Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 45 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,78 +1,66 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 -{{toc/}} 11 11 12 12 13 13 14 14 15 15 14 +**Table of Contents:** 16 16 16 + 17 + 18 + 19 + 20 + 17 17 = 1. Introduction = 18 18 19 -== 1.1 What is N DDS75DistanceDetectionSensor ==23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 20 20 21 21 ((( 22 22 23 23 24 -((( 25 -((( 26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 27 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 28 28 29 -((( 30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 31 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 32 32 33 -((( 34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 35 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 36 36 37 -((( 38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 39 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 40 40 41 -((( 42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 36 + 43 43 ))) 44 44 45 -((( 46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 47 -))) 48 -))) 39 +[[image:1654503236291-817.png]] 49 49 50 - 51 -))) 52 52 53 -[[image:1657 327959271-447.png]]42 +[[image:1657245163077-232.png]] 54 54 55 55 56 56 57 -== 1.2 46 +== 1.2 Features == 58 58 59 59 60 60 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 61 -* Ultra low power consumption 62 -* Distance Detection by Ultrasonic technology 63 -* Flat object range 280mm - 7500mm 64 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 65 -* Cable Length: 25cm 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 66 66 * AT Commands to change parameters 67 67 * Uplink on periodically 68 68 * Downlink to change configure 69 69 * IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 70 70 * Micro SIM card slot for NB-IoT SIM 71 71 * 8500mAh Battery for long term use 72 72 73 73 74 74 75 - 76 76 == 1.3 Specification == 77 77 78 78 ... ... @@ -82,7 +82,6 @@ 82 82 * Operating Temperature: -40 ~~ 85°C 83 83 84 84 85 - 86 86 (% style="color:#037691" %)**NB-IoT Spec:** 87 87 88 88 * - B1 @H-FDD: 2100MHz ... ... @@ -93,647 +93,726 @@ 93 93 * - B28 @H-FDD: 700MHz 94 94 95 95 83 +(% style="color:#037691" %)**Probe Specification:** 96 96 97 - (%style="color:#037691"%)**Battery:**85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 98 98 99 -* Li/SOCI2 un-chargeable battery 100 -* Capacity: 8500mAh 101 -* Self Discharge: <1% / Year @ 25°C 102 -* Max continuously current: 130mA 103 -* Max boost current: 2A, 1 second 87 +[[image:image-20220708101224-1.png]] 104 104 105 105 106 106 107 - (% style="color:#037691"%)**Power Consumption**91 +== 1.4 Applications == 108 108 109 -* STOP Mode: 10uA @ 3.3v 110 -* Max transmit power: 350mA@3.3v 93 +* Smart Agriculture 111 111 95 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 + 112 112 98 +== 1.5 Pin Definitions == 113 113 114 114 101 +[[image:1657246476176-652.png]] 115 115 116 -== 1.4 Applications == 117 117 118 118 119 -* Smart Buildings & Home Automation 120 -* Logistics and Supply Chain Management 121 -* Smart Metering 122 -* Smart Agriculture 123 -* Smart Cities 124 -* Smart Factory 105 += 2. Use NSE01 to communicate with IoT Server = 125 125 126 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 127 - 107 +== 2.1 How it works == 128 128 129 129 110 +((( 111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 112 +))) 130 130 131 131 132 -== 1.5 Pin Definitions == 115 +((( 116 +The diagram below shows the working flow in default firmware of NSE01: 117 +))) 133 133 119 +[[image:image-20220708101605-2.png]] 134 134 135 -[[image:1657328609906-564.png]] 121 +((( 122 + 123 +))) 136 136 137 137 138 138 139 -= 2. UseNDDS75to communicatewithIoTServer =127 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 140 140 129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 141 141 142 -== 2.1 How it works == 143 143 132 +[[image:1654503992078-669.png]] 144 144 134 + 135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 136 + 137 + 138 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 139 + 140 +Each LSE01 is shipped with a sticker with the default device EUI as below: 141 + 142 +[[image:image-20220606163732-6.jpeg]] 143 + 144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 145 + 146 +**Add APP EUI in the application** 147 + 148 + 149 +[[image:1654504596150-405.png]] 150 + 151 + 152 + 153 +**Add APP KEY and DEV EUI** 154 + 155 +[[image:1654504683289-357.png]] 156 + 157 + 158 + 159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 160 + 161 + 162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 163 + 164 +[[image:image-20220606163915-7.png]] 165 + 166 + 167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 + 169 +[[image:1654504778294-788.png]] 170 + 171 + 172 + 173 +== 2.3 Uplink Payload == 174 + 175 + 176 +=== 2.3.1 MOD~=0(Default Mode) === 177 + 178 +LSE01 will uplink payload via LoRaWAN with below payload format: 179 + 145 145 ((( 146 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.181 +Uplink payload includes in total 11 bytes. 147 147 ))) 148 148 184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 +|((( 186 +**Size** 149 149 150 -((( 151 -The diagram below shows the working flow in default firmware of NDDS75: 188 +**(bytes)** 189 +)))|**2**|**2**|**2**|**2**|**2**|**1** 190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 +Temperature 192 + 193 +(Reserve, Ignore now) 194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 195 +MOD & Digital Interrupt 196 + 197 +(Optional) 152 152 ))) 153 153 154 -((( 155 - 200 +=== 2.3.2 MOD~=1(Original value) === 201 + 202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 203 + 204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 205 +|((( 206 +**Size** 207 + 208 +**(bytes)** 209 +)))|**2**|**2**|**2**|**2**|**2**|**1** 210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 211 +Temperature 212 + 213 +(Reserve, Ignore now) 214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 215 +MOD & Digital Interrupt 216 + 217 +(Optional) 156 156 ))) 157 157 158 - [[image:1657328659945-416.png]]220 +=== 2.3.3 Battery Info === 159 159 160 160 ((( 161 - 223 +Check the battery voltage for LSE01. 162 162 ))) 163 163 226 +((( 227 +Ex1: 0x0B45 = 2885mV 228 +))) 164 164 165 -== 2.2 Configure the NDDS75 == 230 +((( 231 +Ex2: 0x0B49 = 2889mV 232 +))) 166 166 167 167 168 -=== 2.2.1 Test Requirement === 169 169 236 +=== 2.3.4 Soil Moisture === 170 170 171 171 ((( 172 - TouseNDDS75inyourcity,make suremeetbelowrequirements:239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 173 173 ))) 174 174 175 - * Your local operator has already distributed a NB-IoT Network there.176 - *ThelocalNB-IoTnetworkusedthebandthatNDDS75supports.177 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.242 +((( 243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 244 +))) 178 178 179 179 ((( 180 - Belowfigure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.247 + 181 181 ))) 182 182 250 +((( 251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 252 +))) 183 183 184 -[[image:1657328756309-230.png]] 185 185 186 186 256 +=== 2.3.5 Soil Temperature === 187 187 188 -=== 2.2.2 Insert SIM card === 258 +((( 259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 260 +))) 189 189 262 +((( 263 +**Example**: 264 +))) 190 190 191 191 ((( 192 -I nsertthe NB-IoT Cardgetfromyourprovider.267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 193 193 ))) 194 194 195 195 ((( 196 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 197 197 ))) 198 198 199 199 200 -[[image:1657328884227-504.png]] 201 201 276 +=== 2.3.6 Soil Conductivity (EC) === 202 202 278 +((( 279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 280 +))) 203 203 204 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 282 +((( 283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 284 +))) 205 205 286 +((( 287 +Generally, the EC value of irrigation water is less than 800uS / cm. 288 +))) 206 206 207 207 ((( 291 + 292 +))) 293 + 208 208 ((( 209 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.295 + 210 210 ))) 211 -))) 212 212 213 - [[image:image-20220709092052-2.png]]298 +=== 2.3.7 MOD === 214 214 300 +Firmware version at least v2.1 supports changing mode. 215 215 216 - **Connection:**302 +For example, bytes[10]=90 217 217 218 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~->GND304 +mod=(bytes[10]>>7)&0x01=1. 219 219 220 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 221 221 222 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD307 +**Downlink Command:** 223 223 309 +If payload = 0x0A00, workmode=0 224 224 225 -I nthePC,usebelowserial tool settings:311 +If** **payload =** **0x0A01, workmode=1 226 226 227 -* Baud: (% style="color:green" %)**9600** 228 -* Data bits:** (% style="color:green" %)8(%%)** 229 -* Stop bits: (% style="color:green" %)**1** 230 -* Parity: (% style="color:green" %)**None** 231 -* Flow Control: (% style="color:green" %)**None** 232 232 233 -((( 234 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 235 -))) 236 236 237 - [[image:1657329814315-101.png]]315 +=== 2.3.8 Decode payload in The Things Network === 238 238 317 +While using TTN network, you can add the payload format to decode the payload. 239 239 319 + 320 +[[image:1654505570700-128.png]] 321 + 240 240 ((( 241 - (% style="color:red" %)**Note: thevalid AT Commandscan be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**323 +The payload decoder function for TTN is here: 242 242 ))) 243 243 326 +((( 327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 328 +))) 244 244 245 245 246 -== =2.2.4se CoAPprotocolto uplinkdata ===331 +== 2.4 Uplink Interval == 247 247 333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 248 248 249 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]** 250 250 251 251 337 +== 2.5 Downlink Payload == 338 + 339 +By default, LSE50 prints the downlink payload to console port. 340 + 341 +[[image:image-20220606165544-8.png]] 342 + 343 + 252 252 ((( 253 - **Usebelowcommands:**345 +(% style="color:blue" %)**Examples:** 254 254 ))) 255 255 256 - *(((257 - (%style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink348 +((( 349 + 258 258 ))) 351 + 259 259 * ((( 260 -(% style="color:blue" %)** AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port353 +(% style="color:blue" %)**Set TDC** 261 261 ))) 355 + 356 +((( 357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 358 +))) 359 + 360 +((( 361 +Payload: 01 00 00 1E TDC=30S 362 +))) 363 + 364 +((( 365 +Payload: 01 00 00 3C TDC=60S 366 +))) 367 + 368 +((( 369 + 370 +))) 371 + 262 262 * ((( 263 -(% style="color:blue" %)** AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resourcepath373 +(% style="color:blue" %)**Reset** 264 264 ))) 265 265 266 266 ((( 267 - Forparameterdescription,pleaserefertoAT command set377 +If payload = 0x04FF, it will reset the LSE01 268 268 ))) 269 269 270 -[[image:1657330452568-615.png]] 271 271 381 +* (% style="color:blue" %)**CFM** 272 272 383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 273 273 385 + 386 + 387 +== 2.6 Show Data in DataCake IoT Server == 388 + 274 274 ((( 275 -A fter configure theserver addressand(% style="color:green"%)**resetthedevice**(%%)(viaAT+ATZ ),NDDS75willstart touplink sensorvalues toCoAPserver.390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 276 276 ))) 277 277 278 -[[image:1657330472797-498.png]] 393 +((( 394 + 395 +))) 279 279 397 +((( 398 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 399 +))) 280 280 401 +((( 402 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 403 +))) 281 281 282 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 283 283 406 +[[image:1654505857935-743.png]] 284 284 285 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 286 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 287 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessary 288 288 409 +[[image:1654505874829-548.png]] 289 289 290 290 291 - [[image:1657330501006-241.png]]412 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 292 292 414 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 293 293 294 -[[image:1657330533775-472.png]] 295 295 417 +[[image:1654505905236-553.png]] 296 296 297 297 298 - ===2.2.6UseMQTTprotocoltouplinkdata===420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 299 299 422 +[[image:1654505925508-181.png]] 300 300 301 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 302 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 303 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 304 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 305 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 306 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 307 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 308 308 309 309 426 +== 2.7 Frequency Plans == 310 310 311 - [[image:1657249978444-674.png]]428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 312 312 313 313 314 - [[image:1657330723006-866.png]]431 +=== 2.7.1 EU863-870 (EU868) === 315 315 433 +(% style="color:#037691" %)** Uplink:** 316 316 317 -((( 318 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 319 -))) 435 +868.1 - SF7BW125 to SF12BW125 320 320 437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 321 321 439 +868.5 - SF7BW125 to SF12BW125 322 322 323 - === 2.2.7UseTCP protocolto uplink data ===441 +867.1 - SF7BW125 to SF12BW125 324 324 443 +867.3 - SF7BW125 to SF12BW125 325 325 326 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 327 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 445 +867.5 - SF7BW125 to SF12BW125 328 328 447 +867.7 - SF7BW125 to SF12BW125 329 329 449 +867.9 - SF7BW125 to SF12BW125 330 330 331 - [[image:image-20220709093918-1.png]]451 +868.8 - FSK 332 332 333 333 334 - [[image:image-20220709093918-2.png]]454 +(% style="color:#037691" %)** Downlink:** 335 335 456 +Uplink channels 1-9 (RX1) 336 336 458 +869.525 - SF9BW125 (RX2 downlink only) 337 337 338 -=== 2.2.8 Change Update Interval === 339 339 340 340 341 - Usercanuse below command to change the(% style="color:green" %)**uplinkinterval**.462 +=== 2.7.2 US902-928(US915) === 342 342 343 - * (%style="color:blue"%)**AT+TDC=600** (%%)~/~/SetUpdateIntervalto600s464 +Used in USA, Canada and South America. Default use CHE=2 344 344 345 -((( 346 -(% style="color:red" %)**NOTE:** 347 -))) 466 +(% style="color:#037691" %)**Uplink:** 348 348 349 -((( 350 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.** 351 -))) 468 +903.9 - SF7BW125 to SF10BW125 352 352 470 +904.1 - SF7BW125 to SF10BW125 353 353 472 +904.3 - SF7BW125 to SF10BW125 354 354 355 - == 2.3UplinkPayload==474 +904.5 - SF7BW125 to SF10BW125 356 356 476 +904.7 - SF7BW125 to SF10BW125 357 357 358 - Inthismode,uplink payload includes intotal14 bytes478 +904.9 - SF7BW125 to SF10BW125 359 359 480 +905.1 - SF7BW125 to SF10BW125 360 360 361 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %) 362 -|=(% style="width: 60px;" %)((( 363 -**Size(bytes)** 364 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1** 365 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 482 +905.3 - SF7BW125 to SF10BW125 366 366 367 -((( 368 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 369 -))) 370 370 485 +(% style="color:#037691" %)**Downlink:** 371 371 372 - [[image:1657331036973-987.png]]487 +923.3 - SF7BW500 to SF12BW500 373 373 489 +923.9 - SF7BW500 to SF12BW500 374 374 375 -((( 376 -The payload is ASCII string, representative same HEX: 377 -))) 491 +924.5 - SF7BW500 to SF12BW500 378 378 379 -((( 380 -0x72403155615900640c6c19029200 where: 381 -))) 493 +925.1 - SF7BW500 to SF12BW500 382 382 383 -* ((( 384 -Device ID: 0x724031556159 = 724031556159 385 -))) 386 -* ((( 387 -Version: 0x0064=100=1.0.0 388 -))) 495 +925.7 - SF7BW500 to SF12BW500 389 389 390 -* ((( 391 -BAT: 0x0c6c = 3180 mV = 3.180V 392 -))) 393 -* ((( 394 -Signal: 0x19 = 25 395 -))) 396 -* ((( 397 -Distance: 0x0292= 658 mm 398 -))) 399 -* ((( 400 -Interrupt: 0x00 = 0 497 +926.3 - SF7BW500 to SF12BW500 401 401 499 +926.9 - SF7BW500 to SF12BW500 402 402 501 +927.5 - SF7BW500 to SF12BW500 403 403 404 - 405 -))) 503 +923.3 - SF12BW500(RX2 downlink only) 406 406 407 -== 2.4 Payload Explanation and Sensor Interface == 408 408 409 409 410 -=== 2. 4.1DeviceID===507 +=== 2.7.3 CN470-510 (CN470) === 411 411 509 +Used in China, Default use CHE=1 412 412 413 -((( 414 -By default, the Device ID equal to the last 6 bytes of IMEI. 415 -))) 511 +(% style="color:#037691" %)**Uplink:** 416 416 417 -((( 418 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 513 +486.3 - SF7BW125 to SF12BW125 419 419 420 - 421 -))) 515 +486.5 - SF7BW125 to SF12BW125 422 422 423 -((( 424 -**Example:** 425 -))) 517 +486.7 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -AT+DEUI=A84041F15612 429 -))) 519 +486.9 - SF7BW125 to SF12BW125 430 430 431 -((( 432 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 433 -))) 521 +487.1 - SF7BW125 to SF12BW125 434 434 523 +487.3 - SF7BW125 to SF12BW125 435 435 525 +487.5 - SF7BW125 to SF12BW125 436 436 437 - === 2.4.2VersionInfo ===527 +487.7 - SF7BW125 to SF12BW125 438 438 439 439 440 -((( 441 -Specify the software version: 0x64=100, means firmware version 1.00. 442 -))) 530 +(% style="color:#037691" %)**Downlink:** 443 443 444 -((( 445 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 446 -))) 532 +506.7 - SF7BW125 to SF12BW125 447 447 534 +506.9 - SF7BW125 to SF12BW125 448 448 536 +507.1 - SF7BW125 to SF12BW125 449 449 450 - === 2.4.3atteryInfo===538 +507.3 - SF7BW125 to SF12BW125 451 451 540 +507.5 - SF7BW125 to SF12BW125 452 452 453 -((( 454 -Ex1: 0x0B45 = 2885mV 455 -))) 542 +507.7 - SF7BW125 to SF12BW125 456 456 457 -((( 458 -Ex2: 0x0B49 = 2889mV 459 -))) 544 +507.9 - SF7BW125 to SF12BW125 460 460 546 +508.1 - SF7BW125 to SF12BW125 461 461 548 +505.3 - SF12BW125 (RX2 downlink only) 462 462 463 -=== 2.4.4 Signal Strength === 464 464 465 465 466 -((( 467 -NB-IoT Network signal Strength. 468 -))) 552 +=== 2.7.4 AU915-928(AU915) === 469 469 470 -((( 471 -**Ex1: 0x1d = 29** 472 -))) 554 +Default use CHE=2 473 473 474 -((( 475 -(% style="color:blue" %)**0**(%%) -113dBm or less 476 -))) 556 +(% style="color:#037691" %)**Uplink:** 477 477 478 -((( 479 -(% style="color:blue" %)**1**(%%) -111dBm 480 -))) 558 +916.8 - SF7BW125 to SF12BW125 481 481 482 -((( 483 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 484 -))) 560 +917.0 - SF7BW125 to SF12BW125 485 485 486 -((( 487 -(% style="color:blue" %)**31** (%%) -51dBm or greater 488 -))) 562 +917.2 - SF7BW125 to SF12BW125 489 489 490 -((( 491 -(% style="color:blue" %)**99** (%%) Not known or not detectable 492 -))) 564 +917.4 - SF7BW125 to SF12BW125 493 493 566 +917.6 - SF7BW125 to SF12BW125 494 494 568 +917.8 - SF7BW125 to SF12BW125 495 495 496 - ===2.4.5Distance===570 +918.0 - SF7BW125 to SF12BW125 497 497 572 +918.2 - SF7BW125 to SF12BW125 498 498 499 -Get the distance. Flat object range 280mm - 7500mm. 500 500 501 -((( 502 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 503 -))) 575 +(% style="color:#037691" %)**Downlink:** 504 504 505 -((( 506 -((( 507 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 508 -))) 509 -))) 577 +923.3 - SF7BW500 to SF12BW500 510 510 511 -((( 512 - 513 -))) 579 +923.9 - SF7BW500 to SF12BW500 514 514 515 -((( 516 - 517 -))) 581 +924.5 - SF7BW500 to SF12BW500 518 518 519 - ===2.4.6DigitalInterrupt===583 +925.1 - SF7BW500 to SF12BW500 520 520 585 +925.7 - SF7BW500 to SF12BW500 521 521 522 -((( 523 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 524 -))) 587 +926.3 - SF7BW500 to SF12BW500 525 525 526 -((( 527 -The command is: 528 -))) 589 +926.9 - SF7BW500 to SF12BW500 529 529 530 -((( 531 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 532 -))) 591 +927.5 - SF7BW500 to SF12BW500 533 533 593 +923.3 - SF12BW500(RX2 downlink only) 534 534 535 -((( 536 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 537 -))) 538 538 539 539 540 -((( 541 -Example: 542 -))) 597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 543 543 544 -((( 545 -0x(00): Normal uplink packet. 546 -))) 599 +(% style="color:#037691" %)**Default Uplink channel:** 547 547 548 -((( 549 -0x(01): Interrupt Uplink Packet. 550 -))) 601 +923.2 - SF7BW125 to SF10BW125 551 551 603 +923.4 - SF7BW125 to SF10BW125 552 552 553 553 554 - ===2.4.7+5V Output===606 +(% style="color:#037691" %)**Additional Uplink Channel**: 555 555 608 +(OTAA mode, channel added by JoinAccept message) 556 556 557 -((( 558 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 559 -))) 610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 560 560 612 +922.2 - SF7BW125 to SF10BW125 561 561 562 -((( 563 -The 5V output time can be controlled by AT Command. 614 +922.4 - SF7BW125 to SF10BW125 564 564 565 - 566 -))) 616 +922.6 - SF7BW125 to SF10BW125 567 567 568 -((( 569 -(% style="color:blue" %)**AT+5VT=1000** 618 +922.8 - SF7BW125 to SF10BW125 570 570 571 - 572 -))) 620 +923.0 - SF7BW125 to SF10BW125 573 573 574 -((( 575 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 576 -))) 622 +922.0 - SF7BW125 to SF10BW125 577 577 578 578 625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 579 579 580 - ==2.5DownlinkPayload ==627 +923.6 - SF7BW125 to SF10BW125 581 581 629 +923.8 - SF7BW125 to SF10BW125 582 582 583 - Bydefault,NDDS75prints the downlinkpayload to console port.631 +924.0 - SF7BW125 to SF10BW125 584 584 585 - [[image:image-20220709100028-1.png]]633 +924.2 - SF7BW125 to SF10BW125 586 586 635 +924.4 - SF7BW125 to SF10BW125 587 587 588 -((( 589 -(% style="color:blue" %)**Examples:** 590 -))) 637 +924.6 - SF7BW125 to SF10BW125 591 591 592 -((( 593 - 594 -))) 595 595 596 -* ((( 597 -(% style="color:blue" %)**Set TDC** 598 -))) 640 +(% style="color:#037691" %)** Downlink:** 599 599 600 -((( 601 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 602 -))) 642 +Uplink channels 1-8 (RX1) 603 603 604 -((( 605 -Payload: 01 00 00 1E TDC=30S 606 -))) 644 +923.2 - SF10BW125 (RX2) 607 607 608 -((( 609 -Payload: 01 00 00 3C TDC=60S 610 -))) 611 611 612 -((( 613 - 614 -))) 615 615 616 -* ((( 617 -(% style="color:blue" %)**Reset** 618 -))) 648 +=== 2.7.6 KR920-923 (KR920) === 619 619 620 -((( 621 -If payload = 0x04FF, it will reset the NDDS75 622 -))) 650 +Default channel: 623 623 652 +922.1 - SF7BW125 to SF12BW125 624 624 625 - *(%style="color:blue"%)**INTMOD**654 +922.3 - SF7BW125 to SF12BW125 626 626 627 -((( 628 -Downlink Payload: 06000003, Set AT+INTMOD=3 629 -))) 656 +922.5 - SF7BW125 to SF12BW125 630 630 631 631 659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 632 632 633 - ==2.6LEDIndicator==661 +922.1 - SF7BW125 to SF12BW125 634 634 663 +922.3 - SF7BW125 to SF12BW125 635 635 636 - TheNDDS75has an internal LED which is toshow the status of different state.665 +922.5 - SF7BW125 to SF12BW125 637 637 667 +922.7 - SF7BW125 to SF12BW125 638 638 639 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 640 -* Then the LED will be on for 1 second means device is boot normally. 641 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 642 -* For each uplink probe, LED will be on for 500ms. 669 +922.9 - SF7BW125 to SF12BW125 643 643 644 -((( 645 - 646 -))) 671 +923.1 - SF7BW125 to SF12BW125 647 647 673 +923.3 - SF7BW125 to SF12BW125 648 648 649 649 650 - ==2.7Firmware Change Log ==676 +(% style="color:#037691" %)**Downlink:** 651 651 678 +Uplink channels 1-7(RX1) 652 652 653 -((( 654 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]] 655 -))) 680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 656 656 657 -((( 658 - 659 -))) 660 660 661 -((( 662 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 663 -))) 664 664 684 +=== 2.7.7 IN865-867 (IN865) === 665 665 686 +(% style="color:#037691" %)** Uplink:** 666 666 667 - == 2.8BatteryAnalysis ==688 +865.0625 - SF7BW125 to SF12BW125 668 668 690 +865.4025 - SF7BW125 to SF12BW125 669 669 670 - === 2.8.1BatteryType ===692 +865.9850 - SF7BW125 to SF12BW125 671 671 672 672 695 +(% style="color:#037691" %) **Downlink:** 696 + 697 +Uplink channels 1-3 (RX1) 698 + 699 +866.550 - SF10BW125 (RX2) 700 + 701 + 702 + 703 + 704 +== 2.8 LED Indicator == 705 + 706 +The LSE01 has an internal LED which is to show the status of different state. 707 + 708 +* Blink once when device power on. 709 +* Solid ON for 5 seconds once device successful Join the network. 710 +* Blink once when device transmit a packet. 711 + 712 +== 2.9 Installation in Soil == 713 + 714 +**Measurement the soil surface** 715 + 716 + 717 +[[image:1654506634463-199.png]] 718 + 673 673 ((( 674 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 720 +((( 721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 675 675 ))) 723 +))) 676 676 725 + 726 + 727 +[[image:1654506665940-119.png]] 728 + 677 677 ((( 678 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.730 +Dig a hole with diameter > 20CM. 679 679 ))) 680 680 681 681 ((( 682 - The batteryrelateddocumentsasbelow:734 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 683 683 ))) 684 684 685 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 686 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 687 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 688 688 738 +== 2.10 Firmware Change Log == 739 + 689 689 ((( 690 - [[image:image-20220709101450-2.png]]741 +**Firmware download link:** 691 691 ))) 692 692 744 +((( 745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 746 +))) 693 693 748 +((( 749 + 750 +))) 694 694 695 -=== 2.8.2 Power consumption Analyze === 752 +((( 753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 754 +))) 696 696 756 +((( 757 + 758 +))) 697 697 698 698 ((( 699 - Dragino battery powered product are all runs in Low Power mode.We have an update battery calculator which base on the measurement of the real device.User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.761 +**V1.0.** 700 700 ))) 701 701 764 +((( 765 +Release 766 +))) 702 702 768 + 769 +== 2.11 Battery Analysis == 770 + 771 +=== 2.11.1 Battery Type === 772 + 703 703 ((( 704 - Instruction touse as below:774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 705 705 ))) 706 706 707 707 ((( 708 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]778 +The battery is designed to last for more than 5 years for the LSN50. 709 709 ))) 710 710 711 - 712 712 ((( 713 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 782 +((( 783 +The battery-related documents are as below: 714 714 ))) 785 +))) 715 715 716 716 * ((( 717 - Product Model788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 718 718 ))) 719 719 * ((( 720 - UplinkInterval791 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 721 721 ))) 722 722 * ((( 723 - WorkingMode794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 724 724 ))) 725 725 726 -((( 727 -And the Life expectation in difference case will be shown on the right. 728 -))) 797 + [[image:image-20220610172436-1.png]] 729 729 730 -[[image:image-20220709110451-3.png]] 731 731 732 732 801 +=== 2.11.2 Battery Note === 733 733 734 -=== 2.8.3 Battery Note === 735 - 736 - 737 737 ((( 738 738 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 739 739 ))) ... ... @@ -740,178 +740,302 @@ 740 740 741 741 742 742 743 -=== 2. 8.4Replace the battery ===809 +=== 2.11.3 Replace the battery === 744 744 811 +((( 812 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 813 +))) 745 745 746 746 ((( 747 - Thedefault battery packofNDDS75includes aER26500plussupercapacitor.Ifuser can'tfind thispacklocally,theycanfindER26500 orequivalencewithouttheSPC1520capacitor,whichwillalsowork inmost case.TheSPCcanenlargethebatterylifeforhighfrequencyuse(updateperiodbelow5minutes).816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 748 748 ))) 749 749 819 +((( 820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 821 +))) 750 750 751 751 752 -= 3. Access NB-IoT Module = 753 753 825 += 3. Using the AT Commands = 754 754 755 -((( 756 -Users can directly access the AT command set of the NB-IoT module. 757 -))) 827 +== 3.1 Access AT Commands == 758 758 759 -((( 760 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 761 761 762 - 763 -))) 830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 764 764 765 -[[image:165 7333200519-600.png]]832 +[[image:1654501986557-872.png||height="391" width="800"]] 766 766 767 767 835 +Or if you have below board, use below connection: 768 768 769 -= 4. Using the AT Commands = 770 770 838 +[[image:1654502005655-729.png||height="503" width="801"]] 771 771 772 -== 4.1 Access AT Commands == 773 773 774 774 775 - Seethislinkfordetail: [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 776 776 777 777 778 - AT+<CMD>?: Helpon<CMD>845 + [[image:1654502050864-459.png||height="564" width="806"]] 779 779 780 -AT+<CMD> : Run <CMD> 781 781 782 - AT+<CMD>=<value>:Set thevalue848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 783 783 784 -AT+<CMD>=? : Get the value 785 785 851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 786 786 853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 858 + 859 + 787 787 (% style="color:#037691" %)**General Commands**(%%) 788 788 789 -AT 862 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 790 790 791 -AT? 864 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 792 792 793 -ATZ 866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 794 794 795 -AT+TDC 868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 796 796 797 -AT+CFG : Print all configurations 798 798 799 - AT+CFGMOD: Workingmode selection871 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 800 800 801 -AT+I NTMOD:Setthe trigger interruptmode873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 802 802 803 -AT+ 5VTSetextend the timeof5V power875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 804 804 805 -AT+P ROChooseagreement877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 806 806 807 -AT+ WEIGREGet weightorsetweight to 0879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 808 808 809 -AT+ WEIGAPGet or SettheGapValue of weight881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 810 810 811 -AT+ RXDL: Extendthe sendingandreceivingtime883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 812 812 813 -AT+ CNTFACGettcountingparameters885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 814 814 815 -AT+ SERVADDR:ServerAddress887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 816 816 889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 817 817 818 -(% style="color:# 037691" %)**COAPManagement**891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 819 819 820 -AT+ URIsourceparameters893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 821 821 895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 822 822 823 -(% style="color:# 037691" %)**UDPManagement**897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 824 824 825 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 826 826 901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 827 827 828 -(% style="color:# 037691" %)**MQTTManagement**903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 829 829 830 -AT+CLIENT : Get or Set MQTT client 831 831 832 - AT+UNAMEGetSetMQTT Username906 +(% style="color:#037691" %)**LoRa Network Management** 833 833 834 -AT+ PWDGetor SetMQTT password908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 835 835 836 -AT+ PUBTOPICGetorSetMQTTpublishtopic910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 837 837 838 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 839 839 914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 840 840 841 -(% style="color:# 037691" %)**Information**916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 842 842 843 -AT+F DRctoryDataReset918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 844 844 845 -AT+ PWORDSerialAccessPassword920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 846 846 922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 847 847 924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 848 848 849 -= 5.FAQ=926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 850 850 928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 851 851 852 -= =5.1How to UpgradeFirmware==930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 853 853 932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 854 934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 935 + 936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 937 + 938 + 939 +(% style="color:#037691" %)**Information** 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 944 + 945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 946 + 947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 948 + 949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 950 + 951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 952 + 953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 954 + 955 + 956 += 4. FAQ = 957 + 958 +== 4.1 How to change the LoRa Frequency Bands/Region? == 959 + 855 855 ((( 856 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 962 +When downloading the images, choose the required image file for download. 857 857 ))) 858 858 859 859 ((( 860 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]966 + 861 861 ))) 862 862 863 863 ((( 864 - (%style="color:red"%)**Notice,NDDS75andLDDS75share thememotherboard.Theyuse thesameconnection andmethodto update.**970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 865 865 ))) 866 866 973 +((( 974 + 975 +))) 867 867 977 +((( 978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 979 +))) 868 868 869 -= 6. Trouble Shooting = 981 +((( 982 + 983 +))) 870 870 985 +((( 986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 987 +))) 871 871 872 - == 6.1 Connection problemwhen uploadingfirmware==989 +[[image:image-20220606154726-3.png]] 873 873 874 874 992 +When you use the TTN network, the US915 frequency bands use are: 993 + 994 +* 903.9 - SF7BW125 to SF10BW125 995 +* 904.1 - SF7BW125 to SF10BW125 996 +* 904.3 - SF7BW125 to SF10BW125 997 +* 904.5 - SF7BW125 to SF10BW125 998 +* 904.7 - SF7BW125 to SF10BW125 999 +* 904.9 - SF7BW125 to SF10BW125 1000 +* 905.1 - SF7BW125 to SF10BW125 1001 +* 905.3 - SF7BW125 to SF10BW125 1002 +* 904.6 - SF8BW500 1003 + 875 875 ((( 876 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1006 + 1007 +* (% style="color:#037691" %)**AT+CHE=2** 1008 +* (% style="color:#037691" %)**ATZ** 877 877 ))) 878 878 879 -(% class="wikigeneratedid" %) 880 880 ((( 881 881 1013 + 1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 882 882 ))) 883 883 1017 +((( 1018 + 1019 +))) 884 884 885 -== 6.2 AT Command input doesn't work == 1021 +((( 1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1023 +))) 886 886 1025 +[[image:image-20220606154825-4.png]] 887 887 1027 + 1028 +== 4.2 Can I calibrate LSE01 to different soil types? == 1029 + 1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1031 + 1032 + 1033 += 5. Trouble Shooting = 1034 + 1035 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1036 + 1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1038 + 1039 + 1040 +== 5.2 AT Command input doesn't work == 1041 + 888 888 ((( 889 889 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1044 +))) 890 890 891 - 1046 + 1047 +== 5.3 Device rejoin in at the second uplink packet == 1048 + 1049 +(% style="color:#4f81bd" %)**Issue describe as below:** 1050 + 1051 +[[image:1654500909990-784.png]] 1052 + 1053 + 1054 +(% style="color:#4f81bd" %)**Cause for this issue:** 1055 + 1056 +((( 1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 892 892 ))) 893 893 894 894 895 - =7. OrderInfo=1061 +(% style="color:#4f81bd" %)**Solution: ** 896 896 1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 897 897 898 - Part Number**:** (% style="color:#4f81bd"%)**NSDDS75**1065 +[[image:1654500929571-736.png||height="458" width="832"]] 899 899 900 900 1068 += 6. Order Info = 1069 + 1070 + 1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1072 + 1073 + 1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1075 + 1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1082 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1084 + 1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1086 + 1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1089 + 901 901 (% class="wikigeneratedid" %) 902 902 ((( 903 903 904 904 ))) 905 905 906 -= 8.1095 += 7. Packing Info = 907 907 908 908 ((( 909 909 910 910 911 911 (% style="color:#037691" %)**Package Includes**: 1101 +))) 912 912 913 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1914 - *Externalantennax 11103 +* ((( 1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 915 915 ))) 916 916 917 917 ((( ... ... @@ -918,25 +918,24 @@ 918 918 919 919 920 920 (% style="color:#037691" %)**Dimension and weight**: 1111 +))) 921 921 922 -* Device Size: 13.0 x 5 x 4.5 cm 923 -* Device Weight: 150g 924 -* Package Size / pcs : 15 x 12x 5.5 cm 925 -* Weight / pcs : 220g 1113 +* ((( 1114 +Device Size: cm 926 926 ))) 1116 +* ((( 1117 +Device Weight: g 1118 +))) 1119 +* ((( 1120 +Package Size / pcs : cm 1121 +))) 1122 +* ((( 1123 +Weight / pcs : g 927 927 928 -((( 929 929 930 - 931 - 932 - 933 933 ))) 934 934 935 -= 9.1128 += 8. Support = 936 936 937 - 938 938 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 939 939 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 940 - 941 - 942 -
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.5 KB - Content