Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 100.4
edited by Xiaoling
on 2022/08/22 14:38
Change comment: There is no comment for this version
To version 45.3
edited by Xiaoling
on 2022/07/08 10:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,78 +1,66 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
59 59  
60 60  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 -* Ultra low power consumption
62 -* Distance Detection by Ultrasonic technology
63 -* Flat object range 280mm - 7500mm
64 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
65 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
66 66  * AT Commands to change parameters
67 67  * Uplink on periodically
68 68  * Downlink to change configure
69 69  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
70 70  * Micro SIM card slot for NB-IoT SIM
71 71  * 8500mAh Battery for long term use
72 72  
73 73  
74 74  
75 -
76 76  == 1.3  Specification ==
77 77  
78 78  
... ... @@ -82,7 +82,6 @@
82 82  * Operating Temperature: -40 ~~ 85°C
83 83  
84 84  
85 -
86 86  (% style="color:#037691" %)**NB-IoT Spec:**
87 87  
88 88  * - B1 @H-FDD: 2100MHz
... ... @@ -93,647 +93,726 @@
93 93  * - B28 @H-FDD: 700MHz
94 94  
95 95  
83 +(% style="color:#037691" %)**Probe Specification:**
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -* Li/SOCI2 un-chargeable battery
100 -* Capacity: 8500mAh
101 -* Self Discharge: <1% / Year @ 25°C
102 -* Max continuously current: 130mA
103 -* Max boost current: 2A, 1 second
87 +[[image:image-20220708101224-1.png]]
104 104  
105 105  
106 106  
107 -(% style="color:#037691" %)**Power Consumption**
91 +== ​1.4  Applications ==
108 108  
109 -* STOP Mode: 10uA @ 3.3v
110 -* Max transmit power: 350mA@3.3v
93 +* Smart Agriculture
111 111  
95 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 +​
112 112  
98 +== 1.5  Pin Definitions ==
113 113  
114 114  
101 +[[image:1657246476176-652.png]]
115 115  
116 -== ​1.4  Applications ==
117 117  
118 118  
119 -* Smart Buildings & Home Automation
120 -* Logistics and Supply Chain Management
121 -* Smart Metering
122 -* Smart Agriculture
123 -* Smart Cities
124 -* Smart Factory
105 += 2.  Use NSE01 to communicate with IoT Server =
125 125  
126 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
127 -​
107 +== 2.1  How it works ==
128 128  
129 129  
110 +(((
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
112 +)))
130 130  
131 131  
132 -== 1.5  Pin Definitions ==
115 +(((
116 +The diagram below shows the working flow in default firmware of NSE01:
117 +)))
133 133  
119 +[[image:image-20220708101605-2.png]]
134 134  
135 -[[image:1657328609906-564.png]]
121 +(((
122 +
123 +)))
136 136  
137 137  
138 138  
139 -= 2.  Use NDDS75 to communicate with IoT Server =
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
140 140  
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
141 141  
142 -== 2.1  How it works ==
143 143  
132 +[[image:1654503992078-669.png]]
144 144  
134 +
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
136 +
137 +
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 +
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 +
142 +[[image:image-20220606163732-6.jpeg]]
143 +
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 +
146 +**Add APP EUI in the application**
147 +
148 +
149 +[[image:1654504596150-405.png]]
150 +
151 +
152 +
153 +**Add APP KEY and DEV EUI**
154 +
155 +[[image:1654504683289-357.png]]
156 +
157 +
158 +
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 +
161 +
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 +
164 +[[image:image-20220606163915-7.png]]
165 +
166 +
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 +
169 +[[image:1654504778294-788.png]]
170 +
171 +
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
145 145  (((
146 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
181 +Uplink payload includes in total 11 bytes.
147 147  )))
148 148  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
149 149  
150 -(((
151 -The diagram below shows the working flow in default firmware of NDDS75:
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
192 +
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
152 152  )))
153 153  
154 -(((
155 -
200 +=== 2.3.2 MOD~=1(Original value) ===
201 +
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
203 +
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
207 +
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
212 +
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
216 +
217 +(Optional)
156 156  )))
157 157  
158 -[[image:1657328659945-416.png]]
220 +=== 2.3.3 Battery Info ===
159 159  
160 160  (((
161 -
223 +Check the battery voltage for LSE01.
162 162  )))
163 163  
226 +(((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
164 164  
165 -== 2.2 ​ Configure the NDDS75 ==
230 +(((
231 +Ex2: 0x0B49 = 2889mV
232 +)))
166 166  
167 167  
168 -=== 2.2.1 Test Requirement ===
169 169  
236 +=== 2.3.4 Soil Moisture ===
170 170  
171 171  (((
172 -To use NDDS75 in your city, make sure meet below requirements:
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
173 173  )))
174 174  
175 -* Your local operator has already distributed a NB-IoT Network there.
176 -* The local NB-IoT network used the band that NDDS75 supports.
177 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
178 178  
179 179  (((
180 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
247 +
181 181  )))
182 182  
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
183 183  
184 -[[image:1657328756309-230.png]]
185 185  
186 186  
256 +=== 2.3.5 Soil Temperature ===
187 187  
188 -=== 2.2.2 Insert SIM card ===
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
189 189  
262 +(((
263 +**Example**:
264 +)))
190 190  
191 191  (((
192 -Insert the NB-IoT Card get from your provider.
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
193 193  )))
194 194  
195 195  (((
196 -User need to take out the NB-IoT module and insert the SIM card like below:
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
197 197  )))
198 198  
199 199  
200 -[[image:1657328884227-504.png]]
201 201  
276 +=== 2.3.6 Soil Conductivity (EC) ===
202 202  
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
203 203  
204 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
205 205  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
206 206  
207 207  (((
291 +
292 +)))
293 +
208 208  (((
209 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
295 +
210 210  )))
211 -)))
212 212  
213 -[[image:image-20220709092052-2.png]]
298 +=== 2.3.7 MOD ===
214 214  
300 +Firmware version at least v2.1 supports changing mode.
215 215  
216 -**Connection:**
302 +For example, bytes[10]=90
217 217  
218 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
304 +mod=(bytes[10]>>7)&0x01=1.
219 219  
220 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
221 221  
222 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
307 +**Downlink Command:**
223 223  
309 +If payload = 0x0A00, workmode=0
224 224  
225 -In the PC, use below serial tool settings:
311 +If** **payload =** **0x0A01, workmode=1
226 226  
227 -* Baud:  (% style="color:green" %)**9600**
228 -* Data bits:** (% style="color:green" %)8(%%)**
229 -* Stop bits: (% style="color:green" %)**1**
230 -* Parity:  (% style="color:green" %)**None**
231 -* Flow Control: (% style="color:green" %)**None**
232 232  
233 -(((
234 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
235 -)))
236 236  
237 -[[image:1657329814315-101.png]]
315 +=== 2.3.8 ​Decode payload in The Things Network ===
238 238  
317 +While using TTN network, you can add the payload format to decode the payload.
239 239  
319 +
320 +[[image:1654505570700-128.png]]
321 +
240 240  (((
241 -(% style="color:red" %)**Note: the valid AT Commands can be found at: **(%%)**[[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]**
323 +The payload decoder function for TTN is here:
242 242  )))
243 243  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
244 244  
245 245  
246 -=== 2.2.4 Use CoAP protocol to uplink data ===
331 +== 2.4 Uplink Interval ==
247 247  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
248 248  
249 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
250 250  
251 251  
337 +== 2.5 Downlink Payload ==
338 +
339 +By default, LSE50 prints the downlink payload to console port.
340 +
341 +[[image:image-20220606165544-8.png]]
342 +
343 +
252 252  (((
253 -**Use below commands:**
345 +(% style="color:blue" %)**Examples:**
254 254  )))
255 255  
256 -* (((
257 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
348 +(((
349 +
258 258  )))
351 +
259 259  * (((
260 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
353 +(% style="color:blue" %)**Set TDC**
261 261  )))
355 +
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
359 +
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
363 +
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
367 +
368 +(((
369 +
370 +)))
371 +
262 262  * (((
263 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
373 +(% style="color:blue" %)**Reset**
264 264  )))
265 265  
266 266  (((
267 -For parameter description, please refer to AT command set
377 +If payload = 0x04FF, it will reset the LSE01
268 268  )))
269 269  
270 -[[image:1657330452568-615.png]]
271 271  
381 +* (% style="color:blue" %)**CFM**
272 272  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 273  
385 +
386 +
387 +== 2.6 ​Show Data in DataCake IoT Server ==
388 +
274 274  (((
275 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 276  )))
277 277  
278 -[[image:1657330472797-498.png]]
393 +(((
394 +
395 +)))
279 279  
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
280 280  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
281 281  
282 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
283 283  
406 +[[image:1654505857935-743.png]]
284 284  
285 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
286 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
287 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
288 288  
409 +[[image:1654505874829-548.png]]
289 289  
290 290  
291 -[[image:1657330501006-241.png]]
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
292 292  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
293 293  
294 -[[image:1657330533775-472.png]]
295 295  
417 +[[image:1654505905236-553.png]]
296 296  
297 297  
298 -=== 2.2.6 Use MQTT protocol to uplink data ===
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
299 299  
422 +[[image:1654505925508-181.png]]
300 300  
301 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
302 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
303 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
304 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
305 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
306 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
307 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
308 308  
309 309  
426 +== 2.7 Frequency Plans ==
310 310  
311 -[[image:1657249978444-674.png]]
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
312 312  
313 313  
314 -[[image:1657330723006-866.png]]
431 +=== 2.7.1 EU863-870 (EU868) ===
315 315  
433 +(% style="color:#037691" %)** Uplink:**
316 316  
317 -(((
318 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
319 -)))
435 +868.1 - SF7BW125 to SF12BW125
320 320  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
321 321  
439 +868.5 - SF7BW125 to SF12BW125
322 322  
323 -=== 2.2.7 Use TCP protocol to uplink data ===
441 +867.1 - SF7BW125 to SF12BW125
324 324  
443 +867.3 - SF7BW125 to SF12BW125
325 325  
326 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
327 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
445 +867.5 - SF7BW125 to SF12BW125
328 328  
447 +867.7 - SF7BW125 to SF12BW125
329 329  
449 +867.9 - SF7BW125 to SF12BW125
330 330  
331 -[[image:image-20220709093918-1.png]]
451 +868.8 - FSK
332 332  
333 333  
334 -[[image:image-20220709093918-2.png]]
454 +(% style="color:#037691" %)** Downlink:**
335 335  
456 +Uplink channels 1-9 (RX1)
336 336  
458 +869.525 - SF9BW125 (RX2 downlink only)
337 337  
338 -=== 2.2.8 Change Update Interval ===
339 339  
340 340  
341 -User can use below command to change the (% style="color:green" %)**uplink interval**.
462 +=== 2.7.2 US902-928(US915) ===
342 342  
343 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
464 +Used in USA, Canada and South America. Default use CHE=2
344 344  
345 -(((
346 -(% style="color:red" %)**NOTE:**
347 -)))
466 +(% style="color:#037691" %)**Uplink:**
348 348  
349 -(((
350 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
351 -)))
468 +903.9 - SF7BW125 to SF10BW125
352 352  
470 +904.1 - SF7BW125 to SF10BW125
353 353  
472 +904.3 - SF7BW125 to SF10BW125
354 354  
355 -== 2. Uplink Payload ==
474 +904.5 - SF7BW125 to SF10BW125
356 356  
476 +904.7 - SF7BW125 to SF10BW125
357 357  
358 -In this mode, uplink payload includes in total 14 bytes
478 +904.9 - SF7BW125 to SF10BW125
359 359  
480 +905.1 - SF7BW125 to SF10BW125
360 360  
361 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
362 -|=(% style="width: 60px;" %)(((
363 -**Size(bytes)**
364 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
365 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
482 +905.3 - SF7BW125 to SF10BW125
366 366  
367 -(((
368 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
369 -)))
370 370  
485 +(% style="color:#037691" %)**Downlink:**
371 371  
372 -[[image:1657331036973-987.png]]
487 +923.3 - SF7BW500 to SF12BW500
373 373  
489 +923.9 - SF7BW500 to SF12BW500
374 374  
375 -(((
376 -The payload is ASCII string, representative same HEX:
377 -)))
491 +924.5 - SF7BW500 to SF12BW500
378 378  
379 -(((
380 -0x72403155615900640c6c19029200 where:
381 -)))
493 +925.1 - SF7BW500 to SF12BW500
382 382  
383 -* (((
384 -Device ID: 0x724031556159 = 724031556159
385 -)))
386 -* (((
387 -Version: 0x0064=100=1.0.0
388 -)))
495 +925.7 - SF7BW500 to SF12BW500
389 389  
390 -* (((
391 -BAT: 0x0c6c = 3180 mV = 3.180V
392 -)))
393 -* (((
394 -Signal: 0x19 = 25
395 -)))
396 -* (((
397 -Distance: 0x0292= 658 mm
398 -)))
399 -* (((
400 -Interrupt: 0x00 = 0
497 +926.3 - SF7BW500 to SF12BW500
401 401  
499 +926.9 - SF7BW500 to SF12BW500
402 402  
501 +927.5 - SF7BW500 to SF12BW500
403 403  
404 -
405 -)))
503 +923.3 - SF12BW500(RX2 downlink only)
406 406  
407 -== 2.4  Payload Explanation and Sensor Interface ==
408 408  
409 409  
410 -=== 2.4.1  Device ID ===
507 +=== 2.7.3 CN470-510 (CN470) ===
411 411  
509 +Used in China, Default use CHE=1
412 412  
413 -(((
414 -By default, the Device ID equal to the last 6 bytes of IMEI.
415 -)))
511 +(% style="color:#037691" %)**Uplink:**
416 416  
417 -(((
418 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
513 +486.3 - SF7BW125 to SF12BW125
419 419  
420 -
421 -)))
515 +486.5 - SF7BW125 to SF12BW125
422 422  
423 -(((
424 -**Example:**
425 -)))
517 +486.7 - SF7BW125 to SF12BW125
426 426  
427 -(((
428 -AT+DEUI=A84041F15612
429 -)))
519 +486.9 - SF7BW125 to SF12BW125
430 430  
431 -(((
432 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
433 -)))
521 +487.1 - SF7BW125 to SF12BW125
434 434  
523 +487.3 - SF7BW125 to SF12BW125
435 435  
525 +487.5 - SF7BW125 to SF12BW125
436 436  
437 -=== 2.4.2  Version Info ===
527 +487.7 - SF7BW125 to SF12BW125
438 438  
439 439  
440 -(((
441 -Specify the software version: 0x64=100, means firmware version 1.00.
442 -)))
530 +(% style="color:#037691" %)**Downlink:**
443 443  
444 -(((
445 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
446 -)))
532 +506.7 - SF7BW125 to SF12BW125
447 447  
534 +506.9 - SF7BW125 to SF12BW125
448 448  
536 +507.1 - SF7BW125 to SF12BW125
449 449  
450 -=== 2.4.3  Battery Info ===
538 +507.3 - SF7BW125 to SF12BW125
451 451  
540 +507.5 - SF7BW125 to SF12BW125
452 452  
453 -(((
454 -Ex1: 0x0B45 = 2885mV
455 -)))
542 +507.7 - SF7BW125 to SF12BW125
456 456  
457 -(((
458 -Ex2: 0x0B49 = 2889mV
459 -)))
544 +507.9 - SF7BW125 to SF12BW125
460 460  
546 +508.1 - SF7BW125 to SF12BW125
461 461  
548 +505.3 - SF12BW125 (RX2 downlink only)
462 462  
463 -=== 2.4.4  Signal Strength ===
464 464  
465 465  
466 -(((
467 -NB-IoT Network signal Strength.
468 -)))
552 +=== 2.7.4 AU915-928(AU915) ===
469 469  
470 -(((
471 -**Ex1: 0x1d = 29**
472 -)))
554 +Default use CHE=2
473 473  
474 -(((
475 -(% style="color:blue" %)**0**(%%)  -113dBm or less
476 -)))
556 +(% style="color:#037691" %)**Uplink:**
477 477  
478 -(((
479 -(% style="color:blue" %)**1**(%%)  -111dBm
480 -)))
558 +916.8 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
484 -)))
560 +917.0 - SF7BW125 to SF12BW125
485 485  
486 -(((
487 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
488 -)))
562 +917.2 - SF7BW125 to SF12BW125
489 489  
490 -(((
491 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
492 -)))
564 +917.4 - SF7BW125 to SF12BW125
493 493  
566 +917.6 - SF7BW125 to SF12BW125
494 494  
568 +917.8 - SF7BW125 to SF12BW125
495 495  
496 -=== 2.4.5  Distance ===
570 +918.0 - SF7BW125 to SF12BW125
497 497  
572 +918.2 - SF7BW125 to SF12BW125
498 498  
499 -Get the distance. Flat object range 280mm - 7500mm.
500 500  
501 -(((
502 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
503 -)))
575 +(% style="color:#037691" %)**Downlink:**
504 504  
505 -(((
506 -(((
507 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
508 -)))
509 -)))
577 +923.3 - SF7BW500 to SF12BW500
510 510  
511 -(((
512 -
513 -)))
579 +923.9 - SF7BW500 to SF12BW500
514 514  
515 -(((
516 -
517 -)))
581 +924.5 - SF7BW500 to SF12BW500
518 518  
519 -=== 2.4.6  Digital Interrupt ===
583 +925.1 - SF7BW500 to SF12BW500
520 520  
585 +925.7 - SF7BW500 to SF12BW500
521 521  
522 -(((
523 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
524 -)))
587 +926.3 - SF7BW500 to SF12BW500
525 525  
526 -(((
527 -The command is:
528 -)))
589 +926.9 - SF7BW500 to SF12BW500
529 529  
530 -(((
531 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
532 -)))
591 +927.5 - SF7BW500 to SF12BW500
533 533  
593 +923.3 - SF12BW500(RX2 downlink only)
534 534  
535 -(((
536 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
537 -)))
538 538  
539 539  
540 -(((
541 -Example:
542 -)))
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
543 543  
544 -(((
545 -0x(00): Normal uplink packet.
546 -)))
599 +(% style="color:#037691" %)**Default Uplink channel:**
547 547  
548 -(((
549 -0x(01): Interrupt Uplink Packet.
550 -)))
601 +923.2 - SF7BW125 to SF10BW125
551 551  
603 +923.4 - SF7BW125 to SF10BW125
552 552  
553 553  
554 -=== 2.4.7  ​+5V Output ===
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
555 555  
608 +(OTAA mode, channel added by JoinAccept message)
556 556  
557 -(((
558 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
559 -)))
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
560 560  
612 +922.2 - SF7BW125 to SF10BW125
561 561  
562 -(((
563 -The 5V output time can be controlled by AT Command.
614 +922.4 - SF7BW125 to SF10BW125
564 564  
565 -
566 -)))
616 +922.6 - SF7BW125 to SF10BW125
567 567  
568 -(((
569 -(% style="color:blue" %)**AT+5VT=1000**
618 +922.8 - SF7BW125 to SF10BW125
570 570  
571 -
572 -)))
620 +923.0 - SF7BW125 to SF10BW125
573 573  
574 -(((
575 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
576 -)))
622 +922.0 - SF7BW125 to SF10BW125
577 577  
578 578  
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
579 579  
580 -== 2.5  Downlink Payload ==
627 +923.6 - SF7BW125 to SF10BW125
581 581  
629 +923.8 - SF7BW125 to SF10BW125
582 582  
583 -By default, NDDS75 prints the downlink payload to console port.
631 +924.0 - SF7BW125 to SF10BW125
584 584  
585 -[[image:image-20220709100028-1.png]]
633 +924.2 - SF7BW125 to SF10BW125
586 586  
635 +924.4 - SF7BW125 to SF10BW125
587 587  
588 -(((
589 -(% style="color:blue" %)**Examples:**
590 -)))
637 +924.6 - SF7BW125 to SF10BW125
591 591  
592 -(((
593 -
594 -)))
595 595  
596 -* (((
597 -(% style="color:blue" %)**Set TDC**
598 -)))
640 +(% style="color:#037691" %)** Downlink:**
599 599  
600 -(((
601 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
602 -)))
642 +Uplink channels 1-8 (RX1)
603 603  
604 -(((
605 -Payload:    01 00 00 1E    TDC=30S
606 -)))
644 +923.2 - SF10BW125 (RX2)
607 607  
608 -(((
609 -Payload:    01 00 00 3C    TDC=60S
610 -)))
611 611  
612 -(((
613 -
614 -)))
615 615  
616 -* (((
617 -(% style="color:blue" %)**Reset**
618 -)))
648 +=== 2.7.6 KR920-923 (KR920) ===
619 619  
620 -(((
621 -If payload = 0x04FF, it will reset the NDDS75
622 -)))
650 +Default channel:
623 623  
652 +922.1 - SF7BW125 to SF12BW125
624 624  
625 -* (% style="color:blue" %)**INTMOD**
654 +922.3 - SF7BW125 to SF12BW125
626 626  
627 -(((
628 -Downlink Payload: 06000003, Set AT+INTMOD=3
629 -)))
656 +922.5 - SF7BW125 to SF12BW125
630 630  
631 631  
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
632 632  
633 -== 2. ​LED Indicator ==
661 +922.1 - SF7BW125 to SF12BW125
634 634  
663 +922.3 - SF7BW125 to SF12BW125
635 635  
636 -The NDDS75 has an internal LED which is to show the status of different state.
665 +922.5 - SF7BW125 to SF12BW125
637 637  
667 +922.7 - SF7BW125 to SF12BW125
638 638  
639 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
640 -* Then the LED will be on for 1 second means device is boot normally.
641 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
642 -* For each uplink probe, LED will be on for 500ms.
669 +922.9 - SF7BW125 to SF12BW125
643 643  
644 -(((
645 -
646 -)))
671 +923.1 - SF7BW125 to SF12BW125
647 647  
673 +923.3 - SF7BW125 to SF12BW125
648 648  
649 649  
650 -== 2.7  ​Firmware Change Log ==
676 +(% style="color:#037691" %)**Downlink:**
651 651  
678 +Uplink channels 1-7(RX1)
652 652  
653 -(((
654 -Download URL & Firmware Change log:  [[https:~~/~~/www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0>>https://www.dropbox.com/sh/3hb94r49iszmstx/AADvSJcXxahEUfxqKWVnZx-La?dl=0]]
655 -)))
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
656 656  
657 -(((
658 -
659 -)))
660 660  
661 -(((
662 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
663 -)))
664 664  
684 +=== 2.7.7 IN865-867 (IN865) ===
665 665  
686 +(% style="color:#037691" %)** Uplink:**
666 666  
667 -== 2.8  Battery Analysis ==
688 +865.0625 - SF7BW125 to SF12BW125
668 668  
690 +865.4025 - SF7BW125 to SF12BW125
669 669  
670 -=== 2.8. Battery Type ===
692 +865.9850 - SF7BW125 to SF12BW125
671 671  
672 672  
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
673 673  (((
674 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
675 675  )))
723 +)))
676 676  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
677 677  (((
678 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
679 679  )))
680 680  
681 681  (((
682 -The battery related documents as below:
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
683 683  )))
684 684  
685 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
686 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
687 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
688 688  
738 +== 2.10 ​Firmware Change Log ==
739 +
689 689  (((
690 -[[image:image-20220709101450-2.png]]
741 +**Firmware download link:**
691 691  )))
692 692  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
693 693  
748 +(((
749 +
750 +)))
694 694  
695 -=== 2.8.2  Power consumption Analyze ===
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
696 696  
756 +(((
757 +
758 +)))
697 697  
698 698  (((
699 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +**V1.0.**
700 700  )))
701 701  
764 +(((
765 +Release
766 +)))
702 702  
768 +
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
703 703  (((
704 -Instruction to use as below:
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
705 705  )))
706 706  
707 707  (((
708 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
778 +The battery is designed to last for more than 5 years for the LSN50.
709 709  )))
710 710  
711 -
712 712  (((
713 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
714 714  )))
785 +)))
715 715  
716 716  * (((
717 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
718 718  )))
719 719  * (((
720 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
721 721  )))
722 722  * (((
723 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
724 724  )))
725 725  
726 -(((
727 -And the Life expectation in difference case will be shown on the right.
728 -)))
797 + [[image:image-20220610172436-1.png]]
729 729  
730 -[[image:image-20220709110451-3.png]]
731 731  
732 732  
801 +=== 2.11.2 ​Battery Note ===
733 733  
734 -=== 2.8.3  ​Battery Note ===
735 -
736 -
737 737  (((
738 738  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
739 739  )))
... ... @@ -740,178 +740,302 @@
740 740  
741 741  
742 742  
743 -=== 2.8. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
744 744  
811 +(((
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
813 +)))
745 745  
746 746  (((
747 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
748 748  )))
749 749  
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
750 750  
751 751  
752 -= 3. ​ Access NB-IoT Module =
753 753  
825 += 3. ​Using the AT Commands =
754 754  
755 -(((
756 -Users can directly access the AT command set of the NB-IoT module.
757 -)))
827 +== 3.1 Access AT Commands ==
758 758  
759 -(((
760 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
761 761  
762 -
763 -)))
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
764 764  
765 -[[image:1657333200519-600.png]]
832 +[[image:1654501986557-872.png||height="391" width="800"]]
766 766  
767 767  
835 +Or if you have below board, use below connection:
768 768  
769 -= 4.  Using the AT Commands =
770 770  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
771 771  
772 -== 4.1  Access AT Commands ==
773 773  
774 774  
775 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0>>https://www.dropbox.com/sh/aaq2xcl0bzfu0yd/AAAEAHRa7Io_465ds4Y7-F3aa?dl=0]]
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
776 776  
777 777  
778 -AT+<CMD>?  : Help on <CMD>
845 + [[image:1654502050864-459.png||height="564" width="806"]]
779 779  
780 -AT+<CMD>         : Run <CMD>
781 781  
782 -AT+<CMD>=<value> : Set the value
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
783 783  
784 -AT+<CMD>=?  : Get the value
785 785  
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
786 786  
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
787 787  (% style="color:#037691" %)**General Commands**(%%)      
788 788  
789 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
790 790  
791 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
792 792  
793 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
794 794  
795 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
796 796  
797 -AT+CFG  : Print all configurations
798 798  
799 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
800 800  
801 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
802 802  
803 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
804 804  
805 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
806 806  
807 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
808 808  
809 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
810 810  
811 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
812 812  
813 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
814 814  
815 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
816 816  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
817 817  
818 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
819 819  
820 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
821 821  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
822 822  
823 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
824 824  
825 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
826 826  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
827 827  
828 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
829 829  
830 -AT+CLIENT               : Get or Set MQTT client
831 831  
832 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
833 833  
834 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
835 835  
836 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
837 837  
838 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
839 839  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
840 840  
841 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
842 842  
843 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
844 844  
845 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
846 846  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
847 847  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
850 850  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
851 851  
852 -== 5.1 How to Upgrade Firmware ==
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
853 853  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 854  
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
855 855  (((
856 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
857 857  )))
858 858  
859 859  (((
860 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
861 861  )))
862 862  
863 863  (((
864 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
865 865  )))
866 866  
973 +(((
974 +
975 +)))
867 867  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
868 868  
869 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
870 870  
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
871 871  
872 -== 6.1  ​Connection problem when uploading firmware ==
989 +[[image:image-20220606154726-3.png]]
873 873  
874 874  
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
875 875  (((
876 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
877 877  )))
878 878  
879 -(% class="wikigeneratedid" %)
880 880  (((
881 881  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
882 882  )))
883 883  
1017 +(((
1018 +
1019 +)))
884 884  
885 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
886 886  
1025 +[[image:image-20220606154825-4.png]]
887 887  
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
888 888  (((
889 889  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
890 890  
891 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
892 892  )))
893 893  
894 894  
895 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
896 896  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
897 897  
898 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
899 899  
900 900  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
901 901  (% class="wikigeneratedid" %)
902 902  (((
903 903  
904 904  )))
905 905  
906 -= 8.  Packing Info =
1095 += 7. Packing Info =
907 907  
908 908  (((
909 909  
910 910  
911 911  (% style="color:#037691" %)**Package Includes**:
1101 +)))
912 912  
913 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
914 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
915 915  )))
916 916  
917 917  (((
... ... @@ -918,25 +918,24 @@
918 918  
919 919  
920 920  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
921 921  
922 -* Device Size: 13.0 x 5 x 4.5 cm
923 -* Device Weight: 150g
924 -* Package Size / pcs : 15 x 12x 5.5 cm
925 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
926 926  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
927 927  
928 -(((
929 929  
930 -
931 -
932 -
933 933  )))
934 934  
935 -= 9.  Support =
1128 += 8. Support =
936 936  
937 -
938 938  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
939 939  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
940 -
941 -
942 -
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content