Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 47 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,733 +1,774 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 15 14 +**Table of Contents:** 16 16 17 -= 1. Introduction = 18 18 19 19 20 -== 1.1 What is NDDS75 Distance Detection Sensor == 21 21 22 -((( 23 - 24 24 25 -((( 26 -((( 27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 28 -))) 29 29 30 -((( 31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 32 -))) 21 += 1. Introduction = 33 33 34 -((( 35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 36 -))) 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 37 37 38 38 ((( 39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 40 -))) 26 + 41 41 42 -((( 43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 44 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 45 45 46 -((( 47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 48 -))) 49 -))) 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 50 50 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 + 51 51 52 52 ))) 53 53 54 -[[image:165 7327959271-447.png]]39 +[[image:1654503236291-817.png]] 55 55 56 56 42 +[[image:1657245163077-232.png]] 57 57 58 -== 1.2 Features == 59 59 60 60 61 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 46 +== 1.2 Features == 47 + 48 +* LoRaWAN 1.0.3 Class A 62 62 * Ultra low power consumption 63 -* Distance Detectionby Ultrasonictechnology64 -* Flat objectrange280mm - 7500mm65 -* Accuracy:±(1cm+S*0.3%) (S: Distance)66 -* Cable Length: 25cm50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 67 67 * AT Commands to change parameters 68 68 * Uplink on periodically 69 69 * Downlink to change configure 70 70 * IP66 Waterproof Enclosure 71 -* Micro SIM card slot for NB-IoT SIM 72 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 73 73 60 +== 1.3 Specification == 74 74 62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 64 +[[image:image-20220606162220-5.png]] 76 76 77 -== 1.3 Specification == 78 78 79 79 80 - (% style="color:#037691"%)**Common DC Characteristics:**68 +== 1.4 Applications == 81 81 82 -* Supply Voltage: 2.1v ~~ 3.6v 83 -* Operating Temperature: -40 ~~ 85°C 70 +* Smart Agriculture 84 84 72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 + 85 85 86 - (% style="color:#037691"%)**NB-IoTSpec:**75 +== 1.5 Firmware Change log == 87 87 88 -* - B1 @H-FDD: 2100MHz 89 -* - B3 @H-FDD: 1800MHz 90 -* - B8 @H-FDD: 900MHz 91 -* - B5 @H-FDD: 850MHz 92 -* - B20 @H-FDD: 800MHz 93 -* - B28 @H-FDD: 700MHz 94 94 78 +**LSE01 v1.0 :** Release 95 95 96 -(% style="color:#037691" %)**Battery:** 97 97 98 -* Li/SOCI2 un-chargeable battery 99 -* Capacity: 8500mAh 100 -* Self Discharge: <1% / Year @ 25°C 101 -* Max continuously current: 130mA 102 -* Max boost current: 2A, 1 second 103 103 82 += 2. Configure LSE01 to connect to LoRaWAN network = 104 104 105 - (% style="color:#037691"%)**PowerConsumption**84 +== 2.1 How it works == 106 106 107 -* STOP Mode: 10uA @ 3.3v 108 -* Max transmit power: 350mA@3.3v 86 +((( 87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 88 +))) 109 109 90 +((( 91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 92 +))) 110 110 111 111 112 112 113 -== 1.4Applications ==96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 114 114 98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 115 115 116 -* Smart Buildings & Home Automation 117 -* Logistics and Supply Chain Management 118 -* Smart Metering 119 -* Smart Agriculture 120 -* Smart Cities 121 -* Smart Factory 122 122 123 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 124 - 101 +[[image:1654503992078-669.png]] 125 125 126 126 104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 127 127 128 128 129 -= =1.5PinDefinitions==107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 130 130 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 131 131 132 -[[image:16 57328609906-564.png]]111 +[[image:image-20220606163732-6.jpeg]] 133 133 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 134 134 115 +**Add APP EUI in the application** 135 135 136 -= 2. Use NDDS75 to communicate with IoT Server = 137 137 118 +[[image:1654504596150-405.png]] 138 138 139 -== 2.1 How it works == 140 140 141 141 122 +**Add APP KEY and DEV EUI** 123 + 124 +[[image:1654504683289-357.png]] 125 + 126 + 127 + 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 129 + 130 + 131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 + 133 +[[image:image-20220606163915-7.png]] 134 + 135 + 136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 + 138 +[[image:1654504778294-788.png]] 139 + 140 + 141 + 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 142 142 ((( 143 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.150 +Uplink payload includes in total 11 bytes. 144 144 ))) 145 145 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 146 146 147 -((( 148 -The diagram below shows the working flow in default firmware of NDDS75: 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 149 149 ))) 150 150 151 -((( 152 - 169 +=== 2.3.2 MOD~=1(Original value) === 170 + 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 + 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 176 + 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 181 + 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 185 + 186 +(Optional) 153 153 ))) 154 154 155 - [[image:1657328659945-416.png]]189 +=== 2.3.3 Battery Info === 156 156 157 157 ((( 158 - 192 +Check the battery voltage for LSE01. 159 159 ))) 160 160 195 +((( 196 +Ex1: 0x0B45 = 2885mV 197 +))) 161 161 162 -== 2.2 Configure the NDDS75 == 199 +((( 200 +Ex2: 0x0B49 = 2889mV 201 +))) 163 163 164 164 165 -=== 2.2.1 Test Requirement === 166 166 205 +=== 2.3.4 Soil Moisture === 167 167 168 168 ((( 169 - TouseNDDS75inyourcity,make suremeetbelowrequirements:208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 170 170 ))) 171 171 172 - * Your local operator has already distributed a NB-IoT Network there.173 - *ThelocalNB-IoTnetworkusedthebandthatNDDS75supports.174 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.211 +((( 212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 +))) 175 175 176 176 ((( 177 - Belowfigure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.216 + 178 178 ))) 179 179 219 +((( 220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 +))) 180 180 181 -[[image:1657328756309-230.png]] 182 182 183 183 225 +=== 2.3.5 Soil Temperature === 184 184 185 -=== 2.2.2 Insert SIM card === 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 186 186 231 +((( 232 +**Example**: 233 +))) 187 187 188 188 ((( 189 -I nsertthe NB-IoT Cardgetfromyourprovider.236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 190 190 ))) 191 191 192 192 ((( 193 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 194 194 ))) 195 195 196 196 197 -[[image:1657328884227-504.png]] 198 198 245 +=== 2.3.6 Soil Conductivity (EC) === 199 199 247 +((( 248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 +))) 200 200 201 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 202 202 255 +((( 256 +Generally, the EC value of irrigation water is less than 800uS / cm. 257 +))) 203 203 204 204 ((( 260 + 261 +))) 262 + 205 205 ((( 206 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.264 + 207 207 ))) 208 -))) 209 209 210 - [[image:image-20220709092052-2.png]]267 +=== 2.3.7 MOD === 211 211 269 +Firmware version at least v2.1 supports changing mode. 212 212 213 - **Connection:**271 +For example, bytes[10]=90 214 214 215 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~->GND273 +mod=(bytes[10]>>7)&0x01=1. 216 216 217 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 218 218 219 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD276 +**Downlink Command:** 220 220 278 +If payload = 0x0A00, workmode=0 221 221 222 -I nthePC,usebelowserial tool settings:280 +If** **payload =** **0x0A01, workmode=1 223 223 224 -* Baud: (% style="color:green" %)**9600** 225 -* Data bits:** (% style="color:green" %)8(%%)** 226 -* Stop bits: (% style="color:green" %)**1** 227 -* Parity: (% style="color:green" %)**None** 228 -* Flow Control: (% style="color:green" %)**None** 229 229 230 -((( 231 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 232 -))) 233 233 234 - [[image:1657329814315-101.png]]284 +=== 2.3.8 Decode payload in The Things Network === 235 235 286 +While using TTN network, you can add the payload format to decode the payload. 236 236 288 + 289 +[[image:1654505570700-128.png]] 290 + 237 237 ((( 238 - (% style="color:red" %)**Note: thevalid AT Commandscan be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**292 +The payload decoder function for TTN is here: 239 239 ))) 240 240 295 +((( 296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 297 +))) 241 241 242 242 243 -== =2.2.4se CoAPprotocolto uplinkdata ===300 +== 2.4 Uplink Interval == 244 244 302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 245 245 246 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]** 247 247 248 248 306 +== 2.5 Downlink Payload == 307 + 308 +By default, LSE50 prints the downlink payload to console port. 309 + 310 +[[image:image-20220606165544-8.png]] 311 + 312 + 249 249 ((( 250 - **Usebelowcommands:**314 +(% style="color:blue" %)**Examples:** 251 251 ))) 252 252 253 - *(((254 - (%style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink317 +((( 318 + 255 255 ))) 320 + 256 256 * ((( 257 -(% style="color:blue" %)** AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port322 +(% style="color:blue" %)**Set TDC** 258 258 ))) 324 + 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +))) 328 + 329 +((( 330 +Payload: 01 00 00 1E TDC=30S 331 +))) 332 + 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 335 +))) 336 + 337 +((( 338 + 339 +))) 340 + 259 259 * ((( 260 -(% style="color:blue" %)** AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resourcepath342 +(% style="color:blue" %)**Reset** 261 261 ))) 262 262 263 263 ((( 264 - Forparameterdescription,pleaserefertoAT command set346 +If payload = 0x04FF, it will reset the LSE01 265 265 ))) 266 266 267 -[[image:1657330452568-615.png]] 268 268 350 +* (% style="color:blue" %)**CFM** 269 269 352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 270 270 354 + 355 + 356 +== 2.6 Show Data in DataCake IoT Server == 357 + 271 271 ((( 272 -A fter configure theserver addressand(% style="color:green"%)**resetthedevice**(%%)(viaAT+ATZ ),NDDS75willstart touplink sensorvalues toCoAPserver.359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 273 273 ))) 274 274 275 -[[image:1657330472797-498.png]] 362 +((( 363 + 364 +))) 276 276 366 +((( 367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 +))) 277 277 370 +((( 371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 +))) 278 278 279 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 280 280 375 +[[image:1654505857935-743.png]] 281 281 282 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 284 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessary 285 285 378 +[[image:1654505874829-548.png]] 286 286 287 -[[image:1657330501006-241.png]] 288 288 381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 289 289 290 - [[image:1657330533775-472.png]]383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 291 291 292 292 386 +[[image:1654505905236-553.png]] 293 293 294 -=== 2.2.6 Use MQTT protocol to uplink data === 295 295 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 296 296 297 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 298 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 299 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 300 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 301 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 302 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 303 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 391 +[[image:1654505925508-181.png]] 304 304 305 305 306 -[[image:1657249978444-674.png]] 307 307 395 +== 2.7 Frequency Plans == 308 308 309 - [[image:1657330723006-866.png]]397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 310 310 311 311 312 -((( 313 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 314 -))) 400 +=== 2.7.1 EU863-870 (EU868) === 315 315 402 +(% style="color:#037691" %)** Uplink:** 316 316 404 +868.1 - SF7BW125 to SF12BW125 317 317 318 - === 2.2.7UseTCP protocoltouplinkdata===406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 319 319 408 +868.5 - SF7BW125 to SF12BW125 320 320 321 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 322 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 410 +867.1 - SF7BW125 to SF12BW125 323 323 412 +867.3 - SF7BW125 to SF12BW125 324 324 325 - [[image:image-20220709093918-1.png]]414 +867.5 - SF7BW125 to SF12BW125 326 326 416 +867.7 - SF7BW125 to SF12BW125 327 327 328 - [[image:image-20220709093918-2.png]]418 +867.9 - SF7BW125 to SF12BW125 329 329 420 +868.8 - FSK 330 330 331 331 332 - ===2.2.8 Change UpdateInterval===423 +(% style="color:#037691" %)** Downlink:** 333 333 425 +Uplink channels 1-9 (RX1) 334 334 335 - Usercanusebelowcommandtochange the (% style="color:green" %)**uplinkinterval**.427 +869.525 - SF9BW125 (RX2 downlink only) 336 336 337 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 338 338 339 -((( 340 -(% style="color:red" %)**NOTE:** 341 -))) 342 342 343 -((( 344 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.** 345 -))) 431 +=== 2.7.2 US902-928(US915) === 346 346 433 +Used in USA, Canada and South America. Default use CHE=2 347 347 435 +(% style="color:#037691" %)**Uplink:** 348 348 349 - == 2.3UplinkPayload==437 +903.9 - SF7BW125 to SF10BW125 350 350 439 +904.1 - SF7BW125 to SF10BW125 351 351 352 - Inthismode,uplink payload includes intotal14 bytes441 +904.3 - SF7BW125 to SF10BW125 353 353 443 +904.5 - SF7BW125 to SF10BW125 354 354 355 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %) 356 -|=(% style="width: 60px;" %)((( 357 -**Size(bytes)** 358 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1** 359 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 445 +904.7 - SF7BW125 to SF10BW125 360 360 361 -((( 362 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 363 -))) 447 +904.9 - SF7BW125 to SF10BW125 364 364 449 +905.1 - SF7BW125 to SF10BW125 365 365 366 - [[image:1657331036973-987.png]]451 +905.3 - SF7BW125 to SF10BW125 367 367 368 368 369 -((( 370 -The payload is ASCII string, representative same HEX: 371 -))) 454 +(% style="color:#037691" %)**Downlink:** 372 372 373 -((( 374 -0x72403155615900640c6c19029200 where: 375 -))) 456 +923.3 - SF7BW500 to SF12BW500 376 376 377 -* ((( 378 -Device ID: 0x724031556159 = 724031556159 379 -))) 380 -* ((( 381 -Version: 0x0064=100=1.0.0 382 -))) 458 +923.9 - SF7BW500 to SF12BW500 383 383 384 -* ((( 385 -BAT: 0x0c6c = 3180 mV = 3.180V 386 -))) 387 -* ((( 388 -Signal: 0x19 = 25 389 -))) 390 -* ((( 391 -Distance: 0x0292= 658 mm 392 -))) 393 -* ((( 394 -Interrupt: 0x00 = 0 460 +924.5 - SF7BW500 to SF12BW500 395 395 462 +925.1 - SF7BW500 to SF12BW500 396 396 464 +925.7 - SF7BW500 to SF12BW500 397 397 398 - 399 -))) 466 +926.3 - SF7BW500 to SF12BW500 400 400 401 - ==2.4PayloadExplanation andSensorInterface==468 +926.9 - SF7BW500 to SF12BW500 402 402 470 +927.5 - SF7BW500 to SF12BW500 403 403 404 - ===2.4.1DeviceID ===472 +923.3 - SF12BW500(RX2 downlink only) 405 405 406 406 407 -((( 408 -By default, the Device ID equal to the last 6 bytes of IMEI. 409 -))) 410 410 411 -((( 412 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 476 +=== 2.7.3 CN470-510 (CN470) === 413 413 414 - 415 -))) 478 +Used in China, Default use CHE=1 416 416 417 -((( 418 -**Example:** 419 -))) 480 +(% style="color:#037691" %)**Uplink:** 420 420 421 -((( 422 -AT+DEUI=A84041F15612 423 -))) 482 +486.3 - SF7BW125 to SF12BW125 424 424 425 -((( 426 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 427 -))) 484 +486.5 - SF7BW125 to SF12BW125 428 428 486 +486.7 - SF7BW125 to SF12BW125 429 429 488 +486.9 - SF7BW125 to SF12BW125 430 430 431 - === 2.4.2VersionInfo ===490 +487.1 - SF7BW125 to SF12BW125 432 432 492 +487.3 - SF7BW125 to SF12BW125 433 433 434 -((( 435 -Specify the software version: 0x64=100, means firmware version 1.00. 436 -))) 494 +487.5 - SF7BW125 to SF12BW125 437 437 438 -((( 439 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 440 -))) 496 +487.7 - SF7BW125 to SF12BW125 441 441 442 442 499 +(% style="color:#037691" %)**Downlink:** 443 443 444 - === 2.4.3BatteryInfo===501 +506.7 - SF7BW125 to SF12BW125 445 445 503 +506.9 - SF7BW125 to SF12BW125 446 446 447 -((( 448 -Ex1: 0x0B45 = 2885mV 449 -))) 505 +507.1 - SF7BW125 to SF12BW125 450 450 451 -((( 452 -Ex2: 0x0B49 = 2889mV 453 -))) 507 +507.3 - SF7BW125 to SF12BW125 454 454 509 +507.5 - SF7BW125 to SF12BW125 455 455 511 +507.7 - SF7BW125 to SF12BW125 456 456 457 - === 2.4.4SignalStrength===513 +507.9 - SF7BW125 to SF12BW125 458 458 515 +508.1 - SF7BW125 to SF12BW125 459 459 460 -((( 461 -NB-IoT Network signal Strength. 462 -))) 517 +505.3 - SF12BW125 (RX2 downlink only) 463 463 464 -((( 465 -**Ex1: 0x1d = 29** 466 -))) 467 467 468 -((( 469 -(% style="color:blue" %)**0**(%%) -113dBm or less 470 -))) 471 471 472 -((( 473 -(% style="color:blue" %)**1**(%%) -111dBm 474 -))) 521 +=== 2.7.4 AU915-928(AU915) === 475 475 476 -((( 477 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 478 -))) 523 +Default use CHE=2 479 479 480 -((( 481 -(% style="color:blue" %)**31** (%%) -51dBm or greater 482 -))) 525 +(% style="color:#037691" %)**Uplink:** 483 483 484 -((( 485 -(% style="color:blue" %)**99** (%%) Not known or not detectable 486 -))) 527 +916.8 - SF7BW125 to SF12BW125 487 487 529 +917.0 - SF7BW125 to SF12BW125 488 488 531 +917.2 - SF7BW125 to SF12BW125 489 489 490 - === 2.4.5Distance===533 +917.4 - SF7BW125 to SF12BW125 491 491 535 +917.6 - SF7BW125 to SF12BW125 492 492 493 - Get the distance. Flatobjectrange280mm - 7500mm.537 +917.8 - SF7BW125 to SF12BW125 494 494 495 -((( 496 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 497 -))) 539 +918.0 - SF7BW125 to SF12BW125 498 498 499 -((( 500 -((( 501 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 502 -))) 503 -))) 541 +918.2 - SF7BW125 to SF12BW125 504 504 505 -((( 506 - 507 -))) 508 508 509 -((( 510 - 511 -))) 544 +(% style="color:#037691" %)**Downlink:** 512 512 513 - ===2.4.6DigitalInterrupt===546 +923.3 - SF7BW500 to SF12BW500 514 514 548 +923.9 - SF7BW500 to SF12BW500 515 515 516 -((( 517 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 518 -))) 550 +924.5 - SF7BW500 to SF12BW500 519 519 520 -((( 521 -The command is: 522 -))) 552 +925.1 - SF7BW500 to SF12BW500 523 523 524 -((( 525 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 526 -))) 554 +925.7 - SF7BW500 to SF12BW500 527 527 556 +926.3 - SF7BW500 to SF12BW500 528 528 529 -((( 530 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 531 -))) 558 +926.9 - SF7BW500 to SF12BW500 532 532 560 +927.5 - SF7BW500 to SF12BW500 533 533 534 -((( 535 -Example: 536 -))) 562 +923.3 - SF12BW500(RX2 downlink only) 537 537 538 -((( 539 -0x(00): Normal uplink packet. 540 -))) 541 541 542 -((( 543 -0x(01): Interrupt Uplink Packet. 544 -))) 545 545 566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 546 546 568 +(% style="color:#037691" %)**Default Uplink channel:** 547 547 548 - ===2.4.7+5VOutput===570 +923.2 - SF7BW125 to SF10BW125 549 549 572 +923.4 - SF7BW125 to SF10BW125 550 550 551 -((( 552 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 553 -))) 554 554 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 555 555 556 -((( 557 -The 5V output time can be controlled by AT Command. 577 +(OTAA mode, channel added by JoinAccept message) 558 558 559 - 560 -))) 579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 561 561 562 -((( 563 -(% style="color:blue" %)**AT+5VT=1000** 581 +922.2 - SF7BW125 to SF10BW125 564 564 565 - 566 -))) 583 +922.4 - SF7BW125 to SF10BW125 567 567 568 -((( 569 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 570 -))) 585 +922.6 - SF7BW125 to SF10BW125 571 571 587 +922.8 - SF7BW125 to SF10BW125 572 572 589 +923.0 - SF7BW125 to SF10BW125 573 573 574 - ==2.5DownlinkPayload ==591 +922.0 - SF7BW125 to SF10BW125 575 575 576 576 577 - Bydefault,NDDS75printsthedownlinkpayloadtoconsoleport.594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 578 578 579 - [[image:image-20220709100028-1.png]]596 +923.6 - SF7BW125 to SF10BW125 580 580 598 +923.8 - SF7BW125 to SF10BW125 581 581 582 -((( 583 -(% style="color:blue" %)**Examples:** 584 -))) 600 +924.0 - SF7BW125 to SF10BW125 585 585 586 -((( 587 - 588 -))) 602 +924.2 - SF7BW125 to SF10BW125 589 589 590 -* ((( 591 -(% style="color:blue" %)**Set TDC** 592 -))) 604 +924.4 - SF7BW125 to SF10BW125 593 593 594 -((( 595 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 596 -))) 606 +924.6 - SF7BW125 to SF10BW125 597 597 598 -((( 599 -Payload: 01 00 00 1E TDC=30S 600 -))) 601 601 602 -((( 603 -Payload: 01 00 00 3C TDC=60S 604 -))) 609 +(% style="color:#037691" %)** Downlink:** 605 605 606 -((( 607 - 608 -))) 611 +Uplink channels 1-8 (RX1) 609 609 610 -* ((( 611 -(% style="color:blue" %)**Reset** 612 -))) 613 +923.2 - SF10BW125 (RX2) 613 613 614 -((( 615 -If payload = 0x04FF, it will reset the NDDS75 616 -))) 617 617 618 618 619 - *(%style="color:blue"%)**INTMOD**617 +=== 2.7.6 KR920-923 (KR920) === 620 620 621 -((( 622 -Downlink Payload: 06000003, Set AT+INTMOD=3 623 -))) 619 +Default channel: 624 624 621 +922.1 - SF7BW125 to SF12BW125 625 625 623 +922.3 - SF7BW125 to SF12BW125 626 626 627 - ==2.6LEDIndicator==625 +922.5 - SF7BW125 to SF12BW125 628 628 629 629 630 - TheNDDS75 hasan internalLED whichistoshow thestatusofdifferent state.628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 631 631 630 +922.1 - SF7BW125 to SF12BW125 632 632 633 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 634 -* Then the LED will be on for 1 second means device is boot normally. 635 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 636 -* For each uplink probe, LED will be on for 500ms. 632 +922.3 - SF7BW125 to SF12BW125 637 637 638 -((( 639 - 640 -))) 634 +922.5 - SF7BW125 to SF12BW125 641 641 636 +922.7 - SF7BW125 to SF12BW125 642 642 638 +922.9 - SF7BW125 to SF12BW125 643 643 644 - ==2.7FirmwareChange Log==640 +923.1 - SF7BW125 to SF12BW125 645 645 642 +923.3 - SF7BW125 to SF12BW125 646 646 647 -((( 648 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]] 649 -))) 650 650 651 -((( 652 - 653 -))) 645 +(% style="color:#037691" %)**Downlink:** 654 654 655 -((( 656 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 657 -))) 647 +Uplink channels 1-7(RX1) 658 658 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 659 659 660 660 661 -== 2.8 Battery Analysis == 662 662 653 +=== 2.7.7 IN865-867 (IN865) === 663 663 664 - ===2.8.1 BatteryType===655 +(% style="color:#037691" %)** Uplink:** 665 665 657 +865.0625 - SF7BW125 to SF12BW125 666 666 659 +865.4025 - SF7BW125 to SF12BW125 660 + 661 +865.9850 - SF7BW125 to SF12BW125 662 + 663 + 664 +(% style="color:#037691" %) **Downlink:** 665 + 666 +Uplink channels 1-3 (RX1) 667 + 668 +866.550 - SF10BW125 (RX2) 669 + 670 + 671 + 672 + 673 +== 2.8 LED Indicator == 674 + 675 +The LSE01 has an internal LED which is to show the status of different state. 676 + 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 667 667 ((( 668 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 669 669 ))) 692 +))) 670 670 694 + 695 + 696 +[[image:1654506665940-119.png]] 697 + 671 671 ((( 672 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.699 +Dig a hole with diameter > 20CM. 673 673 ))) 674 674 675 675 ((( 676 - The batteryrelateddocumentsasbelow:703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 677 677 ))) 678 678 679 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 682 682 707 +== 2.10 Firmware Change Log == 708 + 683 683 ((( 684 - [[image:image-20220709101450-2.png]]710 +**Firmware download link:** 685 685 ))) 686 686 713 +((( 714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 687 687 717 +((( 718 + 719 +))) 688 688 689 -=== 2.8.2 Power consumption Analyze === 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 690 690 725 +((( 726 + 727 +))) 691 691 692 692 ((( 693 - Dragino battery powered product are all runs in Low Power mode.We have an update battery calculator which base on the measurement of the real device.User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.730 +**V1.0.** 694 694 ))) 695 695 733 +((( 734 +Release 735 +))) 696 696 737 + 738 +== 2.11 Battery Analysis == 739 + 740 +=== 2.11.1 Battery Type === 741 + 697 697 ((( 698 - Instruction touse as below:743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 699 699 ))) 700 700 701 701 ((( 702 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]747 +The battery is designed to last for more than 5 years for the LSN50. 703 703 ))) 704 704 705 - 706 706 ((( 707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 751 +((( 752 +The battery-related documents are as below: 708 708 ))) 754 +))) 709 709 710 710 * ((( 711 - Product Model757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 712 712 ))) 713 713 * ((( 714 - UplinkInterval760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 715 715 ))) 716 716 * ((( 717 - WorkingMode763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 718 718 ))) 719 719 720 -((( 721 -And the Life expectation in difference case will be shown on the right. 722 -))) 766 + [[image:image-20220610172436-1.png]] 723 723 724 -[[image:image-20220709110451-3.png]] 725 725 726 726 770 +=== 2.11.2 Battery Note === 727 727 728 -=== 2.8.3 Battery Note === 729 - 730 - 731 731 ((( 732 732 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 733 733 ))) ... ... @@ -734,178 +734,302 @@ 734 734 735 735 736 736 737 -=== 2. 8.4Replace the battery ===778 +=== 2.11.3 Replace the battery === 738 738 780 +((( 781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 782 +))) 739 739 740 740 ((( 741 - Thedefault battery packofNDDS75includes aER26500plussupercapacitor.Ifuser can'tfind thispacklocally,theycanfindER26500 orequivalencewithouttheSPC1520capacitor,whichwillalsowork inmost case.TheSPCcanenlargethebatterylifeforhighfrequencyuse(updateperiodbelow5minutes).785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 742 742 ))) 743 743 788 +((( 789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 790 +))) 744 744 745 745 746 -= 3. Access NB-IoT Module = 747 747 794 += 3. Using the AT Commands = 748 748 749 -((( 750 -Users can directly access the AT command set of the NB-IoT module. 751 -))) 796 +== 3.1 Access AT Commands == 752 752 753 -((( 754 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 755 755 756 - 757 -))) 799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 758 758 759 -[[image:165 7333200519-600.png]]801 +[[image:1654501986557-872.png||height="391" width="800"]] 760 760 761 761 804 +Or if you have below board, use below connection: 762 762 763 -= 4. Using the AT Commands = 764 764 807 +[[image:1654502005655-729.png||height="503" width="801"]] 765 765 766 -== 4.1 Access AT Commands == 767 767 768 768 769 - Seethislinkfordetail: [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 770 770 771 771 772 - AT+<CMD>?: Helpon<CMD>814 + [[image:1654502050864-459.png||height="564" width="806"]] 773 773 774 -AT+<CMD> : Run <CMD> 775 775 776 - AT+<CMD>=<value>:Set thevalue817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 777 777 778 -AT+<CMD>=? : Get the value 779 779 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 780 780 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 781 781 (% style="color:#037691" %)**General Commands**(%%) 782 782 783 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 784 784 785 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 786 786 787 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 788 788 789 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 790 790 791 -AT+CFG : Print all configurations 792 792 793 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 794 794 795 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 796 796 797 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 798 798 799 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 800 800 801 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 802 802 803 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 804 804 805 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 806 806 807 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 808 808 809 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 810 810 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 811 811 812 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 813 813 814 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 815 815 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 816 816 817 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 818 818 819 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 820 820 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 821 821 822 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 823 823 824 -AT+CLIENT : Get or Set MQTT client 825 825 826 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 827 827 828 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 829 829 830 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 831 831 832 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 833 833 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 834 834 835 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 836 836 837 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 838 838 839 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 840 840 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 841 841 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 842 842 843 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 844 844 897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 845 845 846 -= =5.1How to UpgradeFirmware==899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 847 847 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 848 848 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 849 849 ((( 850 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 851 851 ))) 852 852 853 853 ((( 854 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 855 855 ))) 856 856 857 857 ((( 858 - (%style="color:red"%)**Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.**939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 859 859 ))) 860 860 942 +((( 943 + 944 +))) 861 861 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 862 862 863 -= 6. Trouble Shooting = 950 +((( 951 + 952 +))) 864 864 954 +((( 955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 956 +))) 865 865 866 - == 6.1 Connection problemwhen uploadingfirmware==958 +[[image:image-20220606154726-3.png]] 867 867 868 868 961 +When you use the TTN network, the US915 frequency bands use are: 962 + 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 972 + 869 869 ((( 870 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 871 871 ))) 872 872 873 -(% class="wikigeneratedid" %) 874 874 ((( 875 875 982 + 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 876 876 ))) 877 877 986 +((( 987 + 988 +))) 878 878 879 -== 6.2 AT Command input doesn't work == 990 +((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 880 880 994 +[[image:image-20220606154825-4.png]] 881 881 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 882 882 ((( 883 883 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 884 884 885 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 886 886 ))) 887 887 888 888 889 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 890 890 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 891 891 892 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 893 893 894 894 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 895 895 (% class="wikigeneratedid" %) 896 896 ((( 897 897 898 898 ))) 899 899 900 -= 8.1064 += 7. Packing Info = 901 901 902 902 ((( 903 903 904 904 905 905 (% style="color:#037691" %)**Package Includes**: 1070 +))) 906 906 907 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1908 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 909 909 ))) 910 910 911 911 ((( ... ... @@ -912,24 +912,24 @@ 912 912 913 913 914 914 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 915 915 916 -* Device Size: 13.0 x 5 x 4.5 cm 917 -* Device Weight: 150g 918 -* Package Size / pcs : 15 x 12x 5.5 cm 919 -* Weight / pcs : 220g 1082 +* ((( 1083 +Device Size: cm 920 920 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 921 921 922 -((( 923 923 924 - 925 - 926 - 927 927 ))) 928 928 929 -= 9.1097 += 8. Support = 930 930 931 - 932 932 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 933 933 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 934 - 935 -
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.5 KB - Content