Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 100.6
edited by Xiaoling
on 2022/09/06 17:42
Change comment: There is no comment for this version
To version 45.2
edited by Xiaoling
on 2022/07/08 10:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,79 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 74  
75 75  
76 -
77 77  == 1.3  Specification ==
78 78  
79 79  
... ... @@ -83,7 +83,6 @@
83 83  * Operating Temperature: -40 ~~ 85°C
84 84  
85 85  
86 -
87 87  (% style="color:#037691" %)**NB-IoT Spec:**
88 88  
89 89  * - B1 @H-FDD: 2100MHz
... ... @@ -94,649 +94,726 @@
94 94  * - B28 @H-FDD: 700MHz
95 95  
96 96  
83 +(% style="color:#037691" %)**Probe Specification:**
97 97  
98 -(% style="color:#037691" %)**Battery:**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
99 99  
100 -* Li/SOCI2 un-chargeable battery
101 -* Capacity: 8500mAh
102 -* Self Discharge: <1% / Year @ 25°C
103 -* Max continuously current: 130mA
104 -* Max boost current: 2A, 1 second
87 +[[image:image-20220708101224-1.png]]
105 105  
106 106  
107 107  
108 -(% style="color:#037691" %)**Power Consumption**
109 -
110 -* STOP Mode: 10uA @ 3.3v
111 -* Max transmit power: 350mA@3.3v
112 -
113 -
114 -
115 -
116 116  == ​1.4  Applications ==
117 117  
118 -
119 -* Smart Buildings & Home Automation
120 -* Logistics and Supply Chain Management
121 -* Smart Metering
122 122  * Smart Agriculture
123 -* Smart Cities
124 -* Smart Factory
125 125  
126 126  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
127 127  ​
128 128  
129 -
130 -
131 -
132 132  == 1.5  Pin Definitions ==
133 133  
134 134  
135 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
136 136  
137 137  
138 138  
139 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2.  Use NSE01 to communicate with IoT Server =
140 140  
141 -
142 142  == 2.1  How it works ==
143 143  
144 144  
145 145  (((
146 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
147 147  )))
148 148  
149 149  
150 150  (((
151 -The diagram below shows the working flow in default firmware of NDDS75:
116 +The diagram below shows the working flow in default firmware of NSE01:
152 152  )))
153 153  
119 +[[image:image-20220708101605-2.png]]
120 +
154 154  (((
155 155  
156 156  )))
157 157  
158 -[[image:1657328659945-416.png]]
159 159  
126 +
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 +
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 +
131 +
132 +[[image:1654503992078-669.png]]
133 +
134 +
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
136 +
137 +
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 +
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 +
142 +[[image:image-20220606163732-6.jpeg]]
143 +
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 +
146 +**Add APP EUI in the application**
147 +
148 +
149 +[[image:1654504596150-405.png]]
150 +
151 +
152 +
153 +**Add APP KEY and DEV EUI**
154 +
155 +[[image:1654504683289-357.png]]
156 +
157 +
158 +
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 +
161 +
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 +
164 +[[image:image-20220606163915-7.png]]
165 +
166 +
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 +
169 +[[image:1654504778294-788.png]]
170 +
171 +
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
160 160  (((
161 -
181 +Uplink payload includes in total 11 bytes.
162 162  )))
163 163  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
164 164  
165 -== 2.2 ​ Configure the NDDS75 ==
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
166 166  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
167 167  
168 -=== 2.2.1 Test Requirement ===
197 +(Optional)
198 +)))
169 169  
200 +=== 2.3.2 MOD~=1(Original value) ===
170 170  
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
203 +
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
207 +
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
212 +
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
216 +
217 +(Optional)
218 +)))
219 +
220 +=== 2.3.3 Battery Info ===
221 +
171 171  (((
172 -To use NDDS75 in your city, make sure meet below requirements:
223 +Check the battery voltage for LSE01.
173 173  )))
174 174  
175 -* Your local operator has already distributed a NB-IoT Network there.
176 -* The local NB-IoT network used the band that NDDS75 supports.
177 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
226 +(((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
178 178  
230 +(((
231 +Ex2: 0x0B49 = 2889mV
232 +)))
179 179  
180 180  
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
181 181  (((
182 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
183 183  )))
184 184  
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
185 185  
186 -[[image:1657328756309-230.png]]
246 +(((
247 +
248 +)))
187 187  
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
188 188  
189 189  
190 -=== 2.2.2 Insert SIM card ===
191 191  
256 +=== 2.3.5 Soil Temperature ===
192 192  
193 193  (((
194 -Insert the NB-IoT Card get from your provider.
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
195 195  )))
196 196  
197 197  (((
198 -User need to take out the NB-IoT module and insert the SIM card like below:
263 +**Example**:
199 199  )))
200 200  
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
201 201  
202 -[[image:1657328884227-504.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
203 203  
204 204  
205 205  
206 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
276 +=== 2.3.6 Soil Conductivity (EC) ===
207 207  
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
208 208  
209 209  (((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
285 +
210 210  (((
211 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
212 212  )))
289 +
290 +(((
291 +
213 213  )))
214 214  
215 -[[image:image-20220709092052-2.png]]
294 +(((
295 +
296 +)))
216 216  
298 +=== 2.3.7 MOD ===
217 217  
218 -**Connection:**
300 +Firmware version at least v2.1 supports changing mode.
219 219  
220 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
302 +For example, bytes[10]=90
221 221  
222 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
304 +mod=(bytes[10]>>7)&0x01=1.
223 223  
224 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
225 225  
307 +**Downlink Command:**
226 226  
227 -In the PC, use below serial tool settings:
309 +If payload = 0x0A00, workmode=0
228 228  
229 -* Baud:  (% style="color:green" %)**9600**
230 -* Data bits:** (% style="color:green" %)8(%%)**
231 -* Stop bits: (% style="color:green" %)**1**
232 -* Parity:  (% style="color:green" %)**None**
233 -* Flow Control: (% style="color:green" %)**None**
311 +If** **payload =** **0x0A01, workmode=1
234 234  
235 -(((
236 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
237 -)))
238 238  
239 -[[image:1657329814315-101.png]]
240 240  
315 +=== 2.3.8 ​Decode payload in The Things Network ===
241 241  
317 +While using TTN network, you can add the payload format to decode the payload.
318 +
319 +
320 +[[image:1654505570700-128.png]]
321 +
242 242  (((
243 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
323 +The payload decoder function for TTN is here:
244 244  )))
245 245  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
246 246  
247 247  
248 -=== 2.2.4 Use CoAP protocol to uplink data ===
331 +== 2.4 Uplink Interval ==
249 249  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
250 250  
251 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
252 252  
253 253  
337 +== 2.5 Downlink Payload ==
338 +
339 +By default, LSE50 prints the downlink payload to console port.
340 +
341 +[[image:image-20220606165544-8.png]]
342 +
343 +
254 254  (((
255 -**Use below commands:**
345 +(% style="color:blue" %)**Examples:**
256 256  )))
257 257  
258 -* (((
259 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
348 +(((
349 +
260 260  )))
351 +
261 261  * (((
262 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
353 +(% style="color:blue" %)**Set TDC**
263 263  )))
264 -* (((
265 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
266 266  
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
267 267  
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
363 +
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
367 +
368 +(((
268 268  
269 269  )))
270 270  
372 +* (((
373 +(% style="color:blue" %)**Reset**
374 +)))
375 +
271 271  (((
272 -For parameter description, please refer to AT command set
377 +If payload = 0x04FF, it will reset the LSE01
273 273  )))
274 274  
275 -[[image:1657330452568-615.png]]
276 276  
381 +* (% style="color:blue" %)**CFM**
277 277  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
278 278  
385 +
386 +
387 +== 2.6 ​Show Data in DataCake IoT Server ==
388 +
279 279  (((
280 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
281 281  )))
282 282  
283 -[[image:1657330472797-498.png]]
393 +(((
394 +
395 +)))
284 284  
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
285 285  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
286 286  
287 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
288 288  
406 +[[image:1654505857935-743.png]]
289 289  
290 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
291 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
292 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
293 293  
409 +[[image:1654505874829-548.png]]
294 294  
295 295  
296 -[[image:1657330501006-241.png]]
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
297 297  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
298 298  
299 -[[image:1657330533775-472.png]]
300 300  
417 +[[image:1654505905236-553.png]]
301 301  
302 302  
303 -=== 2.2.6 Use MQTT protocol to uplink data ===
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
304 304  
422 +[[image:1654505925508-181.png]]
305 305  
306 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
307 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
308 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
309 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
310 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
311 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
312 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
313 313  
314 314  
426 +== 2.7 Frequency Plans ==
315 315  
316 -[[image:1657249978444-674.png]]
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
317 317  
318 318  
319 -[[image:1657330723006-866.png]]
431 +=== 2.7.1 EU863-870 (EU868) ===
320 320  
433 +(% style="color:#037691" %)** Uplink:**
321 321  
322 -(((
323 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
324 -)))
435 +868.1 - SF7BW125 to SF12BW125
325 325  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
326 326  
439 +868.5 - SF7BW125 to SF12BW125
327 327  
328 -=== 2.2.7 Use TCP protocol to uplink data ===
441 +867.1 - SF7BW125 to SF12BW125
329 329  
443 +867.3 - SF7BW125 to SF12BW125
330 330  
331 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
332 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
445 +867.5 - SF7BW125 to SF12BW125
333 333  
447 +867.7 - SF7BW125 to SF12BW125
334 334  
449 +867.9 - SF7BW125 to SF12BW125
335 335  
336 -[[image:image-20220709093918-1.png]]
451 +868.8 - FSK
337 337  
338 338  
339 -[[image:image-20220709093918-2.png]]
454 +(% style="color:#037691" %)** Downlink:**
340 340  
456 +Uplink channels 1-9 (RX1)
341 341  
458 +869.525 - SF9BW125 (RX2 downlink only)
342 342  
343 -=== 2.2.8 Change Update Interval ===
344 344  
345 345  
346 -User can use below command to change the (% style="color:green" %)**uplink interval**.
462 +=== 2.7.2 US902-928(US915) ===
347 347  
348 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
464 +Used in USA, Canada and South America. Default use CHE=2
349 349  
466 +(% style="color:#037691" %)**Uplink:**
350 350  
468 +903.9 - SF7BW125 to SF10BW125
351 351  
352 -(((
353 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 1 hour.**
354 -)))
470 +904.1 - SF7BW125 to SF10BW125
355 355  
472 +904.3 - SF7BW125 to SF10BW125
356 356  
474 +904.5 - SF7BW125 to SF10BW125
357 357  
358 -== 2. Uplink Payload ==
476 +904.7 - SF7BW125 to SF10BW125
359 359  
478 +904.9 - SF7BW125 to SF10BW125
360 360  
361 -In this mode, uplink payload includes in total 14 bytes
480 +905.1 - SF7BW125 to SF10BW125
362 362  
482 +905.3 - SF7BW125 to SF10BW125
363 363  
364 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
365 -|=(% style="width: 60px;" %)(((
366 -**Size(bytes)**
367 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
368 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
369 369  
370 -(((
371 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
372 -)))
485 +(% style="color:#037691" %)**Downlink:**
373 373  
487 +923.3 - SF7BW500 to SF12BW500
374 374  
375 -[[image:1657331036973-987.png]]
489 +923.9 - SF7BW500 to SF12BW500
376 376  
491 +924.5 - SF7BW500 to SF12BW500
377 377  
378 -(((
379 -The payload is ASCII string, representative same HEX:
380 -)))
493 +925.1 - SF7BW500 to SF12BW500
381 381  
382 -(((
383 -0x72403155615900640c6c19029200 where:
384 -)))
495 +925.7 - SF7BW500 to SF12BW500
385 385  
386 -* (((
387 -Device ID: 0x724031556159 = 724031556159
388 -)))
389 -* (((
390 -Version: 0x0064=100=1.0.0
391 -)))
497 +926.3 - SF7BW500 to SF12BW500
392 392  
393 -* (((
394 -BAT: 0x0c6c = 3180 mV = 3.180V
395 -)))
396 -* (((
397 -Signal: 0x19 = 25
398 -)))
399 -* (((
400 -Distance: 0x0292= 658 mm
401 -)))
402 -* (((
403 -Interrupt: 0x00 = 0
499 +926.9 - SF7BW500 to SF12BW500
404 404  
501 +927.5 - SF7BW500 to SF12BW500
405 405  
503 +923.3 - SF12BW500(RX2 downlink only)
406 406  
407 -
408 -)))
409 409  
410 -== 2.4  Payload Explanation and Sensor Interface ==
411 411  
507 +=== 2.7.3 CN470-510 (CN470) ===
412 412  
413 -=== 2.4.1  Device ID ===
509 +Used in China, Default use CHE=1
414 414  
511 +(% style="color:#037691" %)**Uplink:**
415 415  
416 -(((
417 -By default, the Device ID equal to the last 6 bytes of IMEI.
418 -)))
513 +486.3 - SF7BW125 to SF12BW125
419 419  
420 -(((
421 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
515 +486.5 - SF7BW125 to SF12BW125
422 422  
423 -
424 -)))
517 +486.7 - SF7BW125 to SF12BW125
425 425  
426 -(((
427 -**Example:**
428 -)))
519 +486.9 - SF7BW125 to SF12BW125
429 429  
430 -(((
431 -AT+DEUI=A84041F15612
432 -)))
521 +487.1 - SF7BW125 to SF12BW125
433 433  
434 -(((
435 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
436 -)))
523 +487.3 - SF7BW125 to SF12BW125
437 437  
525 +487.5 - SF7BW125 to SF12BW125
438 438  
527 +487.7 - SF7BW125 to SF12BW125
439 439  
440 -=== 2.4.2  Version Info ===
441 441  
530 +(% style="color:#037691" %)**Downlink:**
442 442  
443 -(((
444 -Specify the software version: 0x64=100, means firmware version 1.00.
445 -)))
532 +506.7 - SF7BW125 to SF12BW125
446 446  
447 -(((
448 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
449 -)))
534 +506.9 - SF7BW125 to SF12BW125
450 450  
536 +507.1 - SF7BW125 to SF12BW125
451 451  
538 +507.3 - SF7BW125 to SF12BW125
452 452  
453 -=== 2.4.3  Battery Info ===
540 +507.5 - SF7BW125 to SF12BW125
454 454  
542 +507.7 - SF7BW125 to SF12BW125
455 455  
456 -(((
457 -Ex1: 0x0B45 = 2885mV
458 -)))
544 +507.9 - SF7BW125 to SF12BW125
459 459  
460 -(((
461 -Ex2: 0x0B49 = 2889mV
462 -)))
546 +508.1 - SF7BW125 to SF12BW125
463 463  
548 +505.3 - SF12BW125 (RX2 downlink only)
464 464  
465 465  
466 -=== 2.4.4  Signal Strength ===
467 467  
552 +=== 2.7.4 AU915-928(AU915) ===
468 468  
469 -(((
470 -NB-IoT Network signal Strength.
471 -)))
554 +Default use CHE=2
472 472  
473 -(((
474 -**Ex1: 0x1d = 29**
475 -)))
556 +(% style="color:#037691" %)**Uplink:**
476 476  
477 -(((
478 -(% style="color:blue" %)**0**(%%)  -113dBm or less
479 -)))
558 +916.8 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -(% style="color:blue" %)**1**(%%)  -111dBm
483 -)))
560 +917.0 - SF7BW125 to SF12BW125
484 484  
485 -(((
486 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
487 -)))
562 +917.2 - SF7BW125 to SF12BW125
488 488  
489 -(((
490 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
491 -)))
564 +917.4 - SF7BW125 to SF12BW125
492 492  
493 -(((
494 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
495 -)))
566 +917.6 - SF7BW125 to SF12BW125
496 496  
568 +917.8 - SF7BW125 to SF12BW125
497 497  
570 +918.0 - SF7BW125 to SF12BW125
498 498  
499 -=== 2.4.5  Distance ===
572 +918.2 - SF7BW125 to SF12BW125
500 500  
501 501  
502 -Get the distance. Flat object range 280mm - 7500mm.
575 +(% style="color:#037691" %)**Downlink:**
503 503  
504 -(((
505 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
506 -)))
577 +923.3 - SF7BW500 to SF12BW500
507 507  
508 -(((
509 -(((
510 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
511 -)))
512 -)))
579 +923.9 - SF7BW500 to SF12BW500
513 513  
514 -(((
515 -
516 -)))
581 +924.5 - SF7BW500 to SF12BW500
517 517  
518 -(((
519 -
520 -)))
583 +925.1 - SF7BW500 to SF12BW500
521 521  
522 -=== 2.4.6  Digital Interrupt ===
585 +925.7 - SF7BW500 to SF12BW500
523 523  
587 +926.3 - SF7BW500 to SF12BW500
524 524  
525 -(((
526 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
527 -)))
589 +926.9 - SF7BW500 to SF12BW500
528 528  
529 -(((
530 -The command is:
531 -)))
591 +927.5 - SF7BW500 to SF12BW500
532 532  
533 -(((
534 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
535 -)))
593 +923.3 - SF12BW500(RX2 downlink only)
536 536  
537 537  
538 -(((
539 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
540 -)))
541 541  
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
542 542  
543 -(((
544 -Example:
545 -)))
599 +(% style="color:#037691" %)**Default Uplink channel:**
546 546  
547 -(((
548 -0x(00): Normal uplink packet.
549 -)))
601 +923.2 - SF7BW125 to SF10BW125
550 550  
551 -(((
552 -0x(01): Interrupt Uplink Packet.
553 -)))
603 +923.4 - SF7BW125 to SF10BW125
554 554  
555 555  
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
556 556  
557 -=== 2.4.7  ​+5V Output ===
608 +(OTAA mode, channel added by JoinAccept message)
558 558  
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
559 559  
560 -(((
561 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
562 -)))
612 +922.2 - SF7BW125 to SF10BW125
563 563  
614 +922.4 - SF7BW125 to SF10BW125
564 564  
565 -(((
566 -The 5V output time can be controlled by AT Command.
616 +922.6 - SF7BW125 to SF10BW125
567 567  
568 -
569 -)))
618 +922.8 - SF7BW125 to SF10BW125
570 570  
571 -(((
572 -(% style="color:blue" %)**AT+5VT=1000**
620 +923.0 - SF7BW125 to SF10BW125
573 573  
574 -
575 -)))
622 +922.0 - SF7BW125 to SF10BW125
576 576  
577 -(((
578 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
579 -)))
580 580  
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
581 581  
627 +923.6 - SF7BW125 to SF10BW125
582 582  
583 -== 2.5  Downlink Payload ==
629 +923.8 - SF7BW125 to SF10BW125
584 584  
631 +924.0 - SF7BW125 to SF10BW125
585 585  
586 -By default, NDDS75 prints the downlink payload to console port.
633 +924.2 - SF7BW125 to SF10BW125
587 587  
588 -[[image:image-20220709100028-1.png]]
635 +924.4 - SF7BW125 to SF10BW125
589 589  
637 +924.6 - SF7BW125 to SF10BW125
590 590  
591 -(((
592 -(% style="color:blue" %)**Examples:**
593 -)))
594 594  
595 -(((
596 -
597 -)))
640 +(% style="color:#037691" %)** Downlink:**
598 598  
599 -* (((
600 -(% style="color:blue" %)**Set TDC**
601 -)))
642 +Uplink channels 1-8 (RX1)
602 602  
603 -(((
604 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
605 -)))
644 +923.2 - SF10BW125 (RX2)
606 606  
607 -(((
608 -Payload:    01 00 00 1E    TDC=30S
609 -)))
610 610  
611 -(((
612 -Payload:    01 00 00 3C    TDC=60S
613 -)))
614 614  
615 -(((
616 -
617 -)))
648 +=== 2.7.6 KR920-923 (KR920) ===
618 618  
619 -* (((
620 -(% style="color:blue" %)**Reset**
621 -)))
650 +Default channel:
622 622  
623 -(((
624 -If payload = 0x04FF, it will reset the NDDS75
625 -)))
652 +922.1 - SF7BW125 to SF12BW125
626 626  
654 +922.3 - SF7BW125 to SF12BW125
627 627  
628 -* (% style="color:blue" %)**INTMOD**
656 +922.5 - SF7BW125 to SF12BW125
629 629  
630 -(((
631 -Downlink Payload: 06000003, Set AT+INTMOD=3
632 -)))
633 633  
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
634 634  
661 +922.1 - SF7BW125 to SF12BW125
635 635  
636 -== 2. ​LED Indicator ==
663 +922.3 - SF7BW125 to SF12BW125
637 637  
665 +922.5 - SF7BW125 to SF12BW125
638 638  
639 -The NDDS75 has an internal LED which is to show the status of different state.
667 +922.7 - SF7BW125 to SF12BW125
640 640  
669 +922.9 - SF7BW125 to SF12BW125
641 641  
642 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
643 -* Then the LED will be on for 1 second means device is boot normally.
644 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
645 -* For each uplink probe, LED will be on for 500ms.
671 +923.1 - SF7BW125 to SF12BW125
646 646  
647 -(((
648 -
649 -)))
673 +923.3 - SF7BW125 to SF12BW125
650 650  
651 651  
676 +(% style="color:#037691" %)**Downlink:**
652 652  
653 -== 2.7  ​Firmware Change Log ==
678 +Uplink channels 1-7(RX1)
654 654  
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
655 655  
656 -(((
657 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
658 -)))
659 659  
660 -(((
661 -
662 -)))
663 663  
664 -(((
665 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
666 -)))
684 +=== 2.7.7 IN865-867 (IN865) ===
667 667  
686 +(% style="color:#037691" %)** Uplink:**
668 668  
688 +865.0625 - SF7BW125 to SF12BW125
669 669  
670 -== 2.8  Battery Analysis ==
690 +865.4025 - SF7BW125 to SF12BW125
671 671  
692 +865.9850 - SF7BW125 to SF12BW125
672 672  
673 -=== 2.8.1  ​Battery Type ===
674 674  
695 +(% style="color:#037691" %) **Downlink:**
675 675  
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
676 676  (((
677 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
678 678  )))
723 +)))
679 679  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
680 680  (((
681 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
682 682  )))
683 683  
684 684  (((
685 -The battery related documents as below:
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
686 686  )))
687 687  
688 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
689 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
690 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
691 691  
738 +== 2.10 ​Firmware Change Log ==
739 +
692 692  (((
693 -[[image:image-20220709101450-2.png]]
741 +**Firmware download link:**
694 694  )))
695 695  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
696 696  
748 +(((
749 +
750 +)))
697 697  
698 -=== 2.8.2  Power consumption Analyze ===
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
699 699  
756 +(((
757 +
758 +)))
700 700  
701 701  (((
702 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +**V1.0.**
703 703  )))
704 704  
764 +(((
765 +Release
766 +)))
705 705  
768 +
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
706 706  (((
707 -Instruction to use as below:
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
708 708  )))
709 709  
710 710  (((
711 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
778 +The battery is designed to last for more than 5 years for the LSN50.
712 712  )))
713 713  
714 -
715 715  (((
716 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
717 717  )))
785 +)))
718 718  
719 719  * (((
720 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
721 721  )))
722 722  * (((
723 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
724 724  )))
725 725  * (((
726 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
727 727  )))
728 728  
729 -(((
730 -And the Life expectation in difference case will be shown on the right.
731 -)))
797 + [[image:image-20220610172436-1.png]]
732 732  
733 -[[image:image-20220709110451-3.png]]
734 734  
735 735  
801 +=== 2.11.2 ​Battery Note ===
736 736  
737 -=== 2.8.3  ​Battery Note ===
738 -
739 -
740 740  (((
741 741  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
742 742  )))
... ... @@ -743,203 +743,326 @@
743 743  
744 744  
745 745  
746 -=== 2.8. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
747 747  
811 +(((
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
813 +)))
748 748  
749 749  (((
750 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
751 751  )))
752 752  
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
753 753  
754 754  
755 -= 3. ​ Access NB-IoT Module =
756 756  
825 += 3. ​Using the AT Commands =
757 757  
758 -(((
759 -Users can directly access the AT command set of the NB-IoT module.
760 -)))
827 +== 3.1 Access AT Commands ==
761 761  
762 -(((
763 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
764 764  
765 -
766 -)))
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
767 767  
768 -[[image:1657333200519-600.png]]
832 +[[image:1654501986557-872.png||height="391" width="800"]]
769 769  
770 770  
835 +Or if you have below board, use below connection:
771 771  
772 -= 4.  Using the AT Commands =
773 773  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
774 774  
775 -== 4.1  Access AT Commands ==
776 776  
777 777  
778 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
779 779  
780 780  
781 -AT+<CMD>?  : Help on <CMD>
845 + [[image:1654502050864-459.png||height="564" width="806"]]
782 782  
783 -AT+<CMD>         : Run <CMD>
784 784  
785 -AT+<CMD>=<value> : Set the value
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
786 786  
787 -AT+<CMD>=?  : Get the value
788 788  
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
789 789  
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
790 790  (% style="color:#037691" %)**General Commands**(%%)      
791 791  
792 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
793 793  
794 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
795 795  
796 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
797 797  
798 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
799 799  
800 -AT+CFG  : Print all configurations
801 801  
802 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
803 803  
804 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
805 805  
806 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
807 807  
808 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
809 809  
810 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
811 811  
812 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
813 813  
814 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
815 815  
816 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
817 817  
818 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
819 819  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
820 820  
821 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
822 822  
823 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
824 824  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
825 825  
826 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
827 827  
828 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
829 829  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
830 830  
831 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
832 832  
833 -AT+CLIENT               : Get or Set MQTT client
834 834  
835 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
836 836  
837 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
838 838  
839 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
840 840  
841 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
842 842  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
843 843  
844 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
845 845  
846 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
847 847  
848 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
849 849  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
850 850  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
851 851  
852 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
853 853  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
854 854  
855 -== 5.1 How to Upgrade Firmware ==
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
856 856  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
857 857  
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
858 858  (((
859 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
860 860  )))
861 861  
862 862  (((
863 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
864 864  )))
865 865  
866 866  (((
867 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
868 868  )))
869 869  
973 +(((
974 +
975 +)))
870 870  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
871 871  
872 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
873 873  
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
874 874  
875 -== 6.1  ​Connection problem when uploading firmware ==
989 +[[image:image-20220606154726-3.png]]
876 876  
877 877  
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
878 878  (((
879 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
880 880  )))
881 881  
882 -(% class="wikigeneratedid" %)
883 883  (((
884 884  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
885 885  )))
886 886  
1017 +(((
1018 +
1019 +)))
887 887  
888 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
889 889  
1025 +[[image:image-20220606154825-4.png]]
890 890  
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
891 891  (((
892 892  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
893 893  
894 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
895 895  )))
896 896  
897 897  
898 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
899 899  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
900 900  
901 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
902 902  
903 903  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
904 904  (% class="wikigeneratedid" %)
905 905  (((
906 906  
907 907  )))
908 908  
909 -= 8.  Packing Info =
1095 += 7. Packing Info =
910 910  
911 911  (((
912 912  
913 913  
914 914  (% style="color:#037691" %)**Package Includes**:
1101 +)))
915 915  
916 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
917 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
918 918  )))
919 919  
920 920  (((
921 921  
922 922  
923 -
924 924  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
925 925  
926 -* Device Size: 13.0 x 5 x 4.5 cm
927 -* Device Weight: 150g
928 -* Package Size / pcs : 15 x 12x 5.5 cm
929 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
930 930  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
931 931  
932 -(((
933 933  
934 -
935 -
936 -
937 937  )))
938 938  
939 -= 9.  Support =
1128 += 8. Support =
940 940  
941 -
942 942  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
943 943  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
944 -
945 -
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content