Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 100.2
edited by Xiaoling
on 2022/08/08 16:01
Change comment: There is no comment for this version
To version 45.3
edited by Xiaoling
on 2022/07/08 10:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,72 +1,61 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 -{{toc/}}
11 11  
12 12  
13 13  
14 14  
15 15  
14 +**Table of Contents:**
16 16  
16 +
17 +
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 28  
29 -(((
30 -The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
31 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
32 32  
33 -(((
34 -NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
35 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
36 36  
37 -(((
38 -NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
39 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
40 40  
41 -(((
42 -NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
36 +
43 43  )))
44 44  
45 -(((
46 -To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
47 -)))
48 -)))
39 +[[image:1654503236291-817.png]]
49 49  
50 -
51 -)))
52 52  
53 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
59 59  
60 60  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 -* Ultra low power consumption
62 -* Distance Detection by Ultrasonic technology
63 -* Flat object range 280mm - 7500mm
64 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
65 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
66 66  * AT Commands to change parameters
67 67  * Uplink on periodically
68 68  * Downlink to change configure
69 69  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
70 70  * Micro SIM card slot for NB-IoT SIM
71 71  * 8500mAh Battery for long term use
72 72  
... ... @@ -80,6 +80,7 @@
80 80  * Supply Voltage: 2.1v ~~ 3.6v
81 81  * Operating Temperature: -40 ~~ 85°C
82 82  
72 +
83 83  (% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 85  * - B1 @H-FDD: 2100MHz
... ... @@ -89,796 +89,1029 @@
89 89  * - B20 @H-FDD: 800MHz
90 90  * - B28 @H-FDD: 700MHz
91 91  
92 -(% style="color:#037691" %)**Battery:**
93 93  
94 -* Li/SOCI2 un-chargeable battery
95 -* Capacity: 8500mAh
96 -* Self Discharge: <1% / Year @ 25°C
97 -* Max continuously current: 130mA
98 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
99 99  
100 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
101 101  
102 -* STOP Mode: 10uA @ 3.3v
103 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
104 104  
105 105  
106 106  
107 107  == ​1.4  Applications ==
108 108  
109 -
110 -* Smart Buildings & Home Automation
111 -* Logistics and Supply Chain Management
112 -* Smart Metering
113 113  * Smart Agriculture
114 -* Smart Cities
115 -* Smart Factory
116 116  
117 117  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
118 118  ​
119 119  
120 -
121 121  == 1.5  Pin Definitions ==
122 122  
123 123  
124 -[[image:1657328609906-564.png]]
101 +[[image:1657246476176-652.png]]
125 125  
126 126  
127 127  
128 -= 2.  Use NDDS75 to communicate with IoT Server =
105 += 2.  Use NSE01 to communicate with IoT Server =
129 129  
130 130  == 2.1  How it works ==
131 131  
132 132  
133 133  (((
134 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
135 135  )))
136 136  
137 137  
138 138  (((
139 -The diagram below shows the working flow in default firmware of NDDS75:
116 +The diagram below shows the working flow in default firmware of NSE01:
140 140  )))
141 141  
119 +[[image:image-20220708101605-2.png]]
120 +
142 142  (((
143 143  
144 144  )))
145 145  
146 -[[image:1657328659945-416.png]]
147 147  
148 -(((
149 -
150 -)))
151 151  
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
152 152  
153 -== 2.2 Configure the NDDS75 ==
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
154 154  
155 155  
156 -=== 2.2.1 Test Requirement ===
132 +[[image:1654503992078-669.png]]
157 157  
158 158  
159 -(((
160 -To use NDDS75 in your city, make sure meet below requirements:
161 -)))
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 -* Your local operator has already distributed a NB-IoT Network there.
164 -* The local NB-IoT network used the band that NDDS75 supports.
165 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
167 -(((
168 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server.
169 -)))
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
170 170  
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
171 171  
172 -[[image:1657328756309-230.png]]
142 +[[image:image-20220606163732-6.jpeg]]
173 173  
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
174 174  
146 +**Add APP EUI in the application**
175 175  
176 -=== 2.2.2 Insert SIM card ===
177 177  
149 +[[image:1654504596150-405.png]]
178 178  
179 -(((
180 -Insert the NB-IoT Card get from your provider.
181 -)))
182 182  
183 -(((
184 -User need to take out the NB-IoT module and insert the SIM card like below:
185 -)))
186 186  
153 +**Add APP KEY and DEV EUI**
187 187  
188 -[[image:1657328884227-504.png]]
155 +[[image:1654504683289-357.png]]
189 189  
190 190  
191 191  
192 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
193 193  
194 194  
195 -(((
196 -(((
197 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
198 -)))
199 -)))
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
200 200  
201 -[[image:image-20220709092052-2.png]]
164 +[[image:image-20220606163915-7.png]]
202 202  
203 -**Connection:**
204 204  
205 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
206 206  
207 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169 +[[image:1654504778294-788.png]]
208 208  
209 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
210 210  
211 211  
212 -In the PC, use below serial tool settings:
173 +== 2.3 Uplink Payload ==
213 213  
214 -* Baud:  (% style="color:green" %)**9600**
215 -* Data bits:** (% style="color:green" %)8(%%)**
216 -* Stop bits: (% style="color:green" %)**1**
217 -* Parity:  (% style="color:green" %)**None**
218 -* Flow Control: (% style="color:green" %)**None**
219 219  
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
220 220  (((
221 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
181 +Uplink payload includes in total 11 bytes.
222 222  )))
223 223  
224 -[[image:1657329814315-101.png]]
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
225 225  
226 -(((
227 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
192 +
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
228 228  )))
229 229  
200 +=== 2.3.2 MOD~=1(Original value) ===
230 230  
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
231 231  
232 -=== 2.2.4 Use CoAP protocol to uplink data ===
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
233 233  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
234 234  
235 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]**
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
236 236  
217 +(Optional)
218 +)))
237 237  
220 +=== 2.3.3 Battery Info ===
221 +
238 238  (((
239 -**Use below commands:**
223 +Check the battery voltage for LSE01.
240 240  )))
241 241  
242 -* (((
243 -(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
226 +(((
227 +Ex1: 0x0B45 = 2885mV
244 244  )))
245 -* (((
246 -(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
247 -)))
248 -* (((
249 -(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
250 -)))
251 251  
252 252  (((
253 -For parameter description, please refer to AT command set
231 +Ex2: 0x0B49 = 2889mV
254 254  )))
255 255  
256 -[[image:1657330452568-615.png]]
257 257  
258 258  
236 +=== 2.3.4 Soil Moisture ===
237 +
259 259  (((
260 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
261 261  )))
262 262  
263 -[[image:1657330472797-498.png]]
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
264 264  
246 +(((
247 +
248 +)))
265 265  
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
266 266  
267 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
268 268  
269 269  
270 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
271 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
272 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
256 +=== 2.3.5 Soil Temperature ===
273 273  
274 -[[image:1657330501006-241.png]]
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
275 275  
262 +(((
263 +**Example**:
264 +)))
276 276  
277 -[[image:1657330533775-472.png]]
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
278 278  
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
279 279  
280 280  
281 -=== 2.2.6 Use MQTT protocol to uplink data ===
282 282  
276 +=== 2.3.6 Soil Conductivity (EC) ===
283 283  
284 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
285 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
286 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
287 -* (% style="color:blue" %)**AT+UNAME=UNAME                                **(%%)~/~/Set the username of MQTT
288 -* (% style="color:blue" %)**AT+PWD=PWD                                         **(%%)~/~/Set the password of MQTT
289 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
290 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
291 291  
292 -[[image:1657249978444-674.png]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
293 293  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
294 294  
295 -[[image:1657330723006-866.png]]
290 +(((
291 +
292 +)))
296 296  
297 -
298 298  (((
299 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
295 +
300 300  )))
301 301  
298 +=== 2.3.7 MOD ===
302 302  
300 +Firmware version at least v2.1 supports changing mode.
303 303  
304 -=== 2.2.7 Use TCP protocol to uplink data ===
302 +For example, bytes[10]=90
305 305  
304 +mod=(bytes[10]>>7)&0x01=1.
306 306  
307 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
308 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
309 309  
310 -[[image:image-20220709093918-1.png]]
307 +**Downlink Command:**
311 311  
309 +If payload = 0x0A00, workmode=0
312 312  
313 -[[image:image-20220709093918-2.png]]
311 +If** **payload =** **0x0A01, workmode=1
314 314  
315 315  
316 316  
317 -=== 2.2.8 Change Update Interval ===
315 +=== 2.3.8 ​Decode payload in The Things Network ===
318 318  
317 +While using TTN network, you can add the payload format to decode the payload.
319 319  
320 -User can use below command to change the (% style="color:green" %)**uplink interval**.
321 321  
322 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
320 +[[image:1654505570700-128.png]]
323 323  
324 324  (((
325 -(% style="color:red" %)**NOTE:**
323 +The payload decoder function for TTN is here:
326 326  )))
327 327  
328 328  (((
329 -(% style="color:red" %)**1. By default, the device will send an uplink message every 1 hour.**
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
330 330  )))
331 331  
332 332  
331 +== 2.4 Uplink Interval ==
333 333  
334 -== 2. Uplink Payload ==
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
335 335  
336 336  
337 -In this mode, uplink payload includes in total 14 bytes
338 338  
337 +== 2.5 Downlink Payload ==
339 339  
340 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:440px" %)
341 -|=(% style="width: 60px;" %)(((
342 -**Size(bytes)**
343 -)))|=(% style="width: 60px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 100px;" %)**2**|=(% style="width: 60px;" %)**1**
344 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
339 +By default, LSE50 prints the downlink payload to console port.
345 345  
341 +[[image:image-20220606165544-8.png]]
342 +
343 +
346 346  (((
347 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
345 +(% style="color:blue" %)**Examples:**
348 348  )))
349 349  
348 +(((
349 +
350 +)))
350 350  
351 -[[image:1657331036973-987.png]]
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
352 352  
353 353  (((
354 -The payload is ASCII string, representative same HEX:
357 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
355 355  )))
356 356  
357 357  (((
358 -0x72403155615900640c6c19029200 where:
361 +Payload:    01 00 00 1E    TDC=30S
359 359  )))
360 360  
361 -* (((
362 -Device ID: 0x724031556159 = 724031556159
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
363 363  )))
364 -* (((
365 -Version: 0x0064=100=1.0.0
367 +
368 +(((
369 +
366 366  )))
367 367  
368 368  * (((
369 -BAT: 0x0c6c = 3180 mV = 3.180V
373 +(% style="color:blue" %)**Reset**
370 370  )))
371 -* (((
372 -Signal: 0x19 = 25
375 +
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
373 373  )))
374 -* (((
375 -Distance: 0x0292= 658 mm
376 -)))
377 -* (((
378 -Interrupt: 0x00 = 0
379 379  
380 380  
381 +* (% style="color:blue" %)**CFM**
381 381  
382 -
383 -)))
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
384 384  
385 -== 2.4  Payload Explanation and Sensor Interface ==
386 386  
387 387  
388 -=== 2.4.1  Device ID ===
387 +== 2.6 ​Show Data in DataCake IoT Server ==
389 389  
390 -
391 391  (((
392 -By default, the Device ID equal to the last 6 bytes of IMEI.
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
393 393  )))
394 394  
395 395  (((
396 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
394 +
397 397  )))
398 398  
399 399  (((
400 -**Example:**
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
401 401  )))
402 402  
403 403  (((
404 -AT+DEUI=A84041F15612
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
405 405  )))
406 406  
407 -(((
408 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
409 -)))
410 410  
406 +[[image:1654505857935-743.png]]
411 411  
412 412  
413 -=== 2.4.2  Version Info ===
409 +[[image:1654505874829-548.png]]
414 414  
415 415  
416 -(((
417 -Specify the software version: 0x64=100, means firmware version 1.00.
418 -)))
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
419 419  
420 -(((
421 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
422 -)))
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
423 423  
424 424  
417 +[[image:1654505905236-553.png]]
425 425  
426 -=== 2.4.3  Battery Info ===
427 427  
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
428 428  
429 -(((
430 -Ex1: 0x0B45 = 2885mV
431 -)))
422 +[[image:1654505925508-181.png]]
432 432  
433 -(((
434 -Ex2: 0x0B49 = 2889mV
435 -)))
436 436  
437 437  
426 +== 2.7 Frequency Plans ==
438 438  
439 -=== 2.4.4  Signal Strength ===
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
440 440  
441 441  
442 -(((
443 -NB-IoT Network signal Strength.
444 -)))
431 +=== 2.7.1 EU863-870 (EU868) ===
445 445  
446 -(((
447 -**Ex1: 0x1d = 29**
448 -)))
433 +(% style="color:#037691" %)** Uplink:**
449 449  
450 -(((
451 -(% style="color:blue" %)**0**(%%)  -113dBm or less
452 -)))
435 +868.1 - SF7BW125 to SF12BW125
453 453  
454 -(((
455 -(% style="color:blue" %)**1**(%%)  -111dBm
456 -)))
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
457 457  
458 -(((
459 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
460 -)))
439 +868.5 - SF7BW125 to SF12BW125
461 461  
462 -(((
463 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
464 -)))
441 +867.1 - SF7BW125 to SF12BW125
465 465  
466 -(((
467 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
468 -)))
443 +867.3 - SF7BW125 to SF12BW125
469 469  
445 +867.5 - SF7BW125 to SF12BW125
470 470  
447 +867.7 - SF7BW125 to SF12BW125
471 471  
472 -=== 2.4.5  Distance ===
449 +867.9 - SF7BW125 to SF12BW125
473 473  
451 +868.8 - FSK
474 474  
475 -Get the distance. Flat object range 280mm - 7500mm.
476 476  
477 -(((
478 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
479 -)))
454 +(% style="color:#037691" %)** Downlink:**
480 480  
481 -(((
482 -(((
483 -(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
484 -)))
485 -)))
456 +Uplink channels 1-9 (RX1)
486 486  
487 -(((
488 -
489 -)))
458 +869.525 - SF9BW125 (RX2 downlink only)
490 490  
491 -(((
492 -
493 -)))
494 494  
495 -=== 2.4.6  Digital Interrupt ===
496 496  
462 +=== 2.7.2 US902-928(US915) ===
497 497  
498 -(((
499 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
500 -)))
464 +Used in USA, Canada and South America. Default use CHE=2
501 501  
502 -(((
503 -The command is:
504 -)))
466 +(% style="color:#037691" %)**Uplink:**
505 505  
506 -(((
507 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 -)))
468 +903.9 - SF7BW125 to SF10BW125
509 509  
470 +904.1 - SF7BW125 to SF10BW125
510 510  
511 -(((
512 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 -)))
472 +904.3 - SF7BW125 to SF10BW125
514 514  
474 +904.5 - SF7BW125 to SF10BW125
515 515  
516 -(((
517 -Example:
518 -)))
476 +904.7 - SF7BW125 to SF10BW125
519 519  
520 -(((
521 -0x(00): Normal uplink packet.
522 -)))
478 +904.9 - SF7BW125 to SF10BW125
523 523  
524 -(((
525 -0x(01): Interrupt Uplink Packet.
526 -)))
480 +905.1 - SF7BW125 to SF10BW125
527 527  
482 +905.3 - SF7BW125 to SF10BW125
528 528  
529 529  
530 -=== 2.4.7  ​+5V Output ===
485 +(% style="color:#037691" %)**Downlink:**
531 531  
487 +923.3 - SF7BW500 to SF12BW500
532 532  
533 -(((
534 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
535 -)))
489 +923.9 - SF7BW500 to SF12BW500
536 536  
491 +924.5 - SF7BW500 to SF12BW500
537 537  
538 -(((
539 -The 5V output time can be controlled by AT Command.
540 -)))
493 +925.1 - SF7BW500 to SF12BW500
541 541  
542 -(((
543 -(% style="color:blue" %)**AT+5VT=1000**
544 -)))
495 +925.7 - SF7BW500 to SF12BW500
545 545  
546 -(((
547 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 -)))
497 +926.3 - SF7BW500 to SF12BW500
549 549  
499 +926.9 - SF7BW500 to SF12BW500
550 550  
501 +927.5 - SF7BW500 to SF12BW500
551 551  
552 -== 2.5  Downlink Payload ==
503 +923.3 - SF12BW500(RX2 downlink only)
553 553  
554 554  
555 -By default, NDDS75 prints the downlink payload to console port.
556 556  
557 -[[image:image-20220709100028-1.png]]
507 +=== 2.7.3 CN470-510 (CN470) ===
558 558  
509 +Used in China, Default use CHE=1
559 559  
560 -(((
561 -(% style="color:blue" %)**Examples:**
562 -)))
511 +(% style="color:#037691" %)**Uplink:**
563 563  
564 -(((
565 -
566 -)))
513 +486.3 - SF7BW125 to SF12BW125
567 567  
568 -* (((
569 -(% style="color:blue" %)**Set TDC**
570 -)))
515 +486.5 - SF7BW125 to SF12BW125
571 571  
572 -(((
573 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
574 -)))
517 +486.7 - SF7BW125 to SF12BW125
575 575  
576 -(((
577 -Payload:    01 00 00 1E    TDC=30S
578 -)))
519 +486.9 - SF7BW125 to SF12BW125
579 579  
580 -(((
581 -Payload:    01 00 00 3C    TDC=60S
582 -)))
521 +487.1 - SF7BW125 to SF12BW125
583 583  
584 -(((
585 -
586 -)))
523 +487.3 - SF7BW125 to SF12BW125
587 587  
588 -* (((
589 -(% style="color:blue" %)**Reset**
590 -)))
525 +487.5 - SF7BW125 to SF12BW125
591 591  
592 -(((
593 -If payload = 0x04FF, it will reset the NDDS75
594 -)))
527 +487.7 - SF7BW125 to SF12BW125
595 595  
596 596  
597 -* (% style="color:blue" %)**INTMOD**
530 +(% style="color:#037691" %)**Downlink:**
598 598  
599 -(((
600 -Downlink Payload: 06000003, Set AT+INTMOD=3
601 -)))
532 +506.7 - SF7BW125 to SF12BW125
602 602  
534 +506.9 - SF7BW125 to SF12BW125
603 603  
536 +507.1 - SF7BW125 to SF12BW125
604 604  
605 -== 2. ​LED Indicator ==
538 +507.3 - SF7BW125 to SF12BW125
606 606  
540 +507.5 - SF7BW125 to SF12BW125
607 607  
608 -The NDDS75 has an internal LED which is to show the status of different state.
542 +507.7 - SF7BW125 to SF12BW125
609 609  
544 +507.9 - SF7BW125 to SF12BW125
610 610  
611 -* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
612 -* Then the LED will be on for 1 second means device is boot normally.
613 -* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
614 -* For each uplink probe, LED will be on for 500ms.
546 +508.1 - SF7BW125 to SF12BW125
615 615  
616 -(((
617 -
618 -)))
548 +505.3 - SF12BW125 (RX2 downlink only)
619 619  
620 620  
621 621  
622 -== 2.7  ​Firmware Change Log ==
552 +=== 2.7.4 AU915-928(AU915) ===
623 623  
554 +Default use CHE=2
624 624  
625 -(((
626 -Download URL & Firmware Change log
627 -)))
556 +(% style="color:#037691" %)**Uplink:**
628 628  
629 -(((
630 -[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
631 -)))
558 +916.8 - SF7BW125 to SF12BW125
632 632  
560 +917.0 - SF7BW125 to SF12BW125
633 633  
634 -(((
635 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
636 -)))
562 +917.2 - SF7BW125 to SF12BW125
637 637  
564 +917.4 - SF7BW125 to SF12BW125
638 638  
566 +917.6 - SF7BW125 to SF12BW125
639 639  
640 -== 2.8  Battery Analysis ==
568 +917.8 - SF7BW125 to SF12BW125
641 641  
642 -=== 2.8. Battery Type ===
570 +918.0 - SF7BW125 to SF12BW125
643 643  
572 +918.2 - SF7BW125 to SF12BW125
644 644  
574 +
575 +(% style="color:#037691" %)**Downlink:**
576 +
577 +923.3 - SF7BW500 to SF12BW500
578 +
579 +923.9 - SF7BW500 to SF12BW500
580 +
581 +924.5 - SF7BW500 to SF12BW500
582 +
583 +925.1 - SF7BW500 to SF12BW500
584 +
585 +925.7 - SF7BW500 to SF12BW500
586 +
587 +926.3 - SF7BW500 to SF12BW500
588 +
589 +926.9 - SF7BW500 to SF12BW500
590 +
591 +927.5 - SF7BW500 to SF12BW500
592 +
593 +923.3 - SF12BW500(RX2 downlink only)
594 +
595 +
596 +
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
598 +
599 +(% style="color:#037691" %)**Default Uplink channel:**
600 +
601 +923.2 - SF7BW125 to SF10BW125
602 +
603 +923.4 - SF7BW125 to SF10BW125
604 +
605 +
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
607 +
608 +(OTAA mode, channel added by JoinAccept message)
609 +
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 +
612 +922.2 - SF7BW125 to SF10BW125
613 +
614 +922.4 - SF7BW125 to SF10BW125
615 +
616 +922.6 - SF7BW125 to SF10BW125
617 +
618 +922.8 - SF7BW125 to SF10BW125
619 +
620 +923.0 - SF7BW125 to SF10BW125
621 +
622 +922.0 - SF7BW125 to SF10BW125
623 +
624 +
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
626 +
627 +923.6 - SF7BW125 to SF10BW125
628 +
629 +923.8 - SF7BW125 to SF10BW125
630 +
631 +924.0 - SF7BW125 to SF10BW125
632 +
633 +924.2 - SF7BW125 to SF10BW125
634 +
635 +924.4 - SF7BW125 to SF10BW125
636 +
637 +924.6 - SF7BW125 to SF10BW125
638 +
639 +
640 +(% style="color:#037691" %)** Downlink:**
641 +
642 +Uplink channels 1-8 (RX1)
643 +
644 +923.2 - SF10BW125 (RX2)
645 +
646 +
647 +
648 +=== 2.7.6 KR920-923 (KR920) ===
649 +
650 +Default channel:
651 +
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
645 645  (((
646 -The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 647  )))
723 +)))
648 648  
725 +
726 +
727 +[[image:1654506665940-119.png]]
728 +
649 649  (((
650 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
651 651  )))
652 652  
653 653  (((
654 -The battery related documents as below:
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
655 655  )))
656 656  
657 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
659 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 660  
738 +== 2.10 ​Firmware Change Log ==
739 +
661 661  (((
662 -[[image:image-20220709101450-2.png]]
741 +**Firmware download link:**
663 663  )))
664 664  
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
665 665  
748 +(((
749 +
750 +)))
666 666  
667 -=== 2.8.2  Power consumption Analyze ===
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
668 668  
756 +(((
757 +
758 +)))
669 669  
670 670  (((
671 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +**V1.0.**
672 672  )))
673 673  
764 +(((
765 +Release
766 +)))
674 674  
768 +
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
675 675  (((
676 -Instruction to use as below:
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 677  )))
678 678  
679 679  (((
680 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
778 +The battery is designed to last for more than 5 years for the LSN50.
681 681  )))
682 682  
683 -
684 684  (((
685 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
686 686  )))
785 +)))
687 687  
688 688  * (((
689 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
690 690  )))
691 691  * (((
692 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
693 693  )))
694 694  * (((
695 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
696 696  )))
697 697  
797 + [[image:image-20220610172436-1.png]]
798 +
799 +
800 +
801 +=== 2.11.2 ​Battery Note ===
802 +
698 698  (((
699 -And the Life expectation in difference case will be shown on the right.
804 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
700 700  )))
701 701  
702 -[[image:image-20220709110451-3.png]]
703 703  
704 704  
809 +=== 2.11.3 Replace the battery ===
705 705  
706 -=== 2.8.3  ​Battery Note ===
811 +(((
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
813 +)))
707 707  
815 +(((
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
817 +)))
708 708  
709 709  (((
710 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
711 711  )))
712 712  
713 713  
714 714  
715 -=== 2.8.4  Replace the battery ===
825 += 3. ​Using the AT Commands =
716 716  
827 +== 3.1 Access AT Commands ==
717 717  
718 -(((
719 -The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
720 -)))
721 721  
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
722 722  
832 +[[image:1654501986557-872.png||height="391" width="800"]]
723 723  
724 -= 3. ​ Access NB-IoT Module =
725 725  
835 +Or if you have below board, use below connection:
726 726  
727 -(((
728 -Users can directly access the AT command set of the NB-IoT module.
729 -)))
730 730  
731 -(((
732 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
733 -)))
838 +[[image:1654502005655-729.png||height="503" width="801"]]
734 734  
735 -[[image:1657333200519-600.png]]
736 736  
737 737  
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
738 738  
739 -= 4.  Using the AT Commands =
740 740  
741 -== 4.1  Access AT Commands ==
845 + [[image:1654502050864-459.png||height="564" width="806"]]
742 742  
743 743  
744 -See this link for detail[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
745 745  
746 746  
747 -AT+<CMD>?  : Help on <CMD>
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
748 748  
749 -AT+<CMD>         : Run <CMD>
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
750 750  
751 -AT+<CMD>=<value> : Set the value
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
752 752  
753 -AT+<CMD>=?  : Get the value
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
754 754  
755 755  
756 756  (% style="color:#037691" %)**General Commands**(%%)      
757 757  
758 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
759 759  
760 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
761 761  
762 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
763 763  
764 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
765 765  
766 -AT+CFG  : Print all configurations
767 767  
768 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
769 769  
770 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
771 771  
772 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
773 773  
774 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
775 775  
776 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
777 777  
778 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
779 779  
780 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
781 781  
782 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
783 783  
784 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
785 785  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
786 786  
787 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
788 788  
789 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
790 790  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
791 791  
792 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
793 793  
794 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
795 795  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
796 796  
797 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
798 798  
799 -AT+CLIENT               : Get or Set MQTT client
800 800  
801 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
802 802  
803 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
804 804  
805 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
806 806  
807 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
808 808  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
809 809  
810 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
811 811  
812 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
813 813  
814 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
815 815  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
816 816  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
817 817  
818 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
819 819  
820 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
821 821  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
822 822  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
823 823  (((
824 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
825 825  )))
826 826  
827 827  (((
828 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
829 829  )))
830 830  
831 831  (((
832 -(% style="color:red" %)**Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.**
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
833 833  )))
834 834  
973 +(((
974 +
975 +)))
835 835  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
836 836  
837 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
838 838  
839 -== 6.1  ​Connection problem when uploading firmware ==
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
840 840  
989 +[[image:image-20220606154726-3.png]]
841 841  
991 +
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
842 842  (((
843 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
844 844  )))
845 845  
846 -(% class="wikigeneratedid" %)
847 847  (((
848 848  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
849 849  )))
850 850  
1017 +(((
1018 +
1019 +)))
851 851  
852 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
853 853  
1025 +[[image:image-20220606154825-4.png]]
854 854  
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
855 855  (((
856 856  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
857 857  
858 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
859 859  )))
860 860  
861 861  
862 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
863 863  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
864 864  
865 -Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
866 866  
867 867  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
868 868  (% class="wikigeneratedid" %)
869 869  (((
870 870  
871 871  )))
872 872  
873 -= 8.  Packing Info =
1095 += 7. Packing Info =
874 874  
875 875  (((
876 876  
877 877  
878 878  (% style="color:#037691" %)**Package Includes**:
1101 +)))
879 879  
880 -* NDDS75 NB-IoT Distance Detect Sensor Node x 1
881 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
882 882  )))
883 883  
884 884  (((
... ... @@ -885,22 +885,24 @@
885 885  
886 886  
887 887  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
888 888  
889 -* Device Size: 13.0 x 5 x 4.5 cm
890 -* Device Weight: 150g
891 -* Package Size / pcs : 15 x 12x 5.5 cm
892 -* Weight / pcs : 220g
1113 +* (((
1114 +Device Size: cm
893 893  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
894 894  
895 -(((
896 896  
897 -
898 -
899 -
900 900  )))
901 901  
902 -= 9.  Support =
1128 += 8. Support =
903 903  
904 -
905 905  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
906 906  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -611.5 KB
Content