the AT Commands =
773 773  
958 +[[image:1654502005655-729.png||height="503" width="801"]]
774 774  
775 -== 4.1  Access AT Commands ==
776 776  
777 777  
778 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
779 779  
780 780  
781 -AT+<CMD>?  : Help on <CMD>
965 + [[image:1654502050864-459.png||height="564" width="806"]]
782 782  
783 -AT+<CMD>         : Run <CMD>
784 784  
785 -AT+<CMD>=<value> : Set the value
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
786 786  
787 -AT+<CMD>=?  : Get the value
788 788  
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
789 789  
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
790 790  (% style="color:#037691" %)**General Commands**(%%)      
791 791  
792 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
793 793  
794 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
795 795  
796 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
797 797  
798 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
799 799  
800 -AT+CFG  : Print all configurations
801 801  
802 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
803 803  
804 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
805 805  
806 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
807 807  
808 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
809 809  
810 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
811 811  
812 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
813 813  
814 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
815 815  
816 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
817 817  
818 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
819 819  
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
820 820  
821 -(% style="color:#037691" %)**COAP Management**      
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
822 822  
823 -AT+URI            : Resource parameters
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
824 824  
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
825 825  
826 -(% style="color:#037691" %)**UDP Management**
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
827 827  
828 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
829 829  
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
830 830  
831 -(% style="color:#037691" %)**MQTT Management**
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
832 832  
833 -AT+CLIENT               : Get or Set MQTT client
834 834  
835 -AT+UNAME  : Get or Set MQTT Username
1026 +(% style="color:#037691" %)**LoRa Network Management**
836 836  
837 -AT+PWD                  : Get or Set MQTT password
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
838 838  
839 -AT+PUBTOPI : Get or Set MQTT publish topic
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
840 840  
841 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
842 842  
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
843 843  
844 -(% style="color:#037691" %)**Information**          
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
845 845  
846 -AT+FDR  : Factory Data Reset
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
847 847  
848 -AT+PWOR : Serial Access Password
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
849 849  
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
850 850  
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
851 851  
852 -= ​5.  FAQ =
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
853 853  
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
854 854  
855 -== 5.1 How to Upgrade Firmware ==
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
856 856  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
857 857  
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1057 +
1058 +
1059 +(% style="color:#037691" %)**Information** 
1060 +
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
858 858  (((
859 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
860 860  )))
861 861  
862 862  (((
863 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
864 864  )))
865 865  
866 866  (((
867 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
868 868  )))
869 869  
1093 +(((
1094 +
1095 +)))
870 870  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
871 871  
872 -= 6.  Trouble Shooting =
1101 +(((
1102 +
1103 +)))
873 873  
1105 +(((
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 +)))
874 874  
875 -== 6.1  ​Connection problem when uploading firmware ==
1109 +[[image:image-20220606154726-3.png]]
876 876  
877 877  
1112 +When you use the TTN network, the US915 frequency bands use are:
1113 +
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
1123 +
878 878  (((
879 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
880 880  )))
881 881  
882 -(% class="wikigeneratedid" %)
883 883  (((
884 884  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
885 885  )))
886 886  
1137 +(((
1138 +
1139 +)))
887 887  
888 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
889 889  
1145 +[[image:image-20220606154825-4.png]]
890 890  
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
891 891  (((
892 892  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
893 893  
894 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
895 895  )))
896 896  
897 897  
898 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
899 899  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
900 900  
901 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
902 902  
903 903  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
904 904  (% class="wikigeneratedid" %)
905 905  (((
906 906  
907 907  )))
908 908  
909 -= 8.  Packing Info =
1215 += 7. Packing Info =
910 910  
911 911  (((
912 912  
913 913  
914 914  (% style="color:#037691" %)**Package Includes**:
1221 +)))
915 915  
916 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
917 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
918 918  )))
919 919  
920 920  (((
921 921  
922 922  
923 -
924 924  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
925 925  
926 -* Device Size: 13.0 x 5 x 4.5 cm
927 -* Device Weight: 150g
928 -* Package Size / pcs : 15 x 12x 5.5 cm
929 -* Weight / pcs : 220g
1233 +* (((
1234 +Device Size: cm
930 930  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
931 931  
932 -(((
933 933  
934 -
935 -
936 -
937 937  )))
938 938  
939 -= 9.  Support =
1248 += 8. Support =
940 940  
941 -
942 942  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
943 943  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
944 -
945 -
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content