Version 57.7 by Xiaoling on 2022/07/08 11:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202 For parameter description, please refer to AT command set
203
204 [[image:1657249793983-486.png]]
205
206
207 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208
209 [[image:1657249831934-534.png]]
210
211
212
213 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214
215 This feature is supported since firmware version v1.0.1
216
217
218 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221
222 [[image:1657249864775-321.png]]
223
224
225 [[image:1657249930215-289.png]]
226
227
228
229 === 2.2.6 Use MQTT protocol to uplink data ===
230
231 This feature is supported since firmware version v110
232
233
234 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241
242 [[image:1657249978444-674.png]]
243
244
245 [[image:1657249990869-686.png]]
246
247
248 (((
249 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 )))
251
252
253
254 === 2.2.7 Use TCP protocol to uplink data ===
255
256 This feature is supported since firmware version v110
257
258
259 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261
262 [[image:1657250217799-140.png]]
263
264
265 [[image:1657250255956-604.png]]
266
267
268
269 === 2.2.8 Change Update Interval ===
270
271 User can use below command to change the (% style="color:green" %)**uplink interval**.
272
273 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274
275 (((
276 (% style="color:red" %)**NOTE:**
277 )))
278
279 (((
280 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 )))
282
283
284
285 == 2.3  Uplink Payload ==
286
287 In this mode, uplink payload includes in total 18 bytes
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 50px;" %)(((
291 **Size(bytes)**
292 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294
295 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296
297
298 [[image:image-20220708111918-4.png]]
299
300
301 The payload is ASCII string, representative same HEX:
302
303 0x72403155615900640c7817075e0a8c02f900 where:
304
305 * Device ID: 0x 724031556159 = 724031556159
306 * Version: 0x0064=100=1.0.0
307
308 * BAT: 0x0c78 = 3192 mV = 3.192V
309 * Singal: 0x17 = 23
310 * Soil Moisture: 0x075e= 1886 = 18.86  %
311 * Soil Temperature:0x0a8c =2700=27 °C
312 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 * Interrupt: 0x00 = 0
314
315
316
317 == 2.4  Payload Explanation and Sensor Interface ==
318
319
320 === 2.4.1  Device ID ===
321
322 By default, the Device ID equal to the last 6 bytes of IMEI.
323
324 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
325
326 **Example:**
327
328 AT+DEUI=A84041F15612
329
330 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
331
332
333
334 === 2.4.2  Version Info ===
335
336 Specify the software version: 0x64=100, means firmware version 1.00.
337
338 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
339
340
341
342 === 2.4.3  Battery Info ===
343
344 (((
345 Check the battery voltage for LSE01.
346 )))
347
348 (((
349 Ex1: 0x0B45 = 2885mV
350 )))
351
352 (((
353 Ex2: 0x0B49 = 2889mV
354 )))
355
356
357
358 === 2.4.4  Signal Strength ===
359
360 NB-IoT Network signal Strength.
361
362 **Ex1: 0x1d = 29**
363
364 (% style="color:blue" %)**0**(%%)  -113dBm or less
365
366 (% style="color:blue" %)**1**(%%)  -111dBm
367
368 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
369
370 (% style="color:blue" %)**31**  (%%) -51dBm or greater
371
372 (% style="color:blue" %)**99**   (%%) Not known or not detectable
373
374
375
376 === 2.4.5  Soil Moisture ===
377
378 (((
379 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
380 )))
381
382 (((
383 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
384 )))
385
386 (((
387
388 )))
389
390 (((
391 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
392 )))
393
394
395
396 === 2.4.6  Soil Temperature ===
397
398 (((
399 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
400 )))
401
402 (((
403 **Example**:
404 )))
405
406 (((
407 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
408 )))
409
410 (((
411 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
412 )))
413
414
415
416 === 2.4.7  Soil Conductivity (EC) ===
417
418 (((
419 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
420 )))
421
422 (((
423 For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
424 )))
425
426 (((
427 Generally, the EC value of irrigation water is less than 800uS / cm.
428 )))
429
430 (((
431
432 )))
433
434 (((
435
436 )))
437
438 === 2.4.8  Digital Interrupt ===
439
440 Digital Interrupt refers to pin **(% style="color:blue" %)GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
441
442 The command is:
443
444 **(% style="color:blue" %)AT+INTMOD=3 **(%%)   ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]]**).**
445
446
447 The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
448
449
450 Example:
451
452 0x(00): Normal uplink packet.
453
454 0x(01): Interrupt Uplink Packet.
455
456
457
458
459 === 2.4.9  ​+5V Output ===
460
461
462 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
463
464
465 The 5V output time can be controlled by AT Command.
466
467 (% style="color:blue" %)**AT+5VT=1000**
468
469 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
470
471
472
473 == 2.4 Uplink Interval ==
474
475 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
476
477
478
479 == 2.5 Downlink Payload ==
480
481 By default, LSE50 prints the downlink payload to console port.
482
483 [[image:image-20220606165544-8.png]]
484
485
486 (((
487 (% style="color:blue" %)**Examples:**
488 )))
489
490 (((
491
492 )))
493
494 * (((
495 (% style="color:blue" %)**Set TDC**
496 )))
497
498 (((
499 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
500 )))
501
502 (((
503 Payload:    01 00 00 1E    TDC=30S
504 )))
505
506 (((
507 Payload:    01 00 00 3C    TDC=60S
508 )))
509
510 (((
511
512 )))
513
514 * (((
515 (% style="color:blue" %)**Reset**
516 )))
517
518 (((
519 If payload = 0x04FF, it will reset the LSE01
520 )))
521
522
523 * (% style="color:blue" %)**CFM**
524
525 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
526
527
528
529 == 2.6 ​Show Data in DataCake IoT Server ==
530
531 (((
532 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
533 )))
534
535 (((
536
537 )))
538
539 (((
540 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
541 )))
542
543 (((
544 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
545 )))
546
547
548 [[image:1654505857935-743.png]]
549
550
551 [[image:1654505874829-548.png]]
552
553
554 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
555
556 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
557
558
559 [[image:1654505905236-553.png]]
560
561
562 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
563
564 [[image:1654505925508-181.png]]
565
566
567
568 == 2.7 Frequency Plans ==
569
570 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
571
572
573 === 2.7.1 EU863-870 (EU868) ===
574
575 (% style="color:#037691" %)** Uplink:**
576
577 868.1 - SF7BW125 to SF12BW125
578
579 868.3 - SF7BW125 to SF12BW125 and SF7BW250
580
581 868.5 - SF7BW125 to SF12BW125
582
583 867.1 - SF7BW125 to SF12BW125
584
585 867.3 - SF7BW125 to SF12BW125
586
587 867.5 - SF7BW125 to SF12BW125
588
589 867.7 - SF7BW125 to SF12BW125
590
591 867.9 - SF7BW125 to SF12BW125
592
593 868.8 - FSK
594
595
596 (% style="color:#037691" %)** Downlink:**
597
598 Uplink channels 1-9 (RX1)
599
600 869.525 - SF9BW125 (RX2 downlink only)
601
602
603
604 === 2.7.2 US902-928(US915) ===
605
606 Used in USA, Canada and South America. Default use CHE=2
607
608 (% style="color:#037691" %)**Uplink:**
609
610 903.9 - SF7BW125 to SF10BW125
611
612 904.1 - SF7BW125 to SF10BW125
613
614 904.3 - SF7BW125 to SF10BW125
615
616 904.5 - SF7BW125 to SF10BW125
617
618 904.7 - SF7BW125 to SF10BW125
619
620 904.9 - SF7BW125 to SF10BW125
621
622 905.1 - SF7BW125 to SF10BW125
623
624 905.3 - SF7BW125 to SF10BW125
625
626
627 (% style="color:#037691" %)**Downlink:**
628
629 923.3 - SF7BW500 to SF12BW500
630
631 923.9 - SF7BW500 to SF12BW500
632
633 924.5 - SF7BW500 to SF12BW500
634
635 925.1 - SF7BW500 to SF12BW500
636
637 925.7 - SF7BW500 to SF12BW500
638
639 926.3 - SF7BW500 to SF12BW500
640
641 926.9 - SF7BW500 to SF12BW500
642
643 927.5 - SF7BW500 to SF12BW500
644
645 923.3 - SF12BW500(RX2 downlink only)
646
647
648
649 === 2.7.3 CN470-510 (CN470) ===
650
651 Used in China, Default use CHE=1
652
653 (% style="color:#037691" %)**Uplink:**
654
655 486.3 - SF7BW125 to SF12BW125
656
657 486.5 - SF7BW125 to SF12BW125
658
659 486.7 - SF7BW125 to SF12BW125
660
661 486.9 - SF7BW125 to SF12BW125
662
663 487.1 - SF7BW125 to SF12BW125
664
665 487.3 - SF7BW125 to SF12BW125
666
667 487.5 - SF7BW125 to SF12BW125
668
669 487.7 - SF7BW125 to SF12BW125
670
671
672 (% style="color:#037691" %)**Downlink:**
673
674 506.7 - SF7BW125 to SF12BW125
675
676 506.9 - SF7BW125 to SF12BW125
677
678 507.1 - SF7BW125 to SF12BW125
679
680 507.3 - SF7BW125 to SF12BW125
681
682 507.5 - SF7BW125 to SF12BW125
683
684 507.7 - SF7BW125 to SF12BW125
685
686 507.9 - SF7BW125 to SF12BW125
687
688 508.1 - SF7BW125 to SF12BW125
689
690 505.3 - SF12BW125 (RX2 downlink only)
691
692
693
694 === 2.7.4 AU915-928(AU915) ===
695
696 Default use CHE=2
697
698 (% style="color:#037691" %)**Uplink:**
699
700 916.8 - SF7BW125 to SF12BW125
701
702 917.0 - SF7BW125 to SF12BW125
703
704 917.2 - SF7BW125 to SF12BW125
705
706 917.4 - SF7BW125 to SF12BW125
707
708 917.6 - SF7BW125 to SF12BW125
709
710 917.8 - SF7BW125 to SF12BW125
711
712 918.0 - SF7BW125 to SF12BW125
713
714 918.2 - SF7BW125 to SF12BW125
715
716
717 (% style="color:#037691" %)**Downlink:**
718
719 923.3 - SF7BW500 to SF12BW500
720
721 923.9 - SF7BW500 to SF12BW500
722
723 924.5 - SF7BW500 to SF12BW500
724
725 925.1 - SF7BW500 to SF12BW500
726
727 925.7 - SF7BW500 to SF12BW500
728
729 926.3 - SF7BW500 to SF12BW500
730
731 926.9 - SF7BW500 to SF12BW500
732
733 927.5 - SF7BW500 to SF12BW500
734
735 923.3 - SF12BW500(RX2 downlink only)
736
737
738
739 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
740
741 (% style="color:#037691" %)**Default Uplink channel:**
742
743 923.2 - SF7BW125 to SF10BW125
744
745 923.4 - SF7BW125 to SF10BW125
746
747
748 (% style="color:#037691" %)**Additional Uplink Channel**:
749
750 (OTAA mode, channel added by JoinAccept message)
751
752 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
753
754 922.2 - SF7BW125 to SF10BW125
755
756 922.4 - SF7BW125 to SF10BW125
757
758 922.6 - SF7BW125 to SF10BW125
759
760 922.8 - SF7BW125 to SF10BW125
761
762 923.0 - SF7BW125 to SF10BW125
763
764 922.0 - SF7BW125 to SF10BW125
765
766
767 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
768
769 923.6 - SF7BW125 to SF10BW125
770
771 923.8 - SF7BW125 to SF10BW125
772
773 924.0 - SF7BW125 to SF10BW125
774
775 924.2 - SF7BW125 to SF10BW125
776
777 924.4 - SF7BW125 to SF10BW125
778
779 924.6 - SF7BW125 to SF10BW125
780
781
782 (% style="color:#037691" %)** Downlink:**
783
784 Uplink channels 1-8 (RX1)
785
786 923.2 - SF10BW125 (RX2)
787
788
789
790 === 2.7.6 KR920-923 (KR920) ===
791
792 Default channel:
793
794 922.1 - SF7BW125 to SF12BW125
795
796 922.3 - SF7BW125 to SF12BW125
797
798 922.5 - SF7BW125 to SF12BW125
799
800
801 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
802
803 922.1 - SF7BW125 to SF12BW125
804
805 922.3 - SF7BW125 to SF12BW125
806
807 922.5 - SF7BW125 to SF12BW125
808
809 922.7 - SF7BW125 to SF12BW125
810
811 922.9 - SF7BW125 to SF12BW125
812
813 923.1 - SF7BW125 to SF12BW125
814
815 923.3 - SF7BW125 to SF12BW125
816
817
818 (% style="color:#037691" %)**Downlink:**
819
820 Uplink channels 1-7(RX1)
821
822 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
823
824
825
826 === 2.7.7 IN865-867 (IN865) ===
827
828 (% style="color:#037691" %)** Uplink:**
829
830 865.0625 - SF7BW125 to SF12BW125
831
832 865.4025 - SF7BW125 to SF12BW125
833
834 865.9850 - SF7BW125 to SF12BW125
835
836
837 (% style="color:#037691" %) **Downlink:**
838
839 Uplink channels 1-3 (RX1)
840
841 866.550 - SF10BW125 (RX2)
842
843
844
845
846 == 2.8 LED Indicator ==
847
848 The LSE01 has an internal LED which is to show the status of different state.
849
850 * Blink once when device power on.
851 * Solid ON for 5 seconds once device successful Join the network.
852 * Blink once when device transmit a packet.
853
854 == 2.9 Installation in Soil ==
855
856 **Measurement the soil surface**
857
858
859 [[image:1654506634463-199.png]] ​
860
861 (((
862 (((
863 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
864 )))
865 )))
866
867
868
869 [[image:1654506665940-119.png]]
870
871 (((
872 Dig a hole with diameter > 20CM.
873 )))
874
875 (((
876 Horizontal insert the probe to the soil and fill the hole for long term measurement.
877 )))
878
879
880 == 2.10 ​Firmware Change Log ==
881
882 (((
883 **Firmware download link:**
884 )))
885
886 (((
887 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
888 )))
889
890 (((
891
892 )))
893
894 (((
895 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
896 )))
897
898 (((
899
900 )))
901
902 (((
903 **V1.0.**
904 )))
905
906 (((
907 Release
908 )))
909
910
911 == 2.11 ​Battery Analysis ==
912
913 === 2.11.1 ​Battery Type ===
914
915 (((
916 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
917 )))
918
919 (((
920 The battery is designed to last for more than 5 years for the LSN50.
921 )))
922
923 (((
924 (((
925 The battery-related documents are as below:
926 )))
927 )))
928
929 * (((
930 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
931 )))
932 * (((
933 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
934 )))
935 * (((
936 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
937 )))
938
939 [[image:image-20220610172436-1.png]]
940
941
942
943 === 2.11.2 ​Battery Note ===
944
945 (((
946 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
947 )))
948
949
950
951 === 2.11.3 Replace the battery ===
952
953 (((
954 If Battery is lower than 2.7v, user should replace the battery of LSE01.
955 )))
956
957 (((
958 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
959 )))
960
961 (((
962 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
963 )))
964
965
966
967 = 3. ​Using the AT Commands =
968
969 == 3.1 Access AT Commands ==
970
971
972 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
973
974 [[image:1654501986557-872.png||height="391" width="800"]]
975
976
977 Or if you have below board, use below connection:
978
979
980 [[image:1654502005655-729.png||height="503" width="801"]]
981
982
983
984 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
985
986
987 [[image:1654502050864-459.png||height="564" width="806"]]
988
989
990 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
991
992
993 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
994
995 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
996
997 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
998
999 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
1000
1001
1002 (% style="color:#037691" %)**General Commands**(%%)      
1003
1004 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
1005
1006 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
1007
1008 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
1009
1010 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
1011
1012
1013 (% style="color:#037691" %)**Keys, IDs and EUIs management**
1014
1015 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1016
1017 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1018
1019 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1020
1021 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1022
1023 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1024
1025 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1026
1027 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1028
1029 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1030
1031 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1032
1033 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1034
1035 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1036
1037 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1038
1039 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1040
1041 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1042
1043 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1044
1045 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1046
1047
1048 (% style="color:#037691" %)**LoRa Network Management**
1049
1050 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1051
1052 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1053
1054 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1055
1056 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1057
1058 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1059
1060 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1061
1062 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1063
1064 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1065
1066 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1067
1068 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1069
1070 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1071
1072 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1073
1074 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1075
1076 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1077
1078 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1079
1080
1081 (% style="color:#037691" %)**Information** 
1082
1083 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1084
1085 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1086
1087 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1088
1089 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1090
1091 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1092
1093 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1094
1095 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1096
1097
1098 = ​4. FAQ =
1099
1100 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1101
1102 (((
1103 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1104 When downloading the images, choose the required image file for download. ​
1105 )))
1106
1107 (((
1108
1109 )))
1110
1111 (((
1112 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1113 )))
1114
1115 (((
1116
1117 )))
1118
1119 (((
1120 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1121 )))
1122
1123 (((
1124
1125 )))
1126
1127 (((
1128 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1129 )))
1130
1131 [[image:image-20220606154726-3.png]]
1132
1133
1134 When you use the TTN network, the US915 frequency bands use are:
1135
1136 * 903.9 - SF7BW125 to SF10BW125
1137 * 904.1 - SF7BW125 to SF10BW125
1138 * 904.3 - SF7BW125 to SF10BW125
1139 * 904.5 - SF7BW125 to SF10BW125
1140 * 904.7 - SF7BW125 to SF10BW125
1141 * 904.9 - SF7BW125 to SF10BW125
1142 * 905.1 - SF7BW125 to SF10BW125
1143 * 905.3 - SF7BW125 to SF10BW125
1144 * 904.6 - SF8BW500
1145
1146 (((
1147 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1148
1149 * (% style="color:#037691" %)**AT+CHE=2**
1150 * (% style="color:#037691" %)**ATZ**
1151 )))
1152
1153 (((
1154
1155
1156 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1157 )))
1158
1159 (((
1160
1161 )))
1162
1163 (((
1164 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1165 )))
1166
1167 [[image:image-20220606154825-4.png]]
1168
1169
1170 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1171
1172 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1173
1174
1175 = 5. Trouble Shooting =
1176
1177 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1178
1179 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1180
1181
1182 == 5.2 AT Command input doesn't work ==
1183
1184 (((
1185 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1186 )))
1187
1188
1189 == 5.3 Device rejoin in at the second uplink packet ==
1190
1191 (% style="color:#4f81bd" %)**Issue describe as below:**
1192
1193 [[image:1654500909990-784.png]]
1194
1195
1196 (% style="color:#4f81bd" %)**Cause for this issue:**
1197
1198 (((
1199 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1200 )))
1201
1202
1203 (% style="color:#4f81bd" %)**Solution: **
1204
1205 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1206
1207 [[image:1654500929571-736.png||height="458" width="832"]]
1208
1209
1210 = 6. ​Order Info =
1211
1212
1213 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1214
1215
1216 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1217
1218 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1219 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1220 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1221 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1222 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1223 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1224 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1225 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1226
1227 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1228
1229 * (% style="color:red" %)**4**(%%): 4000mAh battery
1230 * (% style="color:red" %)**8**(%%): 8500mAh battery
1231
1232 (% class="wikigeneratedid" %)
1233 (((
1234
1235 )))
1236
1237 = 7. Packing Info =
1238
1239 (((
1240
1241
1242 (% style="color:#037691" %)**Package Includes**:
1243 )))
1244
1245 * (((
1246 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1247 )))
1248
1249 (((
1250
1251
1252 (% style="color:#037691" %)**Dimension and weight**:
1253 )))
1254
1255 * (((
1256 Device Size: cm
1257 )))
1258 * (((
1259 Device Weight: g
1260 )))
1261 * (((
1262 Package Size / pcs : cm
1263 )))
1264 * (((
1265 Weight / pcs : g
1266
1267
1268 )))
1269
1270 = 8. Support =
1271
1272 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1273 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]