Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 100.5
edited by Xiaoling
on 2022/08/22 14:39
Change comment: There is no comment for this version
To version 42.2
edited by Xiaoling
on 2022/07/08 09:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,733 +1,774 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
17 -= 1.  Introduction =
18 18  
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 21  
22 -(((
23 -
24 24  
25 -(((
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -)))
29 29  
30 -(((
31 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
32 -)))
21 += 1. Introduction =
33 33  
34 -(((
35 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
36 -)))
23 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
37 37  
38 38  (((
39 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
40 -)))
26 +
41 41  
42 -(((
43 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
44 -)))
28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
45 45  
46 -(((
47 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
48 -)))
49 -)))
30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
50 50  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
35 +
51 51  
52 52  )))
53 53  
54 -[[image:1657327959271-447.png]]
39 +[[image:1654503236291-817.png]]
55 55  
56 56  
42 +[[image:1657245163077-232.png]]
57 57  
58 -== 1.2 ​ Features ==
59 59  
60 60  
61 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 +== 1.2 ​Features ==
47 +
48 +* LoRaWAN 1.0.3 Class A
62 62  * Ultra low power consumption
63 -* Distance Detection by Ultrasonic technology
64 -* Flat object range 280mm - 7500mm
65 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
66 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
67 67  * AT Commands to change parameters
68 68  * Uplink on periodically
69 69  * Downlink to change configure
70 70  * IP66 Waterproof Enclosure
71 -* Micro SIM card slot for NB-IoT SIM
72 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
73 73  
60 +== 1.3 Specification ==
74 74  
62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
64 +[[image:image-20220606162220-5.png]]
76 76  
77 -== 1.3  Specification ==
78 78  
79 79  
80 -(% style="color:#037691" %)**Common DC Characteristics:**
68 +== ​1.4 Applications ==
81 81  
82 -* Supply Voltage: 2.1v ~~ 3.6v
83 -* Operating Temperature: -40 ~~ 85°C
70 +* Smart Agriculture
84 84  
72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 +​
85 85  
86 -(% style="color:#037691" %)**NB-IoT Spec:**
75 +== 1.5 Firmware Change log ==
87 87  
88 -* - B1 @H-FDD: 2100MHz
89 -* - B3 @H-FDD: 1800MHz
90 -* - B8 @H-FDD: 900MHz
91 -* - B5 @H-FDD: 850MHz
92 -* - B20 @H-FDD: 800MHz
93 -* - B28 @H-FDD: 700MHz
94 94  
78 +**LSE01 v1.0 :**  Release
95 95  
96 -(% style="color:#037691" %)**Battery:**
97 97  
98 -* Li/SOCI2 un-chargeable battery
99 -* Capacity: 8500mAh
100 -* Self Discharge: <1% / Year @ 25°C
101 -* Max continuously current: 130mA
102 -* Max boost current: 2A, 1 second
103 103  
82 += 2. Configure LSE01 to connect to LoRaWAN network =
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
84 +== 2.1 How it works ==
106 106  
107 -* STOP Mode: 10uA @ 3.3v
108 -* Max transmit power: 350mA@3.3v
86 +(((
87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 +)))
109 109  
90 +(((
91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 +)))
110 110  
111 111  
112 112  
113 -== ​1. Applications ==
96 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
114 114  
98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 115  
116 -* Smart Buildings & Home Automation
117 -* Logistics and Supply Chain Management
118 -* Smart Metering
119 -* Smart Agriculture
120 -* Smart Cities
121 -* Smart Factory
122 122  
123 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
124 -​
101 +[[image:1654503992078-669.png]]
125 125  
126 126  
104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
127 127  
128 128  
129 -== 1.5  Pin Definitions ==
107 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
130 130  
109 +Each LSE01 is shipped with a sticker with the default device EUI as below:
131 131  
132 -[[image:1657328609906-564.png]]
111 +[[image:image-20220606163732-6.jpeg]]
133 133  
113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
134 134  
115 +**Add APP EUI in the application**
135 135  
136 -= 2.  Use NDDS75 to communicate with IoT Server =
137 137  
118 +[[image:1654504596150-405.png]]
138 138  
139 -== 2.1  How it works ==
140 140  
141 141  
122 +**Add APP KEY and DEV EUI**
123 +
124 +[[image:1654504683289-357.png]]
125 +
126 +
127 +
128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +
130 +
131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 +
133 +[[image:image-20220606163915-7.png]]
134 +
135 +
136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +
138 +[[image:1654504778294-788.png]]
139 +
140 +
141 +
142 +== 2.3 Uplink Payload ==
143 +
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
142 142  (((
143 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
150 +Uplink payload includes in total 11 bytes.
144 144  )))
145 145  
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
146 146  
147 -(((
148 -The diagram below shows the working flow in default firmware of NDDS75:
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
149 149  )))
150 150  
151 -(((
152 -
169 +=== 2.3.2 MOD~=1(Original value) ===
170 +
171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +
173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 +|(((
175 +**Size**
176 +
177 +**(bytes)**
178 +)))|**2**|**2**|**2**|**2**|**2**|**1**
179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 +Temperature
181 +
182 +(Reserve, Ignore now)
183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 +MOD & Digital Interrupt
185 +
186 +(Optional)
153 153  )))
154 154  
155 -[[image:1657328659945-416.png]]
189 +=== 2.3.3 Battery Info ===
156 156  
157 157  (((
158 -
192 +Check the battery voltage for LSE01.
159 159  )))
160 160  
195 +(((
196 +Ex1: 0x0B45 = 2885mV
197 +)))
161 161  
162 -== 2.2 ​ Configure the NDDS75 ==
199 +(((
200 +Ex2: 0x0B49 = 2889mV
201 +)))
163 163  
164 164  
165 -=== 2.2.1 Test Requirement ===
166 166  
205 +=== 2.3.4 Soil Moisture ===
167 167  
168 168  (((
169 -To use NDDS75 in your city, make sure meet below requirements:
208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
170 170  )))
171 171  
172 -* Your local operator has already distributed a NB-IoT Network there.
173 -* The local NB-IoT network used the band that NDDS75 supports.
174 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
211 +(((
212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
213 +)))
175 175  
176 176  (((
177 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
216 +
178 178  )))
179 179  
219 +(((
220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
221 +)))
180 180  
181 -[[image:1657328756309-230.png]]
182 182  
183 183  
225 +=== 2.3.5 Soil Temperature ===
184 184  
185 -=== 2.2.2 Insert SIM card ===
227 +(((
228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 +)))
186 186  
231 +(((
232 +**Example**:
233 +)))
187 187  
188 188  (((
189 -Insert the NB-IoT Card get from your provider.
236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
190 190  )))
191 191  
192 192  (((
193 -User need to take out the NB-IoT module and insert the SIM card like below:
240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
194 194  )))
195 195  
196 196  
197 -[[image:1657328884227-504.png]]
198 198  
245 +=== 2.3.6 Soil Conductivity (EC) ===
199 199  
247 +(((
248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 +)))
200 200  
201 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
251 +(((
252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 +)))
202 202  
255 +(((
256 +Generally, the EC value of irrigation water is less than 800uS / cm.
257 +)))
203 203  
204 204  (((
260 +
261 +)))
262 +
205 205  (((
206 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
264 +
207 207  )))
208 -)))
209 209  
210 -[[image:image-20220709092052-2.png]]
267 +=== 2.3.7 MOD ===
211 211  
269 +Firmware version at least v2.1 supports changing mode.
212 212  
213 -**Connection:**
271 +For example, bytes[10]=90
214 214  
215 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
273 +mod=(bytes[10]>>7)&0x01=1.
216 216  
217 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
218 218  
219 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
276 +**Downlink Command:**
220 220  
278 +If payload = 0x0A00, workmode=0
221 221  
222 -In the PC, use below serial tool settings:
280 +If** **payload =** **0x0A01, workmode=1
223 223  
224 -* Baud:  (% style="color:green" %)**9600**
225 -* Data bits:** (% style="color:green" %)8(%%)**
226 -* Stop bits: (% style="color:green" %)**1**
227 -* Parity:  (% style="color:green" %)**None**
228 -* Flow Control: (% style="color:green" %)**None**
229 229  
230 -(((
231 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
232 -)))
233 233  
234 -[[image:1657329814315-101.png]]
284 +=== 2.3.8 ​Decode payload in The Things Network ===
235 235  
286 +While using TTN network, you can add the payload format to decode the payload.
236 236  
288 +
289 +[[image:1654505570700-128.png]]
290 +
237 237  (((
238 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
292 +The payload decoder function for TTN is here:
239 239  )))
240 240  
295 +(((
296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
297 +)))
241 241  
242 242  
243 -=== 2.2.4 Use CoAP protocol to uplink data ===
300 +== 2.4 Uplink Interval ==
244 244  
302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
245 245  
246 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
247 247  
248 248  
306 +== 2.5 Downlink Payload ==
307 +
308 +By default, LSE50 prints the downlink payload to console port.
309 +
310 +[[image:image-20220606165544-8.png]]
311 +
312 +
249 249  (((
250 -**Use below commands:**
314 +(% style="color:blue" %)**Examples:**
251 251  )))
252 252  
253 -* (((
254 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
317 +(((
318 +
255 255  )))
320 +
256 256  * (((
257 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
322 +(% style="color:blue" %)**Set TDC**
258 258  )))
324 +
325 +(((
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +)))
328 +
329 +(((
330 +Payload:    01 00 00 1E    TDC=30S
331 +)))
332 +
333 +(((
334 +Payload:    01 00 00 3C    TDC=60S
335 +)))
336 +
337 +(((
338 +
339 +)))
340 +
259 259  * (((
260 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
342 +(% style="color:blue" %)**Reset**
261 261  )))
262 262  
263 263  (((
264 -For parameter description, please refer to AT command set
346 +If payload = 0x04FF, it will reset the LSE01
265 265  )))
266 266  
267 -[[image:1657330452568-615.png]]
268 268  
350 +* (% style="color:blue" %)**CFM**
269 269  
352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
270 270  
354 +
355 +
356 +== 2.6 ​Show Data in DataCake IoT Server ==
357 +
271 271  (((
272 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
273 273  )))
274 274  
275 -[[image:1657330472797-498.png]]
362 +(((
363 +
364 +)))
276 276  
366 +(((
367 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 +)))
277 277  
370 +(((
371 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +)))
278 278  
279 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
280 280  
375 +[[image:1654505857935-743.png]]
281 281  
282 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
284 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
285 285  
378 +[[image:1654505874829-548.png]]
286 286  
287 -[[image:1657330501006-241.png]]
288 288  
381 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
289 289  
290 -[[image:1657330533775-472.png]]
383 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
291 291  
292 292  
386 +[[image:1654505905236-553.png]]
293 293  
294 -=== 2.2.6 Use MQTT protocol to uplink data ===
295 295  
389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
296 296  
297 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
298 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
299 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
300 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
301 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
302 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
303 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
391 +[[image:1654505925508-181.png]]
304 304  
305 305  
306 -[[image:1657249978444-674.png]]
307 307  
395 +== 2.7 Frequency Plans ==
308 308  
309 -[[image:1657330723006-866.png]]
397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
310 310  
311 311  
312 -(((
313 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
314 -)))
400 +=== 2.7.1 EU863-870 (EU868) ===
315 315  
402 +(% style="color:#037691" %)** Uplink:**
316 316  
404 +868.1 - SF7BW125 to SF12BW125
317 317  
318 -=== 2.2.7 Use TCP protocol to uplink data ===
406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
319 319  
408 +868.5 - SF7BW125 to SF12BW125
320 320  
321 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
322 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
410 +867.1 - SF7BW125 to SF12BW125
323 323  
412 +867.3 - SF7BW125 to SF12BW125
324 324  
325 -[[image:image-20220709093918-1.png]]
414 +867.5 - SF7BW125 to SF12BW125
326 326  
416 +867.7 - SF7BW125 to SF12BW125
327 327  
328 -[[image:image-20220709093918-2.png]]
418 +867.9 - SF7BW125 to SF12BW125
329 329  
420 +868.8 - FSK
330 330  
331 331  
332 -=== 2.2.8 Change Update Interval ===
423 +(% style="color:#037691" %)** Downlink:**
333 333  
425 +Uplink channels 1-9 (RX1)
334 334  
335 -User can use below command to change the (% style="color:green" %)**uplink interval**.
427 +869.525 - SF9BW125 (RX2 downlink only)
336 336  
337 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
338 338  
339 -(((
340 -(% style="color:red" %)**NOTE:**
341 -)))
342 342  
343 -(((
344 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
345 -)))
431 +=== 2.7.2 US902-928(US915) ===
346 346  
433 +Used in USA, Canada and South America. Default use CHE=2
347 347  
435 +(% style="color:#037691" %)**Uplink:**
348 348  
349 -== 2.3  Uplink Payload ==
437 +903.9 - SF7BW125 to SF10BW125
350 350  
439 +904.1 - SF7BW125 to SF10BW125
351 351  
352 -In this mode, uplink payload includes in total 14 bytes
441 +904.3 - SF7BW125 to SF10BW125
353 353  
443 +904.5 - SF7BW125 to SF10BW125
354 354  
355 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
356 -|=(% style="width: 60px;" %)(((
357 -**Size(bytes)**
358 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
359 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
445 +904.7 - SF7BW125 to SF10BW125
360 360  
361 -(((
362 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
363 -)))
447 +904.9 - SF7BW125 to SF10BW125
364 364  
449 +905.1 - SF7BW125 to SF10BW125
365 365  
366 -[[image:1657331036973-987.png]]
451 +905.3 - SF7BW125 to SF10BW125
367 367  
368 368  
369 -(((
370 -The payload is ASCII string, representative same HEX:
371 -)))
454 +(% style="color:#037691" %)**Downlink:**
372 372  
373 -(((
374 -0x72403155615900640c6c19029200 where:
375 -)))
456 +923.3 - SF7BW500 to SF12BW500
376 376  
377 -* (((
378 -Device ID: 0x724031556159 = 724031556159
379 -)))
380 -* (((
381 -Version: 0x0064=100=1.0.0
382 -)))
458 +923.9 - SF7BW500 to SF12BW500
383 383  
384 -* (((
385 -BAT: 0x0c6c = 3180 mV = 3.180V
386 -)))
387 -* (((
388 -Signal: 0x19 = 25
389 -)))
390 -* (((
391 -Distance: 0x0292= 658 mm
392 -)))
393 -* (((
394 -Interrupt: 0x00 = 0
460 +924.5 - SF7BW500 to SF12BW500
395 395  
462 +925.1 - SF7BW500 to SF12BW500
396 396  
464 +925.7 - SF7BW500 to SF12BW500
397 397  
398 -
399 -)))
466 +926.3 - SF7BW500 to SF12BW500
400 400  
401 -== 2. Payload Explanation and Sensor Interface ==
468 +926.9 - SF7BW500 to SF12BW500
402 402  
470 +927.5 - SF7BW500 to SF12BW500
403 403  
404 -=== 2.4.1  Device ID ===
472 +923.3 - SF12BW500(RX2 downlink only)
405 405  
406 406  
407 -(((
408 -By default, the Device ID equal to the last 6 bytes of IMEI.
409 -)))
410 410  
411 -(((
412 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
476 +=== 2.7.3 CN470-510 (CN470) ===
413 413  
414 -
415 -)))
478 +Used in China, Default use CHE=1
416 416  
417 -(((
418 -**Example:**
419 -)))
480 +(% style="color:#037691" %)**Uplink:**
420 420  
421 -(((
422 -AT+DEUI=A84041F15612
423 -)))
482 +486.3 - SF7BW125 to SF12BW125
424 424  
425 -(((
426 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
427 -)))
484 +486.5 - SF7BW125 to SF12BW125
428 428  
486 +486.7 - SF7BW125 to SF12BW125
429 429  
488 +486.9 - SF7BW125 to SF12BW125
430 430  
431 -=== 2.4.2  Version Info ===
490 +487.1 - SF7BW125 to SF12BW125
432 432  
492 +487.3 - SF7BW125 to SF12BW125
433 433  
434 -(((
435 -Specify the software version: 0x64=100, means firmware version 1.00.
436 -)))
494 +487.5 - SF7BW125 to SF12BW125
437 437  
438 -(((
439 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
440 -)))
496 +487.7 - SF7BW125 to SF12BW125
441 441  
442 442  
499 +(% style="color:#037691" %)**Downlink:**
443 443  
444 -=== 2.4.3  Battery Info ===
501 +506.7 - SF7BW125 to SF12BW125
445 445  
503 +506.9 - SF7BW125 to SF12BW125
446 446  
447 -(((
448 -Ex1: 0x0B45 = 2885mV
449 -)))
505 +507.1 - SF7BW125 to SF12BW125
450 450  
451 -(((
452 -Ex2: 0x0B49 = 2889mV
453 -)))
507 +507.3 - SF7BW125 to SF12BW125
454 454  
509 +507.5 - SF7BW125 to SF12BW125
455 455  
511 +507.7 - SF7BW125 to SF12BW125
456 456  
457 -=== 2.4.4  Signal Strength ===
513 +507.9 - SF7BW125 to SF12BW125
458 458  
515 +508.1 - SF7BW125 to SF12BW125
459 459  
460 -(((
461 -NB-IoT Network signal Strength.
462 -)))
517 +505.3 - SF12BW125 (RX2 downlink only)
463 463  
464 -(((
465 -**Ex1: 0x1d = 29**
466 -)))
467 467  
468 -(((
469 -(% style="color:blue" %)**0**(%%)  -113dBm or less
470 -)))
471 471  
472 -(((
473 -(% style="color:blue" %)**1**(%%)  -111dBm
474 -)))
521 +=== 2.7.4 AU915-928(AU915) ===
475 475  
476 -(((
477 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
478 -)))
523 +Default use CHE=2
479 479  
480 -(((
481 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
482 -)))
525 +(% style="color:#037691" %)**Uplink:**
483 483  
484 -(((
485 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
486 -)))
527 +916.8 - SF7BW125 to SF12BW125
487 487  
529 +917.0 - SF7BW125 to SF12BW125
488 488  
531 +917.2 - SF7BW125 to SF12BW125
489 489  
490 -=== 2.4.5  Distance ===
533 +917.4 - SF7BW125 to SF12BW125
491 491  
535 +917.6 - SF7BW125 to SF12BW125
492 492  
493 -Get the distance. Flat object range 280mm - 7500mm.
537 +917.8 - SF7BW125 to SF12BW125
494 494  
495 -(((
496 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
497 -)))
539 +918.0 - SF7BW125 to SF12BW125
498 498  
499 -(((
500 -(((
501 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
502 -)))
503 -)))
541 +918.2 - SF7BW125 to SF12BW125
504 504  
505 -(((
506 -
507 -)))
508 508  
509 -(((
510 -
511 -)))
544 +(% style="color:#037691" %)**Downlink:**
512 512  
513 -=== 2.4.6  Digital Interrupt ===
546 +923.3 - SF7BW500 to SF12BW500
514 514  
548 +923.9 - SF7BW500 to SF12BW500
515 515  
516 -(((
517 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
518 -)))
550 +924.5 - SF7BW500 to SF12BW500
519 519  
520 -(((
521 -The command is:
522 -)))
552 +925.1 - SF7BW500 to SF12BW500
523 523  
524 -(((
525 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
526 -)))
554 +925.7 - SF7BW500 to SF12BW500
527 527  
556 +926.3 - SF7BW500 to SF12BW500
528 528  
529 -(((
530 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
531 -)))
558 +926.9 - SF7BW500 to SF12BW500
532 532  
560 +927.5 - SF7BW500 to SF12BW500
533 533  
534 -(((
535 -Example:
536 -)))
562 +923.3 - SF12BW500(RX2 downlink only)
537 537  
538 -(((
539 -0x(00): Normal uplink packet.
540 -)))
541 541  
542 -(((
543 -0x(01): Interrupt Uplink Packet.
544 -)))
545 545  
566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
546 546  
568 +(% style="color:#037691" %)**Default Uplink channel:**
547 547  
548 -=== 2.4.7  ​+5V Output ===
570 +923.2 - SF7BW125 to SF10BW125
549 549  
572 +923.4 - SF7BW125 to SF10BW125
550 550  
551 -(((
552 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
553 -)))
554 554  
575 +(% style="color:#037691" %)**Additional Uplink Channel**:
555 555  
556 -(((
557 -The 5V output time can be controlled by AT Command.
577 +(OTAA mode, channel added by JoinAccept message)
558 558  
559 -
560 -)))
579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
561 561  
562 -(((
563 -(% style="color:blue" %)**AT+5VT=1000**
581 +922.2 - SF7BW125 to SF10BW125
564 564  
565 -
566 -)))
583 +922.4 - SF7BW125 to SF10BW125
567 567  
568 -(((
569 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
570 -)))
585 +922.6 - SF7BW125 to SF10BW125
571 571  
587 +922.8 - SF7BW125 to SF10BW125
572 572  
589 +923.0 - SF7BW125 to SF10BW125
573 573  
574 -== 2.5  Downlink Payload ==
591 +922.0 - SF7BW125 to SF10BW125
575 575  
576 576  
577 -By default, NDDS75 prints the downlink payload to console port.
594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
578 578  
579 -[[image:image-20220709100028-1.png]]
596 +923.6 - SF7BW125 to SF10BW125
580 580  
598 +923.8 - SF7BW125 to SF10BW125
581 581  
582 -(((
583 -(% style="color:blue" %)**Examples:**
584 -)))
600 +924.0 - SF7BW125 to SF10BW125
585 585  
586 -(((
587 -
588 -)))
602 +924.2 - SF7BW125 to SF10BW125
589 589  
590 -* (((
591 -(% style="color:blue" %)**Set TDC**
592 -)))
604 +924.4 - SF7BW125 to SF10BW125
593 593  
594 -(((
595 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
596 -)))
606 +924.6 - SF7BW125 to SF10BW125
597 597  
598 -(((
599 -Payload:    01 00 00 1E    TDC=30S
600 -)))
601 601  
602 -(((
603 -Payload:    01 00 00 3C    TDC=60S
604 -)))
609 +(% style="color:#037691" %)** Downlink:**
605 605  
606 -(((
607 -
608 -)))
611 +Uplink channels 1-8 (RX1)
609 609  
610 -* (((
611 -(% style="color:blue" %)**Reset**
612 -)))
613 +923.2 - SF10BW125 (RX2)
613 613  
614 -(((
615 -If payload = 0x04FF, it will reset the NDDS75
616 -)))
617 617  
618 618  
619 -* (% style="color:blue" %)**INTMOD**
617 +=== 2.7.6 KR920-923 (KR920) ===
620 620  
621 -(((
622 -Downlink Payload: 06000003, Set AT+INTMOD=3
623 -)))
619 +Default channel:
624 624  
621 +922.1 - SF7BW125 to SF12BW125
625 625  
623 +922.3 - SF7BW125 to SF12BW125
626 626  
627 -== 2. ​LED Indicator ==
625 +922.5 - SF7BW125 to SF12BW125
628 628  
629 629  
630 -The NDDS75 has an internal LED which is to show the status of different state.
628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
631 631  
630 +922.1 - SF7BW125 to SF12BW125
632 632  
633 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
634 -* Then the LED will be on for 1 second means device is boot normally.
635 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
636 -* For each uplink probe, LED will be on for 500ms.
632 +922.3 - SF7BW125 to SF12BW125
637 637  
638 -(((
639 -
640 -)))
634 +922.5 - SF7BW125 to SF12BW125
641 641  
636 +922.7 - SF7BW125 to SF12BW125
642 642  
638 +922.9 - SF7BW125 to SF12BW125
643 643  
644 -== 2. Firmware Change Log ==
640 +923.1 - SF7BW125 to SF12BW125
645 645  
642 +923.3 - SF7BW125 to SF12BW125
646 646  
647 -(((
648 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
649 -)))
650 650  
651 -(((
652 -
653 -)))
645 +(% style="color:#037691" %)**Downlink:**
654 654  
655 -(((
656 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
657 -)))
647 +Uplink channels 1-7(RX1)
658 658  
649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
659 659  
660 660  
661 -== 2.8  ​Battery Analysis ==
662 662  
653 +=== 2.7.7 IN865-867 (IN865) ===
663 663  
664 -=== 2.8.1  ​Battery Type ===
655 +(% style="color:#037691" %)** Uplink:**
665 665  
657 +865.0625 - SF7BW125 to SF12BW125
666 666  
659 +865.4025 - SF7BW125 to SF12BW125
660 +
661 +865.9850 - SF7BW125 to SF12BW125
662 +
663 +
664 +(% style="color:#037691" %) **Downlink:**
665 +
666 +Uplink channels 1-3 (RX1)
667 +
668 +866.550 - SF10BW125 (RX2)
669 +
670 +
671 +
672 +
673 +== 2.8 LED Indicator ==
674 +
675 +The LSE01 has an internal LED which is to show the status of different state.
676 +
677 +* Blink once when device power on.
678 +* Solid ON for 5 seconds once device successful Join the network.
679 +* Blink once when device transmit a packet.
680 +
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
667 667  (((
668 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
669 669  )))
692 +)))
670 670  
694 +
695 +
696 +[[image:1654506665940-119.png]]
697 +
671 671  (((
672 -The battery is designed to last for several years depends on the actually use environment and update interval. 
699 +Dig a hole with diameter > 20CM.
673 673  )))
674 674  
675 675  (((
676 -The battery related documents as below:
703 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
677 677  )))
678 678  
679 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
682 682  
707 +== 2.10 ​Firmware Change Log ==
708 +
683 683  (((
684 -[[image:image-20220709101450-2.png]]
710 +**Firmware download link:**
685 685  )))
686 686  
713 +(((
714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 +)))
687 687  
717 +(((
718 +
719 +)))
688 688  
689 -=== 2.8.2  Power consumption Analyze ===
721 +(((
722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 +)))
690 690  
725 +(((
726 +
727 +)))
691 691  
692 692  (((
693 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
730 +**V1.0.**
694 694  )))
695 695  
733 +(((
734 +Release
735 +)))
696 696  
737 +
738 +== 2.11 ​Battery Analysis ==
739 +
740 +=== 2.11.1 ​Battery Type ===
741 +
697 697  (((
698 -Instruction to use as below:
743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
699 699  )))
700 700  
701 701  (((
702 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
747 +The battery is designed to last for more than 5 years for the LSN50.
703 703  )))
704 704  
705 -
706 706  (((
707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
751 +(((
752 +The battery-related documents are as below:
708 708  )))
754 +)))
709 709  
710 710  * (((
711 -Product Model
757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
713 713  * (((
714 -Uplink Interval
760 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
715 715  )))
716 716  * (((
717 -Working Mode
763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
718 718  )))
719 719  
720 -(((
721 -And the Life expectation in difference case will be shown on the right.
722 -)))
766 + [[image:image-20220610172436-1.png]]
723 723  
724 -[[image:image-20220709110451-3.png]]
725 725  
726 726  
770 +=== 2.11.2 ​Battery Note ===
727 727  
728 -=== 2.8.3  ​Battery Note ===
729 -
730 -
731 731  (((
732 732  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
733 733  )))
... ... @@ -734,178 +734,302 @@
734 734  
735 735  
736 736  
737 -=== 2.8. Replace the battery ===
778 +=== 2.11.3 Replace the battery ===
738 738  
780 +(((
781 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
782 +)))
739 739  
740 740  (((
741 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
742 742  )))
743 743  
788 +(((
789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
790 +)))
744 744  
745 745  
746 -= 3. ​ Access NB-IoT Module =
747 747  
794 += 3. ​Using the AT Commands =
748 748  
749 -(((
750 -Users can directly access the AT command set of the NB-IoT module.
751 -)))
796 +== 3.1 Access AT Commands ==
752 752  
753 -(((
754 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
755 755  
756 -
757 -)))
799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
758 758  
759 -[[image:1657333200519-600.png]]
801 +[[image:1654501986557-872.png||height="391" width="800"]]
760 760  
761 761  
804 +Or if you have below board, use below connection:
762 762  
763 -= 4.  Using the AT Commands =
764 764  
807 +[[image:1654502005655-729.png||height="503" width="801"]]
765 765  
766 -== 4.1  Access AT Commands ==
767 767  
768 768  
769 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
770 770  
771 771  
772 -AT+<CMD>?  : Help on <CMD>
814 + [[image:1654502050864-459.png||height="564" width="806"]]
773 773  
774 -AT+<CMD>         : Run <CMD>
775 775  
776 -AT+<CMD>=<value> : Set the value
817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
777 777  
778 -AT+<CMD>=?  : Get the value
779 779  
820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
780 780  
822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 +
824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 +
826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 +
828 +
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -AT  : Attention       
831 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
784 784  
785 -AT?  : Short Help     
833 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
786 786  
787 -ATZ  : MCU Reset    
835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
788 788  
789 -AT+TDC  : Application Data Transmission Interval
837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
790 790  
791 -AT+CFG  : Print all configurations
792 792  
793 -AT+CFGMOD           : Working mode selection
840 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
794 794  
795 -AT+INTMOD            : Set the trigger interrupt mode
842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
796 796  
797 -AT+5VT  : Set extend the time of 5V power  
844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
798 798  
799 -AT+PRO  : Choose agreement
846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
800 800  
801 -AT+WEIGRE  : Get weight or set weight to 0
848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
802 802  
803 -AT+WEIGAP  : Get or Set the GapValue of weight
850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
804 804  
805 -AT+RXDL  : Extend the sending and receiving time
852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
806 806  
807 -AT+CNTFAC  : Get or set counting parameters
854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
808 808  
809 -AT+SERVADDR  : Server Address
856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
810 810  
858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="color:#037691" %)**COAP Management**      
860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
813 813  
814 -AT+URI            : Resource parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
815 815  
864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
816 816  
817 -(% style="color:#037691" %)**UDP Management**
866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
818 818  
819 -AT+CFM          : Upload confirmation mode (only valid for UDP)
868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
820 820  
870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
821 821  
822 -(% style="color:#037691" %)**MQTT Management**
872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
823 823  
824 -AT+CLIENT               : Get or Set MQTT client
825 825  
826 -AT+UNAME  : Get or Set MQTT Username
875 +(% style="color:#037691" %)**LoRa Network Management**
827 827  
828 -AT+PWD                  : Get or Set MQTT password
877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
829 829  
830 -AT+PUBTOPI : Get or Set MQTT publish topic
879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
831 831  
832 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
833 833  
883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
834 834  
835 -(% style="color:#037691" %)**Information**          
885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
836 836  
837 -AT+FDR  : Factory Data Reset
887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
838 838  
839 -AT+PWOR : Serial Access Password
889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
840 840  
891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
841 841  
893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
842 842  
843 -= ​5.  FAQ =
895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
844 844  
897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
845 845  
846 -== 5.1 How to Upgrade Firmware ==
899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
847 847  
901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
848 848  
903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 +
905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 +
907 +
908 +(% style="color:#037691" %)**Information** 
909 +
910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 +
912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 +
922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 +
924 +
925 += ​4. FAQ =
926 +
927 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 +
849 849  (((
850 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 +When downloading the images, choose the required image file for download. ​
851 851  )))
852 852  
853 853  (((
854 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 +
855 855  )))
856 856  
857 857  (((
858 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
859 859  )))
860 860  
942 +(((
943 +
944 +)))
861 861  
946 +(((
947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 +)))
862 862  
863 -= 6.  Trouble Shooting =
950 +(((
951 +
952 +)))
864 864  
954 +(((
955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
956 +)))
865 865  
866 -== 6.1  ​Connection problem when uploading firmware ==
958 +[[image:image-20220606154726-3.png]]
867 867  
868 868  
961 +When you use the TTN network, the US915 frequency bands use are:
962 +
963 +* 903.9 - SF7BW125 to SF10BW125
964 +* 904.1 - SF7BW125 to SF10BW125
965 +* 904.3 - SF7BW125 to SF10BW125
966 +* 904.5 - SF7BW125 to SF10BW125
967 +* 904.7 - SF7BW125 to SF10BW125
968 +* 904.9 - SF7BW125 to SF10BW125
969 +* 905.1 - SF7BW125 to SF10BW125
970 +* 905.3 - SF7BW125 to SF10BW125
971 +* 904.6 - SF8BW500
972 +
869 869  (((
870 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 +
976 +* (% style="color:#037691" %)**AT+CHE=2**
977 +* (% style="color:#037691" %)**ATZ**
871 871  )))
872 872  
873 -(% class="wikigeneratedid" %)
874 874  (((
875 875  
982 +
983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
876 876  )))
877 877  
986 +(((
987 +
988 +)))
878 878  
879 -== 6.2  AT Command input doesn't work ==
990 +(((
991 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 +)))
880 880  
994 +[[image:image-20220606154825-4.png]]
881 881  
996 +
997 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 +
999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 +
1001 +
1002 += 5. Trouble Shooting =
1003 +
1004 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 +
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn't work ==
1010 +
882 882  (((
883 883  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
884 884  
885 -
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
886 886  )))
887 887  
888 888  
889 -= 7. ​ Order Info =
1030 +(% style="color:#4f81bd" %)**Solution: **
890 890  
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
891 891  
892 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
893 893  
894 894  
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
895 895  (% class="wikigeneratedid" %)
896 896  (((
897 897  
898 898  )))
899 899  
900 -= 8.  Packing Info =
1064 += 7. Packing Info =
901 901  
902 902  (((
903 903  
904 904  
905 905  (% style="color:#037691" %)**Package Includes**:
1070 +)))
906 906  
907 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
908 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
909 909  )))
910 910  
911 911  (((
... ... @@ -912,24 +912,24 @@
912 912  
913 913  
914 914  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
915 915  
916 -* Device Size: 13.0 x 5 x 4.5 cm
917 -* Device Weight: 150g
918 -* Package Size / pcs : 15 x 12x 5.5 cm
919 -* Weight / pcs : 220g
1082 +* (((
1083 +Device Size: cm
920 920  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
921 921  
922 -(((
923 923  
924 -
925 -
926 -
927 927  )))
928 928  
929 -= 9.  Support =
1097 += 8. Support =
930 930  
931 -
932 932  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
933 933  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
934 -
935 -
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content