Version 63.1 by Xiaoling on 2022/07/08 14:18

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202 For parameter description, please refer to AT command set
203
204 [[image:1657249793983-486.png]]
205
206
207 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208
209 [[image:1657249831934-534.png]]
210
211
212
213 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214
215 This feature is supported since firmware version v1.0.1
216
217
218 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221
222 [[image:1657249864775-321.png]]
223
224
225 [[image:1657249930215-289.png]]
226
227
228
229 === 2.2.6 Use MQTT protocol to uplink data ===
230
231 This feature is supported since firmware version v110
232
233
234 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241
242 [[image:1657249978444-674.png]]
243
244
245 [[image:1657249990869-686.png]]
246
247
248 (((
249 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 )))
251
252
253
254 === 2.2.7 Use TCP protocol to uplink data ===
255
256 This feature is supported since firmware version v110
257
258
259 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261
262 [[image:1657250217799-140.png]]
263
264
265 [[image:1657250255956-604.png]]
266
267
268
269 === 2.2.8 Change Update Interval ===
270
271 User can use below command to change the (% style="color:green" %)**uplink interval**.
272
273 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274
275 (((
276 (% style="color:red" %)**NOTE:**
277 )))
278
279 (((
280 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 )))
282
283
284
285 == 2.3  Uplink Payload ==
286
287 In this mode, uplink payload includes in total 18 bytes
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 50px;" %)(((
291 **Size(bytes)**
292 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294
295 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296
297
298 [[image:image-20220708111918-4.png]]
299
300
301 The payload is ASCII string, representative same HEX:
302
303 0x72403155615900640c7817075e0a8c02f900 where:
304
305 * Device ID: 0x 724031556159 = 724031556159
306 * Version: 0x0064=100=1.0.0
307
308 * BAT: 0x0c78 = 3192 mV = 3.192V
309 * Singal: 0x17 = 23
310 * Soil Moisture: 0x075e= 1886 = 18.86  %
311 * Soil Temperature:0x0a8c =2700=27 °C
312 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 * Interrupt: 0x00 = 0
314
315 == 2.4  Payload Explanation and Sensor Interface ==
316
317
318 === 2.4.1  Device ID ===
319
320 By default, the Device ID equal to the last 6 bytes of IMEI.
321
322 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
323
324 **Example:**
325
326 AT+DEUI=A84041F15612
327
328 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
329
330
331
332 === 2.4.2  Version Info ===
333
334 Specify the software version: 0x64=100, means firmware version 1.00.
335
336 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
337
338
339
340 === 2.4.3  Battery Info ===
341
342 (((
343 Check the battery voltage for LSE01.
344 )))
345
346 (((
347 Ex1: 0x0B45 = 2885mV
348 )))
349
350 (((
351 Ex2: 0x0B49 = 2889mV
352 )))
353
354
355
356 === 2.4.4  Signal Strength ===
357
358 NB-IoT Network signal Strength.
359
360 **Ex1: 0x1d = 29**
361
362 (% style="color:blue" %)**0**(%%)  -113dBm or less
363
364 (% style="color:blue" %)**1**(%%)  -111dBm
365
366 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
367
368 (% style="color:blue" %)**31**  (%%) -51dBm or greater
369
370 (% style="color:blue" %)**99**   (%%) Not known or not detectable
371
372
373
374 === 2.4.5  Soil Moisture ===
375
376 (((
377 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 )))
379
380 (((
381 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 )))
383
384 (((
385
386 )))
387
388 (((
389 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 )))
391
392
393
394 === 2.4.6  Soil Temperature ===
395
396 (((
397 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 )))
399
400 (((
401 **Example**:
402 )))
403
404 (((
405 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 )))
407
408 (((
409 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 )))
411
412
413
414 === 2.4.7  Soil Conductivity (EC) ===
415
416 (((
417 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 )))
419
420 (((
421 For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 )))
423
424 (((
425 Generally, the EC value of irrigation water is less than 800uS / cm.
426 )))
427
428 (((
429
430 )))
431
432 (((
433
434 )))
435
436 === 2.4.8  Digital Interrupt ===
437
438 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
439
440 The command is:
441
442 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
443
444
445 The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
446
447
448 Example:
449
450 0x(00): Normal uplink packet.
451
452 0x(01): Interrupt Uplink Packet.
453
454
455
456 === 2.4.9  ​+5V Output ===
457
458 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
459
460
461 The 5V output time can be controlled by AT Command.
462
463 (% style="color:blue" %)**AT+5VT=1000**
464
465 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
466
467
468
469 == 2.5  Downlink Payload ==
470
471 By default, NSE01 prints the downlink payload to console port.
472
473 [[image:image-20220708133731-5.png]]
474
475
476
477 (((
478 (% style="color:blue" %)**Examples:**
479 )))
480
481 (((
482
483 )))
484
485 * (((
486 (% style="color:blue" %)**Set TDC**
487 )))
488
489 (((
490 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 )))
492
493 (((
494 Payload:    01 00 00 1E    TDC=30S
495 )))
496
497 (((
498 Payload:    01 00 00 3C    TDC=60S
499 )))
500
501 (((
502
503 )))
504
505 * (((
506 (% style="color:blue" %)**Reset**
507 )))
508
509 (((
510 If payload = 0x04FF, it will reset the NSE01
511 )))
512
513
514 * (% style="color:blue" %)**INTMOD**
515
516 Downlink Payload: 06000003, Set AT+INTMOD=3
517
518
519
520 == 2.6  ​LED Indicator ==
521
522 (((
523 The NSE01 has an internal LED which is to show the status of different state.
524
525
526 * When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 * Then the LED will be on for 1 second means device is boot normally.
528 * After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 * For each uplink probe, LED will be on for 500ms.
530 )))
531
532
533
534
535 == 2.7  Installation in Soil ==
536
537 __**Measurement the soil surface**__
538
539 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
540
541 [[image:1657259653666-883.png]] ​
542
543
544 (((
545
546
547 (((
548 Dig a hole with diameter > 20CM.
549 )))
550
551 (((
552 Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 )))
554 )))
555
556 [[image:1654506665940-119.png]]
557
558 (((
559
560 )))
561
562
563 == 2.8  ​Firmware Change Log ==
564
565
566 Download URL & Firmware Change log
567
568 [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
569
570
571 Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
572
573
574
575 == 2.9  ​Battery Analysis ==
576
577 === 2.9.1  ​Battery Type ===
578
579
580 The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
581
582
583 The battery is designed to last for several years depends on the actually use environment and update interval. 
584
585
586 The battery related documents as below:
587
588 * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 * [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591
592 (((
593 [[image:image-20220708140453-6.png]]
594 )))
595
596
597
598 === 2.9.2  Power consumption Analyze ===
599
600 (((
601 Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
602 )))
603
604
605 (((
606 Instruction to use as below:
607 )))
608
609 (((
610 (% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
611 )))
612
613
614 (((
615 (% style="color:blue" %)**Step 2: **(%%) Open it and choose
616 )))
617
618 * (((
619 Product Model
620 )))
621 * (((
622 Uplink Interval
623 )))
624 * (((
625 Working Mode
626 )))
627
628 (((
629 And the Life expectation in difference case will be shown on the right.
630 )))
631
632 [[image:image-20220708141352-7.jpeg]]
633
634
635
636 === 2.9.3  ​Battery Note ===
637
638 (((
639 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
640 )))
641
642
643
644 === 2.9.4  Replace the battery ===
645
646 (((
647 The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
648 )))
649
650
651
652 = 3. ​Using the AT Commands =
653
654 == 3.1 Access AT Commands ==
655
656
657 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
658
659 [[image:1654501986557-872.png||height="391" width="800"]]
660
661
662 Or if you have below board, use below connection:
663
664
665 [[image:1654502005655-729.png||height="503" width="801"]]
666
667
668
669 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
670
671
672 [[image:1654502050864-459.png||height="564" width="806"]]
673
674
675 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
676
677
678 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
679
680 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
681
682 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
683
684 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
685
686
687 (% style="color:#037691" %)**General Commands**(%%)      
688
689 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
690
691 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
692
693 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
694
695 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
696
697
698 (% style="color:#037691" %)**Keys, IDs and EUIs management**
699
700 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
701
702 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
703
704 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
705
706 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
707
708 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
709
710 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
711
712 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
713
714 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
715
716 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
717
718 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
719
720 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
721
722 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
723
724 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
725
726 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
727
728 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
729
730 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731
732
733 (% style="color:#037691" %)**LoRa Network Management**
734
735 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
736
737 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
738
739 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
740
741 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
742
743 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744
745 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746
747 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748
749 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
750
751 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
752
753 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754
755 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756
757 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
758
759 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
760
761 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
762
763 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
764
765
766 (% style="color:#037691" %)**Information** 
767
768 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
769
770 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
771
772 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
773
774 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
775
776 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
777
778 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
779
780 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
781
782
783 = ​4. FAQ =
784
785 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
786
787 (((
788 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
789 When downloading the images, choose the required image file for download. ​
790 )))
791
792 (((
793
794 )))
795
796 (((
797 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
798 )))
799
800 (((
801
802 )))
803
804 (((
805 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
806 )))
807
808 (((
809
810 )))
811
812 (((
813 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
814 )))
815
816 [[image:image-20220606154726-3.png]]
817
818
819 When you use the TTN network, the US915 frequency bands use are:
820
821 * 903.9 - SF7BW125 to SF10BW125
822 * 904.1 - SF7BW125 to SF10BW125
823 * 904.3 - SF7BW125 to SF10BW125
824 * 904.5 - SF7BW125 to SF10BW125
825 * 904.7 - SF7BW125 to SF10BW125
826 * 904.9 - SF7BW125 to SF10BW125
827 * 905.1 - SF7BW125 to SF10BW125
828 * 905.3 - SF7BW125 to SF10BW125
829 * 904.6 - SF8BW500
830
831 (((
832 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
833
834 * (% style="color:#037691" %)**AT+CHE=2**
835 * (% style="color:#037691" %)**ATZ**
836 )))
837
838 (((
839
840
841 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
842 )))
843
844 (((
845
846 )))
847
848 (((
849 The **AU915** band is similar. Below are the AU915 Uplink Channels.
850 )))
851
852 [[image:image-20220606154825-4.png]]
853
854
855 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
856
857 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
858
859
860 = 5. Trouble Shooting =
861
862 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
863
864 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
865
866
867 == 5.2 AT Command input doesn't work ==
868
869 (((
870 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
871 )))
872
873
874 == 5.3 Device rejoin in at the second uplink packet ==
875
876 (% style="color:#4f81bd" %)**Issue describe as below:**
877
878 [[image:1654500909990-784.png]]
879
880
881 (% style="color:#4f81bd" %)**Cause for this issue:**
882
883 (((
884 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
885 )))
886
887
888 (% style="color:#4f81bd" %)**Solution: **
889
890 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
891
892 [[image:1654500929571-736.png||height="458" width="832"]]
893
894
895 = 6. ​Order Info =
896
897
898 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
899
900
901 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
902
903 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
904 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
905 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
906 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
907 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
908 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
909 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
910 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
911
912 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
913
914 * (% style="color:red" %)**4**(%%): 4000mAh battery
915 * (% style="color:red" %)**8**(%%): 8500mAh battery
916
917 (% class="wikigeneratedid" %)
918 (((
919
920 )))
921
922 = 7. Packing Info =
923
924 (((
925
926
927 (% style="color:#037691" %)**Package Includes**:
928 )))
929
930 * (((
931 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
932 )))
933
934 (((
935
936
937 (% style="color:#037691" %)**Dimension and weight**:
938 )))
939
940 * (((
941 Device Size: cm
942 )))
943 * (((
944 Device Weight: g
945 )))
946 * (((
947 Package Size / pcs : cm
948 )))
949 * (((
950 Weight / pcs : g
951
952
953 )))
954
955 = 8. Support =
956
957 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
958 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]