Version 45.5 by Xiaoling on 2022/07/08 10:39

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62
63
64 == 1.3  Specification ==
65
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.1v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72
73 (% style="color:#037691" %)**NB-IoT Spec:**
74
75 * - B1 @H-FDD: 2100MHz
76 * - B3 @H-FDD: 1800MHz
77 * - B8 @H-FDD: 900MHz
78 * - B5 @H-FDD: 850MHz
79 * - B20 @H-FDD: 800MHz
80 * - B28 @H-FDD: 700MHz
81
82
83 (% style="color:#037691" %)**Probe Specification:**
84
85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86
87 [[image:image-20220708101224-1.png]]
88
89
90
91 == ​1.4  Applications ==
92
93 * Smart Agriculture
94
95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96
97
98 == 1.5  Pin Definitions ==
99
100
101 [[image:1657246476176-652.png]]
102
103
104
105 = 2.  Use NSE01 to communicate with IoT Server =
106
107 == 2.1  How it works ==
108
109
110 (((
111 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
112 )))
113
114
115 (((
116 The diagram below shows the working flow in default firmware of NSE01:
117 )))
118
119 [[image:image-20220708101605-2.png]]
120
121 (((
122
123 )))
124
125
126
127 == 2.2 ​ Configure the NSE01 ==
128
129 === 2.2.1 Test Requirement ===
130
131
132 To use NSE01 in your city, make sure meet below requirements:
133
134 * Your local operator has already distributed a NB-IoT Network there.
135 * The local NB-IoT network used the band that NSE01 supports.
136 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137
138
139 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
140
141
142 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
143
144
145
146 === 2.2.2 Insert SIM card ===
147
148 Insert the NB-IoT Card get from your provider.
149
150
151 User need to take out the NB-IoT module and insert the SIM card like below:
152
153
154 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
155
156
157 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
158
159
160 User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
161
162
163
164
165 Connection:
166
167 USB TTL GND <~-~-~-~-> GND
168
169 USB TTL TXD <~-~-~-~-> UART_RXD
170
171 USB TTL RXD <~-~-~-~-> UART_TXD
172
173
174
175 In the PC, use below serial tool settings:
176
177 * Baud: **9600**
178 * Data bits:** 8**
179 * Stop bits: **1**
180 * Parity: **None**
181 * Flow Control: **None**
182
183
184 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
185
186 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187
188 Note: the valid AT Commands can be found at:
189
190 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191
192
193 1.
194 11.
195 111. Use CoAP protocol to uplink data 
196
197
198 Note: if you don’t have CoAP server, you can refer this link to set up one:
199
200 [[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
201
202
203 Use below commands:
204
205 * **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
206 * **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
207 * **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
208
209
210 For parameter description, please refer to AT command set
211
212 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
213
214
215 After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
216
217 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
218
219 1.
220 11.
221 111. Use UDP protocol to uplink data(Default protocol)
222
223
224 This feature is supported since firmware version v1.0.1
225
226
227 * **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
228 * **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
229 * **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
230
231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
232
233
234
235
236
237 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
238
239
240 1.
241 11.
242 111. Use MQTT protocol to uplink data
243
244
245 This feature is supported since firmware version v110
246
247
248 * **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
249 * **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
250 * **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
251 * **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
252 * **AT+PWD=PWD                                      **~/~/Set the password of MQTT
253 * **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
254 * **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
255
256
257 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
258
259 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
260
261
262 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263
264
265 1.
266 11.
267 111. Use TCP protocol to uplink data
268
269
270 This feature is supported since firmware version v110
271
272
273 * **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
274 * **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
275
276 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
277
278
279
280 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
281
282
283 1.
284 11.
285 111. Change Update Interval
286
287 User can use below command to change the **uplink interval**.
288
289 **~ AT+TDC=600      **~/~/ Set Update Interval to 600s
290
291
292 **NOTE:**
293
294 1. By default, the device will send an uplink message every 1 hour.
295
296
297
298
299
300
301
302 == 2.3 Uplink Payload ==
303
304
305 === 2.3.1 MOD~=0(Default Mode) ===
306
307 LSE01 will uplink payload via LoRaWAN with below payload format: 
308
309 (((
310 Uplink payload includes in total 11 bytes.
311 )))
312
313 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
314 |(((
315 **Size**
316
317 **(bytes)**
318 )))|**2**|**2**|**2**|**2**|**2**|**1**
319 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
320 Temperature
321
322 (Reserve, Ignore now)
323 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
324 MOD & Digital Interrupt
325
326 (Optional)
327 )))
328
329 === 2.3.2 MOD~=1(Original value) ===
330
331 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
332
333 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
334 |(((
335 **Size**
336
337 **(bytes)**
338 )))|**2**|**2**|**2**|**2**|**2**|**1**
339 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
340 Temperature
341
342 (Reserve, Ignore now)
343 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
344 MOD & Digital Interrupt
345
346 (Optional)
347 )))
348
349 === 2.3.3 Battery Info ===
350
351 (((
352 Check the battery voltage for LSE01.
353 )))
354
355 (((
356 Ex1: 0x0B45 = 2885mV
357 )))
358
359 (((
360 Ex2: 0x0B49 = 2889mV
361 )))
362
363
364
365 === 2.3.4 Soil Moisture ===
366
367 (((
368 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
369 )))
370
371 (((
372 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
373 )))
374
375 (((
376
377 )))
378
379 (((
380 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
381 )))
382
383
384
385 === 2.3.5 Soil Temperature ===
386
387 (((
388 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
389 )))
390
391 (((
392 **Example**:
393 )))
394
395 (((
396 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
397 )))
398
399 (((
400 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
401 )))
402
403
404
405 === 2.3.6 Soil Conductivity (EC) ===
406
407 (((
408 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
409 )))
410
411 (((
412 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
413 )))
414
415 (((
416 Generally, the EC value of irrigation water is less than 800uS / cm.
417 )))
418
419 (((
420
421 )))
422
423 (((
424
425 )))
426
427 === 2.3.7 MOD ===
428
429 Firmware version at least v2.1 supports changing mode.
430
431 For example, bytes[10]=90
432
433 mod=(bytes[10]>>7)&0x01=1.
434
435
436 **Downlink Command:**
437
438 If payload = 0x0A00, workmode=0
439
440 If** **payload =** **0x0A01, workmode=1
441
442
443
444 === 2.3.8 ​Decode payload in The Things Network ===
445
446 While using TTN network, you can add the payload format to decode the payload.
447
448
449 [[image:1654505570700-128.png]]
450
451 (((
452 The payload decoder function for TTN is here:
453 )))
454
455 (((
456 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
457 )))
458
459
460 == 2.4 Uplink Interval ==
461
462 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
463
464
465
466 == 2.5 Downlink Payload ==
467
468 By default, LSE50 prints the downlink payload to console port.
469
470 [[image:image-20220606165544-8.png]]
471
472
473 (((
474 (% style="color:blue" %)**Examples:**
475 )))
476
477 (((
478
479 )))
480
481 * (((
482 (% style="color:blue" %)**Set TDC**
483 )))
484
485 (((
486 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
487 )))
488
489 (((
490 Payload:    01 00 00 1E    TDC=30S
491 )))
492
493 (((
494 Payload:    01 00 00 3C    TDC=60S
495 )))
496
497 (((
498
499 )))
500
501 * (((
502 (% style="color:blue" %)**Reset**
503 )))
504
505 (((
506 If payload = 0x04FF, it will reset the LSE01
507 )))
508
509
510 * (% style="color:blue" %)**CFM**
511
512 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
513
514
515
516 == 2.6 ​Show Data in DataCake IoT Server ==
517
518 (((
519 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
520 )))
521
522 (((
523
524 )))
525
526 (((
527 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
528 )))
529
530 (((
531 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
532 )))
533
534
535 [[image:1654505857935-743.png]]
536
537
538 [[image:1654505874829-548.png]]
539
540
541 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
542
543 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
544
545
546 [[image:1654505905236-553.png]]
547
548
549 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
550
551 [[image:1654505925508-181.png]]
552
553
554
555 == 2.7 Frequency Plans ==
556
557 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
558
559
560 === 2.7.1 EU863-870 (EU868) ===
561
562 (% style="color:#037691" %)** Uplink:**
563
564 868.1 - SF7BW125 to SF12BW125
565
566 868.3 - SF7BW125 to SF12BW125 and SF7BW250
567
568 868.5 - SF7BW125 to SF12BW125
569
570 867.1 - SF7BW125 to SF12BW125
571
572 867.3 - SF7BW125 to SF12BW125
573
574 867.5 - SF7BW125 to SF12BW125
575
576 867.7 - SF7BW125 to SF12BW125
577
578 867.9 - SF7BW125 to SF12BW125
579
580 868.8 - FSK
581
582
583 (% style="color:#037691" %)** Downlink:**
584
585 Uplink channels 1-9 (RX1)
586
587 869.525 - SF9BW125 (RX2 downlink only)
588
589
590
591 === 2.7.2 US902-928(US915) ===
592
593 Used in USA, Canada and South America. Default use CHE=2
594
595 (% style="color:#037691" %)**Uplink:**
596
597 903.9 - SF7BW125 to SF10BW125
598
599 904.1 - SF7BW125 to SF10BW125
600
601 904.3 - SF7BW125 to SF10BW125
602
603 904.5 - SF7BW125 to SF10BW125
604
605 904.7 - SF7BW125 to SF10BW125
606
607 904.9 - SF7BW125 to SF10BW125
608
609 905.1 - SF7BW125 to SF10BW125
610
611 905.3 - SF7BW125 to SF10BW125
612
613
614 (% style="color:#037691" %)**Downlink:**
615
616 923.3 - SF7BW500 to SF12BW500
617
618 923.9 - SF7BW500 to SF12BW500
619
620 924.5 - SF7BW500 to SF12BW500
621
622 925.1 - SF7BW500 to SF12BW500
623
624 925.7 - SF7BW500 to SF12BW500
625
626 926.3 - SF7BW500 to SF12BW500
627
628 926.9 - SF7BW500 to SF12BW500
629
630 927.5 - SF7BW500 to SF12BW500
631
632 923.3 - SF12BW500(RX2 downlink only)
633
634
635
636 === 2.7.3 CN470-510 (CN470) ===
637
638 Used in China, Default use CHE=1
639
640 (% style="color:#037691" %)**Uplink:**
641
642 486.3 - SF7BW125 to SF12BW125
643
644 486.5 - SF7BW125 to SF12BW125
645
646 486.7 - SF7BW125 to SF12BW125
647
648 486.9 - SF7BW125 to SF12BW125
649
650 487.1 - SF7BW125 to SF12BW125
651
652 487.3 - SF7BW125 to SF12BW125
653
654 487.5 - SF7BW125 to SF12BW125
655
656 487.7 - SF7BW125 to SF12BW125
657
658
659 (% style="color:#037691" %)**Downlink:**
660
661 506.7 - SF7BW125 to SF12BW125
662
663 506.9 - SF7BW125 to SF12BW125
664
665 507.1 - SF7BW125 to SF12BW125
666
667 507.3 - SF7BW125 to SF12BW125
668
669 507.5 - SF7BW125 to SF12BW125
670
671 507.7 - SF7BW125 to SF12BW125
672
673 507.9 - SF7BW125 to SF12BW125
674
675 508.1 - SF7BW125 to SF12BW125
676
677 505.3 - SF12BW125 (RX2 downlink only)
678
679
680
681 === 2.7.4 AU915-928(AU915) ===
682
683 Default use CHE=2
684
685 (% style="color:#037691" %)**Uplink:**
686
687 916.8 - SF7BW125 to SF12BW125
688
689 917.0 - SF7BW125 to SF12BW125
690
691 917.2 - SF7BW125 to SF12BW125
692
693 917.4 - SF7BW125 to SF12BW125
694
695 917.6 - SF7BW125 to SF12BW125
696
697 917.8 - SF7BW125 to SF12BW125
698
699 918.0 - SF7BW125 to SF12BW125
700
701 918.2 - SF7BW125 to SF12BW125
702
703
704 (% style="color:#037691" %)**Downlink:**
705
706 923.3 - SF7BW500 to SF12BW500
707
708 923.9 - SF7BW500 to SF12BW500
709
710 924.5 - SF7BW500 to SF12BW500
711
712 925.1 - SF7BW500 to SF12BW500
713
714 925.7 - SF7BW500 to SF12BW500
715
716 926.3 - SF7BW500 to SF12BW500
717
718 926.9 - SF7BW500 to SF12BW500
719
720 927.5 - SF7BW500 to SF12BW500
721
722 923.3 - SF12BW500(RX2 downlink only)
723
724
725
726 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
727
728 (% style="color:#037691" %)**Default Uplink channel:**
729
730 923.2 - SF7BW125 to SF10BW125
731
732 923.4 - SF7BW125 to SF10BW125
733
734
735 (% style="color:#037691" %)**Additional Uplink Channel**:
736
737 (OTAA mode, channel added by JoinAccept message)
738
739 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
740
741 922.2 - SF7BW125 to SF10BW125
742
743 922.4 - SF7BW125 to SF10BW125
744
745 922.6 - SF7BW125 to SF10BW125
746
747 922.8 - SF7BW125 to SF10BW125
748
749 923.0 - SF7BW125 to SF10BW125
750
751 922.0 - SF7BW125 to SF10BW125
752
753
754 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
755
756 923.6 - SF7BW125 to SF10BW125
757
758 923.8 - SF7BW125 to SF10BW125
759
760 924.0 - SF7BW125 to SF10BW125
761
762 924.2 - SF7BW125 to SF10BW125
763
764 924.4 - SF7BW125 to SF10BW125
765
766 924.6 - SF7BW125 to SF10BW125
767
768
769 (% style="color:#037691" %)** Downlink:**
770
771 Uplink channels 1-8 (RX1)
772
773 923.2 - SF10BW125 (RX2)
774
775
776
777 === 2.7.6 KR920-923 (KR920) ===
778
779 Default channel:
780
781 922.1 - SF7BW125 to SF12BW125
782
783 922.3 - SF7BW125 to SF12BW125
784
785 922.5 - SF7BW125 to SF12BW125
786
787
788 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
789
790 922.1 - SF7BW125 to SF12BW125
791
792 922.3 - SF7BW125 to SF12BW125
793
794 922.5 - SF7BW125 to SF12BW125
795
796 922.7 - SF7BW125 to SF12BW125
797
798 922.9 - SF7BW125 to SF12BW125
799
800 923.1 - SF7BW125 to SF12BW125
801
802 923.3 - SF7BW125 to SF12BW125
803
804
805 (% style="color:#037691" %)**Downlink:**
806
807 Uplink channels 1-7(RX1)
808
809 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
810
811
812
813 === 2.7.7 IN865-867 (IN865) ===
814
815 (% style="color:#037691" %)** Uplink:**
816
817 865.0625 - SF7BW125 to SF12BW125
818
819 865.4025 - SF7BW125 to SF12BW125
820
821 865.9850 - SF7BW125 to SF12BW125
822
823
824 (% style="color:#037691" %) **Downlink:**
825
826 Uplink channels 1-3 (RX1)
827
828 866.550 - SF10BW125 (RX2)
829
830
831
832
833 == 2.8 LED Indicator ==
834
835 The LSE01 has an internal LED which is to show the status of different state.
836
837 * Blink once when device power on.
838 * Solid ON for 5 seconds once device successful Join the network.
839 * Blink once when device transmit a packet.
840
841 == 2.9 Installation in Soil ==
842
843 **Measurement the soil surface**
844
845
846 [[image:1654506634463-199.png]] ​
847
848 (((
849 (((
850 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
851 )))
852 )))
853
854
855
856 [[image:1654506665940-119.png]]
857
858 (((
859 Dig a hole with diameter > 20CM.
860 )))
861
862 (((
863 Horizontal insert the probe to the soil and fill the hole for long term measurement.
864 )))
865
866
867 == 2.10 ​Firmware Change Log ==
868
869 (((
870 **Firmware download link:**
871 )))
872
873 (((
874 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
875 )))
876
877 (((
878
879 )))
880
881 (((
882 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
883 )))
884
885 (((
886
887 )))
888
889 (((
890 **V1.0.**
891 )))
892
893 (((
894 Release
895 )))
896
897
898 == 2.11 ​Battery Analysis ==
899
900 === 2.11.1 ​Battery Type ===
901
902 (((
903 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
904 )))
905
906 (((
907 The battery is designed to last for more than 5 years for the LSN50.
908 )))
909
910 (((
911 (((
912 The battery-related documents are as below:
913 )))
914 )))
915
916 * (((
917 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
918 )))
919 * (((
920 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
921 )))
922 * (((
923 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
924 )))
925
926 [[image:image-20220610172436-1.png]]
927
928
929
930 === 2.11.2 ​Battery Note ===
931
932 (((
933 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
934 )))
935
936
937
938 === 2.11.3 Replace the battery ===
939
940 (((
941 If Battery is lower than 2.7v, user should replace the battery of LSE01.
942 )))
943
944 (((
945 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
946 )))
947
948 (((
949 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
950 )))
951
952
953
954 = 3. ​Using the AT Commands =
955
956 == 3.1 Access AT Commands ==
957
958
959 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
960
961 [[image:1654501986557-872.png||height="391" width="800"]]
962
963
964 Or if you have below board, use below connection:
965
966
967 [[image:1654502005655-729.png||height="503" width="801"]]
968
969
970
971 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
972
973
974 [[image:1654502050864-459.png||height="564" width="806"]]
975
976
977 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
978
979
980 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
981
982 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
983
984 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
985
986 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
987
988
989 (% style="color:#037691" %)**General Commands**(%%)      
990
991 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
992
993 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
994
995 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
996
997 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
998
999
1000 (% style="color:#037691" %)**Keys, IDs and EUIs management**
1001
1002 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1003
1004 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1005
1006 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1007
1008 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1009
1010 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1011
1012 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1013
1014 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1015
1016 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1017
1018 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1019
1020 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1021
1022 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1023
1024 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1025
1026 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1027
1028 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1029
1030 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1031
1032 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1033
1034
1035 (% style="color:#037691" %)**LoRa Network Management**
1036
1037 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1038
1039 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1040
1041 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1042
1043 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1044
1045 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1046
1047 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1048
1049 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1050
1051 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1052
1053 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1054
1055 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1056
1057 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1058
1059 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1060
1061 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1062
1063 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1064
1065 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1066
1067
1068 (% style="color:#037691" %)**Information** 
1069
1070 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1071
1072 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1073
1074 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1075
1076 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1077
1078 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1079
1080 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1081
1082 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1083
1084
1085 = ​4. FAQ =
1086
1087 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1088
1089 (((
1090 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1091 When downloading the images, choose the required image file for download. ​
1092 )))
1093
1094 (((
1095
1096 )))
1097
1098 (((
1099 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1100 )))
1101
1102 (((
1103
1104 )))
1105
1106 (((
1107 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1108 )))
1109
1110 (((
1111
1112 )))
1113
1114 (((
1115 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1116 )))
1117
1118 [[image:image-20220606154726-3.png]]
1119
1120
1121 When you use the TTN network, the US915 frequency bands use are:
1122
1123 * 903.9 - SF7BW125 to SF10BW125
1124 * 904.1 - SF7BW125 to SF10BW125
1125 * 904.3 - SF7BW125 to SF10BW125
1126 * 904.5 - SF7BW125 to SF10BW125
1127 * 904.7 - SF7BW125 to SF10BW125
1128 * 904.9 - SF7BW125 to SF10BW125
1129 * 905.1 - SF7BW125 to SF10BW125
1130 * 905.3 - SF7BW125 to SF10BW125
1131 * 904.6 - SF8BW500
1132
1133 (((
1134 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1135
1136 * (% style="color:#037691" %)**AT+CHE=2**
1137 * (% style="color:#037691" %)**ATZ**
1138 )))
1139
1140 (((
1141
1142
1143 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1144 )))
1145
1146 (((
1147
1148 )))
1149
1150 (((
1151 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1152 )))
1153
1154 [[image:image-20220606154825-4.png]]
1155
1156
1157 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1158
1159 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1160
1161
1162 = 5. Trouble Shooting =
1163
1164 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1165
1166 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1167
1168
1169 == 5.2 AT Command input doesn't work ==
1170
1171 (((
1172 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1173 )))
1174
1175
1176 == 5.3 Device rejoin in at the second uplink packet ==
1177
1178 (% style="color:#4f81bd" %)**Issue describe as below:**
1179
1180 [[image:1654500909990-784.png]]
1181
1182
1183 (% style="color:#4f81bd" %)**Cause for this issue:**
1184
1185 (((
1186 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1187 )))
1188
1189
1190 (% style="color:#4f81bd" %)**Solution: **
1191
1192 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1193
1194 [[image:1654500929571-736.png||height="458" width="832"]]
1195
1196
1197 = 6. ​Order Info =
1198
1199
1200 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1201
1202
1203 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1204
1205 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1206 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1207 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1208 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1209 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1210 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1211 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1212 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1213
1214 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1215
1216 * (% style="color:red" %)**4**(%%): 4000mAh battery
1217 * (% style="color:red" %)**8**(%%): 8500mAh battery
1218
1219 (% class="wikigeneratedid" %)
1220 (((
1221
1222 )))
1223
1224 = 7. Packing Info =
1225
1226 (((
1227
1228
1229 (% style="color:#037691" %)**Package Includes**:
1230 )))
1231
1232 * (((
1233 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1234 )))
1235
1236 (((
1237
1238
1239 (% style="color:#037691" %)**Dimension and weight**:
1240 )))
1241
1242 * (((
1243 Device Size: cm
1244 )))
1245 * (((
1246 Device Weight: g
1247 )))
1248 * (((
1249 Package Size / pcs : cm
1250 )))
1251 * (((
1252 Weight / pcs : g
1253
1254
1255 )))
1256
1257 = 8. Support =
1258
1259 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1260 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]