Version 56.3 by Xiaoling on 2022/07/08 11:18

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud: (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity: (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217 This feature is supported since firmware version v1.0.1
218
219
220 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223
224
225
226 [[image:1657249864775-321.png]]
227
228
229
230 [[image:1657249930215-289.png]]
231
232
233
234 === 2.2.6 Use MQTT protocol to uplink data ===
235
236 This feature is supported since firmware version v110
237
238
239 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 * (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 * (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246
247
248
249 [[image:1657249978444-674.png]]
250
251
252 [[image:1657249990869-686.png]]
253
254
255
256 (((
257 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 )))
259
260
261
262 === 2.2.7 Use TCP protocol to uplink data ===
263
264 This feature is supported since firmware version v110
265
266
267 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269
270 [[image:1657250217799-140.png]]
271
272
273 [[image:1657250255956-604.png]]
274
275
276 === 2.2.8 Change Update Interval ===
277
278 User can use below command to change the (% style="color:green" %)**uplink interval**.
279
280 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
281
282
283 (((
284 (% style="color:red" %)**NOTE:**
285 )))
286
287 (((
288 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 )))
290
291
292
293
294
295
296
297 == 2.3 Uplink Payload ==
298
299
300 === 2.3.1 MOD~=0(Default Mode) ===
301
302 LSE01 will uplink payload via LoRaWAN with below payload format: 
303
304 (((
305 Uplink payload includes in total 11 bytes.
306 )))
307
308 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
309 |(((
310 **Size**
311
312 **(bytes)**
313 )))|**2**|**2**|**2**|**2**|**2**|**1**
314 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
315 Temperature
316
317 (Reserve, Ignore now)
318 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
319 MOD & Digital Interrupt
320
321 (Optional)
322 )))
323
324 === 2.3.2 MOD~=1(Original value) ===
325
326 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
327
328 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
329 |(((
330 **Size**
331
332 **(bytes)**
333 )))|**2**|**2**|**2**|**2**|**2**|**1**
334 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
335 Temperature
336
337 (Reserve, Ignore now)
338 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
339 MOD & Digital Interrupt
340
341 (Optional)
342 )))
343
344 === 2.3.3 Battery Info ===
345
346 (((
347 Check the battery voltage for LSE01.
348 )))
349
350 (((
351 Ex1: 0x0B45 = 2885mV
352 )))
353
354 (((
355 Ex2: 0x0B49 = 2889mV
356 )))
357
358
359
360 === 2.3.4 Soil Moisture ===
361
362 (((
363 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
364 )))
365
366 (((
367 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
368 )))
369
370 (((
371
372 )))
373
374 (((
375 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
376 )))
377
378
379
380 === 2.3.5 Soil Temperature ===
381
382 (((
383 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
384 )))
385
386 (((
387 **Example**:
388 )))
389
390 (((
391 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
392 )))
393
394 (((
395 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
396 )))
397
398
399
400 === 2.3.6 Soil Conductivity (EC) ===
401
402 (((
403 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
404 )))
405
406 (((
407 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
408 )))
409
410 (((
411 Generally, the EC value of irrigation water is less than 800uS / cm.
412 )))
413
414 (((
415
416 )))
417
418 (((
419
420 )))
421
422 === 2.3.7 MOD ===
423
424 Firmware version at least v2.1 supports changing mode.
425
426 For example, bytes[10]=90
427
428 mod=(bytes[10]>>7)&0x01=1.
429
430
431 **Downlink Command:**
432
433 If payload = 0x0A00, workmode=0
434
435 If** **payload =** **0x0A01, workmode=1
436
437
438
439 === 2.3.8 ​Decode payload in The Things Network ===
440
441 While using TTN network, you can add the payload format to decode the payload.
442
443
444 [[image:1654505570700-128.png]]
445
446 (((
447 The payload decoder function for TTN is here:
448 )))
449
450 (((
451 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
452 )))
453
454
455 == 2.4 Uplink Interval ==
456
457 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
458
459
460
461 == 2.5 Downlink Payload ==
462
463 By default, LSE50 prints the downlink payload to console port.
464
465 [[image:image-20220606165544-8.png]]
466
467
468 (((
469 (% style="color:blue" %)**Examples:**
470 )))
471
472 (((
473
474 )))
475
476 * (((
477 (% style="color:blue" %)**Set TDC**
478 )))
479
480 (((
481 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
482 )))
483
484 (((
485 Payload:    01 00 00 1E    TDC=30S
486 )))
487
488 (((
489 Payload:    01 00 00 3C    TDC=60S
490 )))
491
492 (((
493
494 )))
495
496 * (((
497 (% style="color:blue" %)**Reset**
498 )))
499
500 (((
501 If payload = 0x04FF, it will reset the LSE01
502 )))
503
504
505 * (% style="color:blue" %)**CFM**
506
507 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
508
509
510
511 == 2.6 ​Show Data in DataCake IoT Server ==
512
513 (((
514 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
515 )))
516
517 (((
518
519 )))
520
521 (((
522 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
523 )))
524
525 (((
526 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
527 )))
528
529
530 [[image:1654505857935-743.png]]
531
532
533 [[image:1654505874829-548.png]]
534
535
536 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
537
538 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
539
540
541 [[image:1654505905236-553.png]]
542
543
544 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
545
546 [[image:1654505925508-181.png]]
547
548
549
550 == 2.7 Frequency Plans ==
551
552 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
553
554
555 === 2.7.1 EU863-870 (EU868) ===
556
557 (% style="color:#037691" %)** Uplink:**
558
559 868.1 - SF7BW125 to SF12BW125
560
561 868.3 - SF7BW125 to SF12BW125 and SF7BW250
562
563 868.5 - SF7BW125 to SF12BW125
564
565 867.1 - SF7BW125 to SF12BW125
566
567 867.3 - SF7BW125 to SF12BW125
568
569 867.5 - SF7BW125 to SF12BW125
570
571 867.7 - SF7BW125 to SF12BW125
572
573 867.9 - SF7BW125 to SF12BW125
574
575 868.8 - FSK
576
577
578 (% style="color:#037691" %)** Downlink:**
579
580 Uplink channels 1-9 (RX1)
581
582 869.525 - SF9BW125 (RX2 downlink only)
583
584
585
586 === 2.7.2 US902-928(US915) ===
587
588 Used in USA, Canada and South America. Default use CHE=2
589
590 (% style="color:#037691" %)**Uplink:**
591
592 903.9 - SF7BW125 to SF10BW125
593
594 904.1 - SF7BW125 to SF10BW125
595
596 904.3 - SF7BW125 to SF10BW125
597
598 904.5 - SF7BW125 to SF10BW125
599
600 904.7 - SF7BW125 to SF10BW125
601
602 904.9 - SF7BW125 to SF10BW125
603
604 905.1 - SF7BW125 to SF10BW125
605
606 905.3 - SF7BW125 to SF10BW125
607
608
609 (% style="color:#037691" %)**Downlink:**
610
611 923.3 - SF7BW500 to SF12BW500
612
613 923.9 - SF7BW500 to SF12BW500
614
615 924.5 - SF7BW500 to SF12BW500
616
617 925.1 - SF7BW500 to SF12BW500
618
619 925.7 - SF7BW500 to SF12BW500
620
621 926.3 - SF7BW500 to SF12BW500
622
623 926.9 - SF7BW500 to SF12BW500
624
625 927.5 - SF7BW500 to SF12BW500
626
627 923.3 - SF12BW500(RX2 downlink only)
628
629
630
631 === 2.7.3 CN470-510 (CN470) ===
632
633 Used in China, Default use CHE=1
634
635 (% style="color:#037691" %)**Uplink:**
636
637 486.3 - SF7BW125 to SF12BW125
638
639 486.5 - SF7BW125 to SF12BW125
640
641 486.7 - SF7BW125 to SF12BW125
642
643 486.9 - SF7BW125 to SF12BW125
644
645 487.1 - SF7BW125 to SF12BW125
646
647 487.3 - SF7BW125 to SF12BW125
648
649 487.5 - SF7BW125 to SF12BW125
650
651 487.7 - SF7BW125 to SF12BW125
652
653
654 (% style="color:#037691" %)**Downlink:**
655
656 506.7 - SF7BW125 to SF12BW125
657
658 506.9 - SF7BW125 to SF12BW125
659
660 507.1 - SF7BW125 to SF12BW125
661
662 507.3 - SF7BW125 to SF12BW125
663
664 507.5 - SF7BW125 to SF12BW125
665
666 507.7 - SF7BW125 to SF12BW125
667
668 507.9 - SF7BW125 to SF12BW125
669
670 508.1 - SF7BW125 to SF12BW125
671
672 505.3 - SF12BW125 (RX2 downlink only)
673
674
675
676 === 2.7.4 AU915-928(AU915) ===
677
678 Default use CHE=2
679
680 (% style="color:#037691" %)**Uplink:**
681
682 916.8 - SF7BW125 to SF12BW125
683
684 917.0 - SF7BW125 to SF12BW125
685
686 917.2 - SF7BW125 to SF12BW125
687
688 917.4 - SF7BW125 to SF12BW125
689
690 917.6 - SF7BW125 to SF12BW125
691
692 917.8 - SF7BW125 to SF12BW125
693
694 918.0 - SF7BW125 to SF12BW125
695
696 918.2 - SF7BW125 to SF12BW125
697
698
699 (% style="color:#037691" %)**Downlink:**
700
701 923.3 - SF7BW500 to SF12BW500
702
703 923.9 - SF7BW500 to SF12BW500
704
705 924.5 - SF7BW500 to SF12BW500
706
707 925.1 - SF7BW500 to SF12BW500
708
709 925.7 - SF7BW500 to SF12BW500
710
711 926.3 - SF7BW500 to SF12BW500
712
713 926.9 - SF7BW500 to SF12BW500
714
715 927.5 - SF7BW500 to SF12BW500
716
717 923.3 - SF12BW500(RX2 downlink only)
718
719
720
721 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
722
723 (% style="color:#037691" %)**Default Uplink channel:**
724
725 923.2 - SF7BW125 to SF10BW125
726
727 923.4 - SF7BW125 to SF10BW125
728
729
730 (% style="color:#037691" %)**Additional Uplink Channel**:
731
732 (OTAA mode, channel added by JoinAccept message)
733
734 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
735
736 922.2 - SF7BW125 to SF10BW125
737
738 922.4 - SF7BW125 to SF10BW125
739
740 922.6 - SF7BW125 to SF10BW125
741
742 922.8 - SF7BW125 to SF10BW125
743
744 923.0 - SF7BW125 to SF10BW125
745
746 922.0 - SF7BW125 to SF10BW125
747
748
749 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
750
751 923.6 - SF7BW125 to SF10BW125
752
753 923.8 - SF7BW125 to SF10BW125
754
755 924.0 - SF7BW125 to SF10BW125
756
757 924.2 - SF7BW125 to SF10BW125
758
759 924.4 - SF7BW125 to SF10BW125
760
761 924.6 - SF7BW125 to SF10BW125
762
763
764 (% style="color:#037691" %)** Downlink:**
765
766 Uplink channels 1-8 (RX1)
767
768 923.2 - SF10BW125 (RX2)
769
770
771
772 === 2.7.6 KR920-923 (KR920) ===
773
774 Default channel:
775
776 922.1 - SF7BW125 to SF12BW125
777
778 922.3 - SF7BW125 to SF12BW125
779
780 922.5 - SF7BW125 to SF12BW125
781
782
783 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
784
785 922.1 - SF7BW125 to SF12BW125
786
787 922.3 - SF7BW125 to SF12BW125
788
789 922.5 - SF7BW125 to SF12BW125
790
791 922.7 - SF7BW125 to SF12BW125
792
793 922.9 - SF7BW125 to SF12BW125
794
795 923.1 - SF7BW125 to SF12BW125
796
797 923.3 - SF7BW125 to SF12BW125
798
799
800 (% style="color:#037691" %)**Downlink:**
801
802 Uplink channels 1-7(RX1)
803
804 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
805
806
807
808 === 2.7.7 IN865-867 (IN865) ===
809
810 (% style="color:#037691" %)** Uplink:**
811
812 865.0625 - SF7BW125 to SF12BW125
813
814 865.4025 - SF7BW125 to SF12BW125
815
816 865.9850 - SF7BW125 to SF12BW125
817
818
819 (% style="color:#037691" %) **Downlink:**
820
821 Uplink channels 1-3 (RX1)
822
823 866.550 - SF10BW125 (RX2)
824
825
826
827
828 == 2.8 LED Indicator ==
829
830 The LSE01 has an internal LED which is to show the status of different state.
831
832 * Blink once when device power on.
833 * Solid ON for 5 seconds once device successful Join the network.
834 * Blink once when device transmit a packet.
835
836 == 2.9 Installation in Soil ==
837
838 **Measurement the soil surface**
839
840
841 [[image:1654506634463-199.png]] ​
842
843 (((
844 (((
845 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
846 )))
847 )))
848
849
850
851 [[image:1654506665940-119.png]]
852
853 (((
854 Dig a hole with diameter > 20CM.
855 )))
856
857 (((
858 Horizontal insert the probe to the soil and fill the hole for long term measurement.
859 )))
860
861
862 == 2.10 ​Firmware Change Log ==
863
864 (((
865 **Firmware download link:**
866 )))
867
868 (((
869 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
870 )))
871
872 (((
873
874 )))
875
876 (((
877 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
878 )))
879
880 (((
881
882 )))
883
884 (((
885 **V1.0.**
886 )))
887
888 (((
889 Release
890 )))
891
892
893 == 2.11 ​Battery Analysis ==
894
895 === 2.11.1 ​Battery Type ===
896
897 (((
898 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
899 )))
900
901 (((
902 The battery is designed to last for more than 5 years for the LSN50.
903 )))
904
905 (((
906 (((
907 The battery-related documents are as below:
908 )))
909 )))
910
911 * (((
912 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
913 )))
914 * (((
915 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
916 )))
917 * (((
918 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
919 )))
920
921 [[image:image-20220610172436-1.png]]
922
923
924
925 === 2.11.2 ​Battery Note ===
926
927 (((
928 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
929 )))
930
931
932
933 === 2.11.3 Replace the battery ===
934
935 (((
936 If Battery is lower than 2.7v, user should replace the battery of LSE01.
937 )))
938
939 (((
940 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
941 )))
942
943 (((
944 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
945 )))
946
947
948
949 = 3. ​Using the AT Commands =
950
951 == 3.1 Access AT Commands ==
952
953
954 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
955
956 [[image:1654501986557-872.png||height="391" width="800"]]
957
958
959 Or if you have below board, use below connection:
960
961
962 [[image:1654502005655-729.png||height="503" width="801"]]
963
964
965
966 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
967
968
969 [[image:1654502050864-459.png||height="564" width="806"]]
970
971
972 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
973
974
975 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
976
977 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
978
979 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
980
981 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
982
983
984 (% style="color:#037691" %)**General Commands**(%%)      
985
986 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
987
988 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
989
990 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
991
992 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
993
994
995 (% style="color:#037691" %)**Keys, IDs and EUIs management**
996
997 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
998
999 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1000
1001 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1002
1003 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1004
1005 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1006
1007 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1008
1009 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1010
1011 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1012
1013 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1014
1015 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1016
1017 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1018
1019 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1020
1021 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1022
1023 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1024
1025 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1026
1027 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1028
1029
1030 (% style="color:#037691" %)**LoRa Network Management**
1031
1032 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1033
1034 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1035
1036 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1037
1038 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1039
1040 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1041
1042 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1043
1044 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1045
1046 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1047
1048 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1049
1050 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1051
1052 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1053
1054 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1055
1056 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1057
1058 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1059
1060 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1061
1062
1063 (% style="color:#037691" %)**Information** 
1064
1065 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1066
1067 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1068
1069 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1070
1071 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1072
1073 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1074
1075 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1076
1077 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1078
1079
1080 = ​4. FAQ =
1081
1082 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1083
1084 (((
1085 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1086 When downloading the images, choose the required image file for download. ​
1087 )))
1088
1089 (((
1090
1091 )))
1092
1093 (((
1094 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1095 )))
1096
1097 (((
1098
1099 )))
1100
1101 (((
1102 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1103 )))
1104
1105 (((
1106
1107 )))
1108
1109 (((
1110 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1111 )))
1112
1113 [[image:image-20220606154726-3.png]]
1114
1115
1116 When you use the TTN network, the US915 frequency bands use are:
1117
1118 * 903.9 - SF7BW125 to SF10BW125
1119 * 904.1 - SF7BW125 to SF10BW125
1120 * 904.3 - SF7BW125 to SF10BW125
1121 * 904.5 - SF7BW125 to SF10BW125
1122 * 904.7 - SF7BW125 to SF10BW125
1123 * 904.9 - SF7BW125 to SF10BW125
1124 * 905.1 - SF7BW125 to SF10BW125
1125 * 905.3 - SF7BW125 to SF10BW125
1126 * 904.6 - SF8BW500
1127
1128 (((
1129 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1130
1131 * (% style="color:#037691" %)**AT+CHE=2**
1132 * (% style="color:#037691" %)**ATZ**
1133 )))
1134
1135 (((
1136
1137
1138 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1139 )))
1140
1141 (((
1142
1143 )))
1144
1145 (((
1146 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1147 )))
1148
1149 [[image:image-20220606154825-4.png]]
1150
1151
1152 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1153
1154 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1155
1156
1157 = 5. Trouble Shooting =
1158
1159 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1160
1161 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1162
1163
1164 == 5.2 AT Command input doesn't work ==
1165
1166 (((
1167 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1168 )))
1169
1170
1171 == 5.3 Device rejoin in at the second uplink packet ==
1172
1173 (% style="color:#4f81bd" %)**Issue describe as below:**
1174
1175 [[image:1654500909990-784.png]]
1176
1177
1178 (% style="color:#4f81bd" %)**Cause for this issue:**
1179
1180 (((
1181 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1182 )))
1183
1184
1185 (% style="color:#4f81bd" %)**Solution: **
1186
1187 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1188
1189 [[image:1654500929571-736.png||height="458" width="832"]]
1190
1191
1192 = 6. ​Order Info =
1193
1194
1195 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1196
1197
1198 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1199
1200 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1201 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1202 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1203 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1204 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1205 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1206 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1207 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1208
1209 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1210
1211 * (% style="color:red" %)**4**(%%): 4000mAh battery
1212 * (% style="color:red" %)**8**(%%): 8500mAh battery
1213
1214 (% class="wikigeneratedid" %)
1215 (((
1216
1217 )))
1218
1219 = 7. Packing Info =
1220
1221 (((
1222
1223
1224 (% style="color:#037691" %)**Package Includes**:
1225 )))
1226
1227 * (((
1228 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1229 )))
1230
1231 (((
1232
1233
1234 (% style="color:#037691" %)**Dimension and weight**:
1235 )))
1236
1237 * (((
1238 Device Size: cm
1239 )))
1240 * (((
1241 Device Weight: g
1242 )))
1243 * (((
1244 Package Size / pcs : cm
1245 )))
1246 * (((
1247 Weight / pcs : g
1248
1249
1250 )))
1251
1252 = 8. Support =
1253
1254 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1255 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]