Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 100.5
edited by Xiaoling
on 2022/08/22 14:39
Change comment: There is no comment for this version
To version 57.2
edited by Xiaoling
on 2022/07/08 11:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,79 +1,64 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1.  Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
46 +== 1.2 ​Features ==
47 +
48 +
61 61  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
62 -* Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
71 71  * Micro SIM card slot for NB-IoT SIM
72 72  * 8500mAh Battery for long term use
73 73  
74 -
75 -
76 -
77 77  == 1.3  Specification ==
78 78  
79 79  
... ... @@ -82,7 +82,6 @@
82 82  * Supply Voltage: 2.1v ~~ 3.6v
83 83  * Operating Temperature: -40 ~~ 85°C
84 84  
85 -
86 86  (% style="color:#037691" %)**NB-IoT Spec:**
87 87  
88 88  * - B1 @H-FDD: 2100MHz
... ... @@ -92,124 +92,91 @@
92 92  * - B20 @H-FDD: 800MHz
93 93  * - B28 @H-FDD: 700MHz
94 94  
79 +(% style="color:#037691" %)**Probe Specification:**
95 95  
96 -(% style="color:#037691" %)**Battery:**
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
97 97  
98 -* Li/SOCI2 un-chargeable battery
99 -* Capacity: 8500mAh
100 -* Self Discharge: <1% / Year @ 25°C
101 -* Max continuously current: 130mA
102 -* Max boost current: 2A, 1 second
83 +[[image:image-20220708101224-1.png]]
103 103  
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
106 106  
107 -* STOP Mode: 10uA @ 3.3v
108 -* Max transmit power: 350mA@3.3v
109 -
110 -
111 -
112 -
113 113  == ​1.4  Applications ==
114 114  
115 -
116 -* Smart Buildings & Home Automation
117 -* Logistics and Supply Chain Management
118 -* Smart Metering
119 119  * Smart Agriculture
120 -* Smart Cities
121 -* Smart Factory
122 122  
123 123  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
124 124  ​
125 125  
126 -
127 -
128 -
129 129  == 1.5  Pin Definitions ==
130 130  
131 131  
132 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
133 133  
134 134  
135 135  
136 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
137 137  
138 -
139 139  == 2.1  How it works ==
140 140  
141 141  
142 142  (((
143 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
144 144  )))
145 145  
146 146  
147 147  (((
148 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
149 149  )))
150 150  
151 -(((
152 -
153 -)))
115 +[[image:image-20220708101605-2.png]]
154 154  
155 -[[image:1657328659945-416.png]]
156 -
157 157  (((
158 158  
159 159  )))
160 160  
161 161  
162 -== 2.2 ​ Configure the NDDS75 ==
163 163  
123 +== 2.2 ​ Configure the NSE01 ==
164 164  
125 +
165 165  === 2.2.1 Test Requirement ===
166 166  
167 167  
168 -(((
169 -To use NDDS75 in your city, make sure meet below requirements:
170 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
171 171  
172 172  * Your local operator has already distributed a NB-IoT Network there.
173 -* The local NB-IoT network used the band that NDDS75 supports.
132 +* The local NB-IoT network used the band that NSE01 supports.
174 174  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
175 175  
176 176  (((
177 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
178 178  )))
179 179  
180 180  
181 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
182 182  
183 183  
184 184  
185 185  === 2.2.2 Insert SIM card ===
186 186  
187 -
188 -(((
189 189  Insert the NB-IoT Card get from your provider.
190 -)))
191 191  
192 -(((
193 193  User need to take out the NB-IoT module and insert the SIM card like below:
194 -)))
195 195  
196 196  
197 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
198 198  
199 199  
200 200  
201 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
202 202  
203 -
204 204  (((
205 205  (((
206 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
207 207  )))
208 208  )))
209 209  
210 -[[image:image-20220709092052-2.png]]
211 211  
212 -
213 213  **Connection:**
214 214  
215 215   (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
... ... @@ -221,94 +221,84 @@
221 221  
222 222  In the PC, use below serial tool settings:
223 223  
224 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
225 225  * Data bits:** (% style="color:green" %)8(%%)**
226 226  * Stop bits: (% style="color:green" %)**1**
227 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
228 228  * Flow Control: (% style="color:green" %)**None**
229 229  
230 230  (((
231 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
232 232  )))
233 233  
234 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
235 235  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
236 236  
237 -(((
238 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
239 -)))
240 240  
241 241  
242 -
243 243  === 2.2.4 Use CoAP protocol to uplink data ===
244 244  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
245 245  
246 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
247 247  
248 -
249 -(((
250 250  **Use below commands:**
251 -)))
252 252  
253 -* (((
254 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
255 -)))
256 -* (((
257 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
258 -)))
259 -* (((
260 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
261 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
262 262  
263 -(((
202 +
264 264  For parameter description, please refer to AT command set
265 -)))
266 266  
267 -[[image:1657330452568-615.png]]
205 +[[image:1657249793983-486.png]]
268 268  
269 269  
208 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
270 270  
271 -(((
272 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
273 -)))
210 +[[image:1657249831934-534.png]]
274 274  
275 -[[image:1657330472797-498.png]]
276 276  
277 277  
278 -
279 279  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
280 280  
216 +This feature is supported since firmware version v1.0.1
281 281  
282 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
218 +
219 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
283 283  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
284 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
221 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
285 285  
286 286  
287 -[[image:1657330501006-241.png]]
224 +[[image:1657249864775-321.png]]
288 288  
289 289  
290 -[[image:1657330533775-472.png]]
291 291  
228 +[[image:1657249930215-289.png]]
292 292  
293 293  
231 +
294 294  === 2.2.6 Use MQTT protocol to uplink data ===
295 295  
234 +This feature is supported since firmware version v110
296 296  
297 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
298 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
299 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
300 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
301 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
302 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
303 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
304 304  
237 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
239 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
240 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
241 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
242 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
243 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
305 305  
245 +
306 306  [[image:1657249978444-674.png]]
307 307  
308 308  
309 -[[image:1657330723006-866.png]]
249 +[[image:1657249990869-686.png]]
310 310  
311 311  
252 +
312 312  (((
313 313  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
314 314  )))
... ... @@ -317,21 +317,20 @@
317 317  
318 318  === 2.2.7 Use TCP protocol to uplink data ===
319 319  
261 +This feature is supported since firmware version v110
320 320  
263 +
321 321  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
322 322  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
323 323  
267 +[[image:1657250217799-140.png]]
324 324  
325 -[[image:image-20220709093918-1.png]]
326 326  
270 +[[image:1657250255956-604.png]]
327 327  
328 -[[image:image-20220709093918-2.png]]
329 329  
330 -
331 -
332 332  === 2.2.8 Change Update Interval ===
333 333  
334 -
335 335  User can use below command to change the (% style="color:green" %)**uplink interval**.
336 336  
337 337  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
... ... @@ -341,7 +341,7 @@
341 341  )))
342 342  
343 343  (((
344 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
284 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
345 345  )))
346 346  
347 347  
... ... @@ -348,102 +348,86 @@
348 348  
349 349  == 2.3  Uplink Payload ==
350 350  
291 +In this mode, uplink payload includes in total 18 bytes
351 351  
352 -In this mode, uplink payload includes in total 14 bytes
353 -
354 -
355 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
356 -|=(% style="width: 60px;" %)(((
293 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 +|=(% style="width: 50px;" %)(((
357 357  **Size(bytes)**
358 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
359 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
296 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
297 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>path:#Device_ID]]|(% style="width:41px" %)[[Ver>>path:#Version]]|(% style="width:46px" %)[[BAT>>path:#battery]]|(% style="width:123px" %)[[Signal Strength>>path:#Signal]]|(% style="width:108px" %)[[Soil Moisture>>path:#Payload_Explain]]|(% style="width:133px" %)[[Soil Temperature>>path:#Payload_Explain]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>path:#Payload_Explain]]|(% style="width:80px" %)[[Interrupt>>path:#Interrupt]]
360 360  
361 -(((
362 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
363 -)))
299 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
364 364  
365 365  
366 -[[image:1657331036973-987.png]]
302 +[[image:image-20220708111918-4.png]]
367 367  
368 368  
369 -(((
370 370  The payload is ASCII string, representative same HEX:
371 -)))
372 372  
373 -(((
374 -0x72403155615900640c6c19029200 where:
375 -)))
307 +0x72403155615900640c7817075e0a8c02f900 where:
376 376  
377 -* (((
378 -Device ID: 0x724031556159 = 724031556159
379 -)))
380 -* (((
381 -Version: 0x0064=100=1.0.0
382 -)))
309 +* Device ID: 0x 724031556159 = 724031556159
310 +* Version: 0x0064=100=1.0.0
383 383  
384 -* (((
385 -BAT: 0x0c6c = 3180 mV = 3.180V
386 -)))
387 -* (((
388 -Signal: 0x19 = 25
389 -)))
390 -* (((
391 -Distance: 0x0292= 658 mm
392 -)))
393 -* (((
394 -Interrupt: 0x00 = 0
312 +* BAT: 0x0c78 = 3192 mV = 3.192V
313 +* Singal: 0x17 = 23
314 +* Soil Moisture: 0x075e= 1886 = 18.86  %
315 +* Soil Temperature:0x0a8c =2700=27 °C
316 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
317 +* Interrupt: 0x00 = 0
395 395  
396 396  
397 397  
398 -
399 -)))
321 +=== 2.3.1 MOD~=0(Default Mode) ===
400 400  
401 -== 2.4  Payload Explanation and Sensor Interface ==
323 +LSE01 will uplink payload via LoRaWAN with below payload format: 
402 402  
403 -
404 -=== 2.4.1  Device ID ===
405 -
406 -
407 407  (((
408 -By default, the Device ID equal to the last 6 bytes of IMEI.
326 +Uplink payload includes in total 11 bytes.
409 409  )))
410 410  
411 -(((
412 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
329 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
330 +|(((
331 +**Size**
413 413  
414 -
415 -)))
333 +**(bytes)**
334 +)))|**2**|**2**|**2**|**2**|**2**|**1**
335 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
336 +Temperature
416 416  
417 -(((
418 -**Example:**
419 -)))
338 +(Reserve, Ignore now)
339 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
340 +MOD & Digital Interrupt
420 420  
421 -(((
422 -AT+DEUI=A84041F15612
342 +(Optional)
423 423  )))
424 424  
425 -(((
426 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
427 -)))
345 +=== 2.3.2 MOD~=1(Original value) ===
428 428  
347 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
429 429  
349 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
350 +|(((
351 +**Size**
430 430  
431 -=== 2.4.2  Version Info ===
353 +**(bytes)**
354 +)))|**2**|**2**|**2**|**2**|**2**|**1**
355 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
356 +Temperature
432 432  
358 +(Reserve, Ignore now)
359 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
360 +MOD & Digital Interrupt
433 433  
434 -(((
435 -Specify the software version: 0x64=100, means firmware version 1.00.
362 +(Optional)
436 436  )))
437 437  
365 +=== 2.3.3 Battery Info ===
366 +
438 438  (((
439 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
368 +Check the battery voltage for LSE01.
440 440  )))
441 441  
442 -
443 -
444 -=== 2.4.3  Battery Info ===
445 -
446 -
447 447  (((
448 448  Ex1: 0x0B45 = 2885mV
449 449  )))
... ... @@ -454,56 +454,58 @@
454 454  
455 455  
456 456  
457 -=== 2.4.4  Signal Strength ===
381 +=== 2.3.4 Soil Moisture ===
458 458  
383 +(((
384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 +)))
459 459  
460 460  (((
461 -NB-IoT Network signal Strength.
388 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
462 462  )))
463 463  
464 464  (((
465 -**Ex1: 0x1d = 29**
392 +
466 466  )))
467 467  
468 468  (((
469 -(% style="color:blue" %)**0**(%%)  -113dBm or less
396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
470 470  )))
471 471  
399 +
400 +
401 +=== 2.3.5 Soil Temperature ===
402 +
472 472  (((
473 -(% style="color:blue" %)**1**(%%)  -111dBm
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
474 474  )))
475 475  
476 476  (((
477 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
408 +**Example**:
478 478  )))
479 479  
480 480  (((
481 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
482 482  )))
483 483  
484 484  (((
485 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
486 486  )))
487 487  
488 488  
489 489  
490 -=== 2.4. Distance ===
421 +=== 2.3.6 Soil Conductivity (EC) ===
491 491  
492 -
493 -Get the distance. Flat object range 280mm - 7500mm.
494 -
495 495  (((
496 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
497 497  )))
498 498  
499 499  (((
500 -(((
501 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
428 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
502 502  )))
503 -)))
504 504  
505 505  (((
506 -
432 +Generally, the EC value of irrigation water is less than 800uS / cm.
507 507  )))
508 508  
509 509  (((
... ... @@ -510,75 +510,56 @@
510 510  
511 511  )))
512 512  
513 -=== 2.4.6  Digital Interrupt ===
514 -
515 -
516 516  (((
517 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
440 +
518 518  )))
519 519  
520 -(((
521 -The command is:
522 -)))
443 +=== 2.3.7 MOD ===
523 523  
524 -(((
525 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
526 -)))
445 +Firmware version at least v2.1 supports changing mode.
527 527  
447 +For example, bytes[10]=90
528 528  
529 -(((
530 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
531 -)))
449 +mod=(bytes[10]>>7)&0x01=1.
532 532  
533 533  
534 -(((
535 -Example:
536 -)))
452 +**Downlink Command:**
537 537  
538 -(((
539 -0x(00): Normal uplink packet.
540 -)))
454 +If payload = 0x0A00, workmode=0
541 541  
542 -(((
543 -0x(01): Interrupt Uplink Packet.
544 -)))
456 +If** **payload =** **0x0A01, workmode=1
545 545  
546 546  
547 547  
548 -=== 2.4.+5V Output ===
460 +=== 2.3.8Decode payload in The Things Network ===
549 549  
462 +While using TTN network, you can add the payload format to decode the payload.
550 550  
551 -(((
552 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
553 -)))
554 554  
465 +[[image:1654505570700-128.png]]
555 555  
556 556  (((
557 -The 5V output time can be controlled by AT Command.
558 -
559 -
468 +The payload decoder function for TTN is here:
560 560  )))
561 561  
562 562  (((
563 -(% style="color:blue" %)**AT+5VT=1000**
564 -
565 -
472 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
566 566  )))
567 567  
568 -(((
569 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
570 -)))
571 571  
476 +== 2.4 Uplink Interval ==
572 572  
478 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
573 573  
574 -== 2.5  Downlink Payload ==
575 575  
576 576  
577 -By default, NDDS75 prints the downlink payload to console port.
482 +== 2.5 Downlink Payload ==
578 578  
579 -[[image:image-20220709100028-1.png]]
484 +By default, LSE50 prints the downlink payload to console port.
580 580  
486 +[[image:image-20220606165544-8.png]]
581 581  
488 +
582 582  (((
583 583  (% style="color:blue" %)**Examples:**
584 584  )))
... ... @@ -592,7 +592,7 @@
592 592  )))
593 593  
594 594  (((
595 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
502 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
596 596  )))
597 597  
598 598  (((
... ... @@ -612,122 +612,432 @@
612 612  )))
613 613  
614 614  (((
615 -If payload = 0x04FF, it will reset the NDDS75
522 +If payload = 0x04FF, it will reset the LSE01
616 616  )))
617 617  
618 618  
619 -* (% style="color:blue" %)**INTMOD**
526 +* (% style="color:blue" %)**CFM**
620 620  
528 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
529 +
530 +
531 +
532 +== 2.6 ​Show Data in DataCake IoT Server ==
533 +
621 621  (((
622 -Downlink Payload: 06000003, Set AT+INTMOD=3
535 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
623 623  )))
624 624  
538 +(((
539 +
540 +)))
625 625  
542 +(((
543 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
544 +)))
626 626  
627 -== 2.6  ​LED Indicator ==
546 +(((
547 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
548 +)))
628 628  
629 629  
630 -The NDDS75 has an internal LED which is to show the status of different state.
551 +[[image:1654505857935-743.png]]
631 631  
632 632  
633 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
634 -* Then the LED will be on for 1 second means device is boot normally.
635 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
636 -* For each uplink probe, LED will be on for 500ms.
554 +[[image:1654505874829-548.png]]
637 637  
638 -(((
639 -
640 -)))
641 641  
557 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
642 642  
559 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
643 643  
644 -== 2.7  ​Firmware Change Log ==
645 645  
562 +[[image:1654505905236-553.png]]
646 646  
647 -(((
648 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
649 -)))
650 650  
651 -(((
652 -
653 -)))
565 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
654 654  
655 -(((
656 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
657 -)))
567 +[[image:1654505925508-181.png]]
658 658  
659 659  
660 660  
661 -== 2. ​Battery Analysis ==
571 +== 2.7 Frequency Plans ==
662 662  
573 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
663 663  
664 -=== 2.8.1  ​Battery Type ===
665 665  
576 +=== 2.7.1 EU863-870 (EU868) ===
666 666  
578 +(% style="color:#037691" %)** Uplink:**
579 +
580 +868.1 - SF7BW125 to SF12BW125
581 +
582 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
583 +
584 +868.5 - SF7BW125 to SF12BW125
585 +
586 +867.1 - SF7BW125 to SF12BW125
587 +
588 +867.3 - SF7BW125 to SF12BW125
589 +
590 +867.5 - SF7BW125 to SF12BW125
591 +
592 +867.7 - SF7BW125 to SF12BW125
593 +
594 +867.9 - SF7BW125 to SF12BW125
595 +
596 +868.8 - FSK
597 +
598 +
599 +(% style="color:#037691" %)** Downlink:**
600 +
601 +Uplink channels 1-9 (RX1)
602 +
603 +869.525 - SF9BW125 (RX2 downlink only)
604 +
605 +
606 +
607 +=== 2.7.2 US902-928(US915) ===
608 +
609 +Used in USA, Canada and South America. Default use CHE=2
610 +
611 +(% style="color:#037691" %)**Uplink:**
612 +
613 +903.9 - SF7BW125 to SF10BW125
614 +
615 +904.1 - SF7BW125 to SF10BW125
616 +
617 +904.3 - SF7BW125 to SF10BW125
618 +
619 +904.5 - SF7BW125 to SF10BW125
620 +
621 +904.7 - SF7BW125 to SF10BW125
622 +
623 +904.9 - SF7BW125 to SF10BW125
624 +
625 +905.1 - SF7BW125 to SF10BW125
626 +
627 +905.3 - SF7BW125 to SF10BW125
628 +
629 +
630 +(% style="color:#037691" %)**Downlink:**
631 +
632 +923.3 - SF7BW500 to SF12BW500
633 +
634 +923.9 - SF7BW500 to SF12BW500
635 +
636 +924.5 - SF7BW500 to SF12BW500
637 +
638 +925.1 - SF7BW500 to SF12BW500
639 +
640 +925.7 - SF7BW500 to SF12BW500
641 +
642 +926.3 - SF7BW500 to SF12BW500
643 +
644 +926.9 - SF7BW500 to SF12BW500
645 +
646 +927.5 - SF7BW500 to SF12BW500
647 +
648 +923.3 - SF12BW500(RX2 downlink only)
649 +
650 +
651 +
652 +=== 2.7.3 CN470-510 (CN470) ===
653 +
654 +Used in China, Default use CHE=1
655 +
656 +(% style="color:#037691" %)**Uplink:**
657 +
658 +486.3 - SF7BW125 to SF12BW125
659 +
660 +486.5 - SF7BW125 to SF12BW125
661 +
662 +486.7 - SF7BW125 to SF12BW125
663 +
664 +486.9 - SF7BW125 to SF12BW125
665 +
666 +487.1 - SF7BW125 to SF12BW125
667 +
668 +487.3 - SF7BW125 to SF12BW125
669 +
670 +487.5 - SF7BW125 to SF12BW125
671 +
672 +487.7 - SF7BW125 to SF12BW125
673 +
674 +
675 +(% style="color:#037691" %)**Downlink:**
676 +
677 +506.7 - SF7BW125 to SF12BW125
678 +
679 +506.9 - SF7BW125 to SF12BW125
680 +
681 +507.1 - SF7BW125 to SF12BW125
682 +
683 +507.3 - SF7BW125 to SF12BW125
684 +
685 +507.5 - SF7BW125 to SF12BW125
686 +
687 +507.7 - SF7BW125 to SF12BW125
688 +
689 +507.9 - SF7BW125 to SF12BW125
690 +
691 +508.1 - SF7BW125 to SF12BW125
692 +
693 +505.3 - SF12BW125 (RX2 downlink only)
694 +
695 +
696 +
697 +=== 2.7.4 AU915-928(AU915) ===
698 +
699 +Default use CHE=2
700 +
701 +(% style="color:#037691" %)**Uplink:**
702 +
703 +916.8 - SF7BW125 to SF12BW125
704 +
705 +917.0 - SF7BW125 to SF12BW125
706 +
707 +917.2 - SF7BW125 to SF12BW125
708 +
709 +917.4 - SF7BW125 to SF12BW125
710 +
711 +917.6 - SF7BW125 to SF12BW125
712 +
713 +917.8 - SF7BW125 to SF12BW125
714 +
715 +918.0 - SF7BW125 to SF12BW125
716 +
717 +918.2 - SF7BW125 to SF12BW125
718 +
719 +
720 +(% style="color:#037691" %)**Downlink:**
721 +
722 +923.3 - SF7BW500 to SF12BW500
723 +
724 +923.9 - SF7BW500 to SF12BW500
725 +
726 +924.5 - SF7BW500 to SF12BW500
727 +
728 +925.1 - SF7BW500 to SF12BW500
729 +
730 +925.7 - SF7BW500 to SF12BW500
731 +
732 +926.3 - SF7BW500 to SF12BW500
733 +
734 +926.9 - SF7BW500 to SF12BW500
735 +
736 +927.5 - SF7BW500 to SF12BW500
737 +
738 +923.3 - SF12BW500(RX2 downlink only)
739 +
740 +
741 +
742 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
743 +
744 +(% style="color:#037691" %)**Default Uplink channel:**
745 +
746 +923.2 - SF7BW125 to SF10BW125
747 +
748 +923.4 - SF7BW125 to SF10BW125
749 +
750 +
751 +(% style="color:#037691" %)**Additional Uplink Channel**:
752 +
753 +(OTAA mode, channel added by JoinAccept message)
754 +
755 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
756 +
757 +922.2 - SF7BW125 to SF10BW125
758 +
759 +922.4 - SF7BW125 to SF10BW125
760 +
761 +922.6 - SF7BW125 to SF10BW125
762 +
763 +922.8 - SF7BW125 to SF10BW125
764 +
765 +923.0 - SF7BW125 to SF10BW125
766 +
767 +922.0 - SF7BW125 to SF10BW125
768 +
769 +
770 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
771 +
772 +923.6 - SF7BW125 to SF10BW125
773 +
774 +923.8 - SF7BW125 to SF10BW125
775 +
776 +924.0 - SF7BW125 to SF10BW125
777 +
778 +924.2 - SF7BW125 to SF10BW125
779 +
780 +924.4 - SF7BW125 to SF10BW125
781 +
782 +924.6 - SF7BW125 to SF10BW125
783 +
784 +
785 +(% style="color:#037691" %)** Downlink:**
786 +
787 +Uplink channels 1-8 (RX1)
788 +
789 +923.2 - SF10BW125 (RX2)
790 +
791 +
792 +
793 +=== 2.7.6 KR920-923 (KR920) ===
794 +
795 +Default channel:
796 +
797 +922.1 - SF7BW125 to SF12BW125
798 +
799 +922.3 - SF7BW125 to SF12BW125
800 +
801 +922.5 - SF7BW125 to SF12BW125
802 +
803 +
804 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
805 +
806 +922.1 - SF7BW125 to SF12BW125
807 +
808 +922.3 - SF7BW125 to SF12BW125
809 +
810 +922.5 - SF7BW125 to SF12BW125
811 +
812 +922.7 - SF7BW125 to SF12BW125
813 +
814 +922.9 - SF7BW125 to SF12BW125
815 +
816 +923.1 - SF7BW125 to SF12BW125
817 +
818 +923.3 - SF7BW125 to SF12BW125
819 +
820 +
821 +(% style="color:#037691" %)**Downlink:**
822 +
823 +Uplink channels 1-7(RX1)
824 +
825 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
826 +
827 +
828 +
829 +=== 2.7.7 IN865-867 (IN865) ===
830 +
831 +(% style="color:#037691" %)** Uplink:**
832 +
833 +865.0625 - SF7BW125 to SF12BW125
834 +
835 +865.4025 - SF7BW125 to SF12BW125
836 +
837 +865.9850 - SF7BW125 to SF12BW125
838 +
839 +
840 +(% style="color:#037691" %) **Downlink:**
841 +
842 +Uplink channels 1-3 (RX1)
843 +
844 +866.550 - SF10BW125 (RX2)
845 +
846 +
847 +
848 +
849 +== 2.8 LED Indicator ==
850 +
851 +The LSE01 has an internal LED which is to show the status of different state.
852 +
853 +* Blink once when device power on.
854 +* Solid ON for 5 seconds once device successful Join the network.
855 +* Blink once when device transmit a packet.
856 +
857 +== 2.9 Installation in Soil ==
858 +
859 +**Measurement the soil surface**
860 +
861 +
862 +[[image:1654506634463-199.png]] ​
863 +
667 667  (((
668 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
865 +(((
866 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
669 669  )))
868 +)))
670 670  
870 +
871 +
872 +[[image:1654506665940-119.png]]
873 +
671 671  (((
672 -The battery is designed to last for several years depends on the actually use environment and update interval. 
875 +Dig a hole with diameter > 20CM.
673 673  )))
674 674  
675 675  (((
676 -The battery related documents as below:
879 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
677 677  )))
678 678  
679 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
682 682  
883 +== 2.10 ​Firmware Change Log ==
884 +
683 683  (((
684 -[[image:image-20220709101450-2.png]]
886 +**Firmware download link:**
685 685  )))
686 686  
889 +(((
890 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
891 +)))
687 687  
893 +(((
894 +
895 +)))
688 688  
689 -=== 2.8.2  Power consumption Analyze ===
897 +(((
898 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
899 +)))
690 690  
901 +(((
902 +
903 +)))
691 691  
692 692  (((
693 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
906 +**V1.0.**
694 694  )))
695 695  
909 +(((
910 +Release
911 +)))
696 696  
913 +
914 +== 2.11 ​Battery Analysis ==
915 +
916 +=== 2.11.1 ​Battery Type ===
917 +
697 697  (((
698 -Instruction to use as below:
919 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
699 699  )))
700 700  
701 701  (((
702 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
923 +The battery is designed to last for more than 5 years for the LSN50.
703 703  )))
704 704  
705 -
706 706  (((
707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
927 +(((
928 +The battery-related documents are as below:
708 708  )))
930 +)))
709 709  
710 710  * (((
711 -Product Model
933 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
713 713  * (((
714 -Uplink Interval
936 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
715 715  )))
716 716  * (((
717 -Working Mode
939 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
718 718  )))
719 719  
720 -(((
721 -And the Life expectation in difference case will be shown on the right.
722 -)))
942 + [[image:image-20220610172436-1.png]]
723 723  
724 -[[image:image-20220709110451-3.png]]
725 725  
726 726  
946 +=== 2.11.2 ​Battery Note ===
727 727  
728 -=== 2.8.3  ​Battery Note ===
729 -
730 -
731 731  (((
732 732  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
733 733  )))
... ... @@ -734,178 +734,302 @@
734 734  
735 735  
736 736  
737 -=== 2.8. Replace the battery ===
954 +=== 2.11.3 Replace the battery ===
738 738  
956 +(((
957 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
958 +)))
739 739  
740 740  (((
741 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
961 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
742 742  )))
743 743  
964 +(((
965 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
966 +)))
744 744  
745 745  
746 -= 3. ​ Access NB-IoT Module =
747 747  
970 += 3. ​Using the AT Commands =
748 748  
749 -(((
750 -Users can directly access the AT command set of the NB-IoT module.
751 -)))
972 +== 3.1 Access AT Commands ==
752 752  
753 -(((
754 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
755 755  
756 -
757 -)))
975 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
758 758  
759 -[[image:1657333200519-600.png]]
977 +[[image:1654501986557-872.png||height="391" width="800"]]
760 760  
761 761  
980 +Or if you have below board, use below connection:
762 762  
763 -= 4.  Using the AT Commands =
764 764  
983 +[[image:1654502005655-729.png||height="503" width="801"]]
765 765  
766 -== 4.1  Access AT Commands ==
767 767  
768 768  
769 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
987 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
770 770  
771 771  
772 -AT+<CMD>?  : Help on <CMD>
990 + [[image:1654502050864-459.png||height="564" width="806"]]
773 773  
774 -AT+<CMD>         : Run <CMD>
775 775  
776 -AT+<CMD>=<value> : Set the value
993 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
777 777  
778 -AT+<CMD>=?  : Get the value
779 779  
996 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
780 780  
998 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
999 +
1000 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
1001 +
1002 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
1003 +
1004 +
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -AT  : Attention       
1007 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
784 784  
785 -AT?  : Short Help     
1009 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
786 786  
787 -ATZ  : MCU Reset    
1011 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
788 788  
789 -AT+TDC  : Application Data Transmission Interval
1013 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
790 790  
791 -AT+CFG  : Print all configurations
792 792  
793 -AT+CFGMOD           : Working mode selection
1016 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
794 794  
795 -AT+INTMOD            : Set the trigger interrupt mode
1018 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
796 796  
797 -AT+5VT  : Set extend the time of 5V power  
1020 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
798 798  
799 -AT+PRO  : Choose agreement
1022 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
800 800  
801 -AT+WEIGRE  : Get weight or set weight to 0
1024 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
802 802  
803 -AT+WEIGAP  : Get or Set the GapValue of weight
1026 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
804 804  
805 -AT+RXDL  : Extend the sending and receiving time
1028 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
806 806  
807 -AT+CNTFAC  : Get or set counting parameters
1030 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
808 808  
809 -AT+SERVADDR  : Server Address
1032 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
810 810  
1034 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="color:#037691" %)**COAP Management**      
1036 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
813 813  
814 -AT+URI            : Resource parameters
1038 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
815 815  
1040 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
816 816  
817 -(% style="color:#037691" %)**UDP Management**
1042 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
818 818  
819 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1044 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
820 820  
1046 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
821 821  
822 -(% style="color:#037691" %)**MQTT Management**
1048 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
823 823  
824 -AT+CLIENT               : Get or Set MQTT client
825 825  
826 -AT+UNAME  : Get or Set MQTT Username
1051 +(% style="color:#037691" %)**LoRa Network Management**
827 827  
828 -AT+PWD                  : Get or Set MQTT password
1053 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
829 829  
830 -AT+PUBTOPI : Get or Set MQTT publish topic
1055 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
831 831  
832 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1057 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
833 833  
1059 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
834 834  
835 -(% style="color:#037691" %)**Information**          
1061 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
836 836  
837 -AT+FDR  : Factory Data Reset
1063 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
838 838  
839 -AT+PWOR : Serial Access Password
1065 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
840 840  
1067 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
841 841  
1069 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
842 842  
843 -= ​5.  FAQ =
1071 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
844 844  
1073 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
845 845  
846 -== 5.1 How to Upgrade Firmware ==
1075 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
847 847  
1077 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
848 848  
1079 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1080 +
1081 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1082 +
1083 +
1084 +(% style="color:#037691" %)**Information** 
1085 +
1086 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1087 +
1088 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1089 +
1090 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1091 +
1092 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1093 +
1094 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1095 +
1096 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1097 +
1098 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1099 +
1100 +
1101 += ​4. FAQ =
1102 +
1103 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1104 +
849 849  (((
850 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1106 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1107 +When downloading the images, choose the required image file for download. ​
851 851  )))
852 852  
853 853  (((
854 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1111 +
855 855  )))
856 856  
857 857  (((
858 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
1115 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
859 859  )))
860 860  
1118 +(((
1119 +
1120 +)))
861 861  
1122 +(((
1123 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1124 +)))
862 862  
863 -= 6.  Trouble Shooting =
1126 +(((
1127 +
1128 +)))
864 864  
1130 +(((
1131 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1132 +)))
865 865  
866 -== 6.1  ​Connection problem when uploading firmware ==
1134 +[[image:image-20220606154726-3.png]]
867 867  
868 868  
1137 +When you use the TTN network, the US915 frequency bands use are:
1138 +
1139 +* 903.9 - SF7BW125 to SF10BW125
1140 +* 904.1 - SF7BW125 to SF10BW125
1141 +* 904.3 - SF7BW125 to SF10BW125
1142 +* 904.5 - SF7BW125 to SF10BW125
1143 +* 904.7 - SF7BW125 to SF10BW125
1144 +* 904.9 - SF7BW125 to SF10BW125
1145 +* 905.1 - SF7BW125 to SF10BW125
1146 +* 905.3 - SF7BW125 to SF10BW125
1147 +* 904.6 - SF8BW500
1148 +
869 869  (((
870 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1150 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1151 +
1152 +* (% style="color:#037691" %)**AT+CHE=2**
1153 +* (% style="color:#037691" %)**ATZ**
871 871  )))
872 872  
873 -(% class="wikigeneratedid" %)
874 874  (((
875 875  
1158 +
1159 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
876 876  )))
877 877  
1162 +(((
1163 +
1164 +)))
878 878  
879 -== 6.2  AT Command input doesn't work ==
1166 +(((
1167 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1168 +)))
880 880  
1170 +[[image:image-20220606154825-4.png]]
881 881  
1172 +
1173 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1174 +
1175 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1176 +
1177 +
1178 += 5. Trouble Shooting =
1179 +
1180 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1181 +
1182 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1183 +
1184 +
1185 +== 5.2 AT Command input doesn't work ==
1186 +
882 882  (((
883 883  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1189 +)))
884 884  
885 -
1191 +
1192 +== 5.3 Device rejoin in at the second uplink packet ==
1193 +
1194 +(% style="color:#4f81bd" %)**Issue describe as below:**
1195 +
1196 +[[image:1654500909990-784.png]]
1197 +
1198 +
1199 +(% style="color:#4f81bd" %)**Cause for this issue:**
1200 +
1201 +(((
1202 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
886 886  )))
887 887  
888 888  
889 -= 7. ​ Order Info =
1206 +(% style="color:#4f81bd" %)**Solution: **
890 890  
1208 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
891 891  
892 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1210 +[[image:1654500929571-736.png||height="458" width="832"]]
893 893  
894 894  
1213 += 6. ​Order Info =
1214 +
1215 +
1216 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1217 +
1218 +
1219 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1220 +
1221 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1222 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1223 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1224 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1225 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1226 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1227 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1228 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1229 +
1230 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1231 +
1232 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1233 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1234 +
895 895  (% class="wikigeneratedid" %)
896 896  (((
897 897  
898 898  )))
899 899  
900 -= 8.  Packing Info =
1240 += 7. Packing Info =
901 901  
902 902  (((
903 903  
904 904  
905 905  (% style="color:#037691" %)**Package Includes**:
1246 +)))
906 906  
907 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
908 -* External antenna x 1
1248 +* (((
1249 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
909 909  )))
910 910  
911 911  (((
... ... @@ -912,24 +912,24 @@
912 912  
913 913  
914 914  (% style="color:#037691" %)**Dimension and weight**:
1256 +)))
915 915  
916 -* Device Size: 13.0 x 5 x 4.5 cm
917 -* Device Weight: 150g
918 -* Package Size / pcs : 15 x 12x 5.5 cm
919 -* Weight / pcs : 220g
1258 +* (((
1259 +Device Size: cm
920 920  )))
1261 +* (((
1262 +Device Weight: g
1263 +)))
1264 +* (((
1265 +Package Size / pcs : cm
1266 +)))
1267 +* (((
1268 +Weight / pcs : g
921 921  
922 -(((
923 923  
924 -
925 -
926 -
927 927  )))
928 928  
929 -= 9.  Support =
1273 += 8. Support =
930 930  
931 -
932 932  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
933 933  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
934 -
935 -
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content