Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202 For parameter description, please refer to AT command set
203
204 [[image:1657249793983-486.png]]
205
206
207 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208
209 [[image:1657249831934-534.png]]
210
211
212
213 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214
215 This feature is supported since firmware version v1.0.1
216
217
218 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221
222 [[image:1657249864775-321.png]]
223
224
225 [[image:1657249930215-289.png]]
226
227
228
229 === 2.2.6 Use MQTT protocol to uplink data ===
230
231 This feature is supported since firmware version v110
232
233
234 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241
242 [[image:1657249978444-674.png]]
243
244
245 [[image:1657249990869-686.png]]
246
247
248 (((
249 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 )))
251
252
253
254 === 2.2.7 Use TCP protocol to uplink data ===
255
256 This feature is supported since firmware version v110
257
258
259 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261
262 [[image:1657250217799-140.png]]
263
264
265 [[image:1657250255956-604.png]]
266
267
268
269 === 2.2.8 Change Update Interval ===
270
271 User can use below command to change the (% style="color:green" %)**uplink interval**.
272
273 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274
275 (((
276 (% style="color:red" %)**NOTE:**
277 )))
278
279 (((
280 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 )))
282
283
284
285 == 2.3  Uplink Payload ==
286
287 In this mode, uplink payload includes in total 18 bytes
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 50px;" %)(((
291 **Size(bytes)**
292 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294
295 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296
297
298 [[image:image-20220708111918-4.png]]
299
300
301 The payload is ASCII string, representative same HEX:
302
303 0x72403155615900640c7817075e0a8c02f900 where:
304
305 * Device ID: 0x 724031556159 = 724031556159
306 * Version: 0x0064=100=1.0.0
307
308 * BAT: 0x0c78 = 3192 mV = 3.192V
309 * Singal: 0x17 = 23
310 * Soil Moisture: 0x075e= 1886 = 18.86  %
311 * Soil Temperature:0x0a8c =2700=27 °C
312 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 * Interrupt: 0x00 = 0
314
315
316 == 2.4  Payload Explanation and Sensor Interface ==
317
318
319 === 2.4.1  Device ID ===
320
321 By default, the Device ID equal to the last 6 bytes of IMEI.
322
323 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324
325 **Example:**
326
327 AT+DEUI=A84041F15612
328
329 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330
331
332
333 === 2.4.2  Version Info ===
334
335 Specify the software version: 0x64=100, means firmware version 1.00.
336
337 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338
339
340
341 === 2.4.3  Battery Info ===
342
343 (((
344 Check the battery voltage for LSE01.
345 )))
346
347 (((
348 Ex1: 0x0B45 = 2885mV
349 )))
350
351 (((
352 Ex2: 0x0B49 = 2889mV
353 )))
354
355
356
357 === 2.4.4  Signal Strength ===
358
359 NB-IoT Network signal Strength.
360
361 **Ex1: 0x1d = 29**
362
363 (% style="color:blue" %)**0**(%%)  -113dBm or less
364
365 (% style="color:blue" %)**1**(%%)  -111dBm
366
367 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368
369 (% style="color:blue" %)**31**  (%%) -51dBm or greater
370
371 (% style="color:blue" %)**99**   (%%) Not known or not detectable
372
373
374
375 === 2.4.5  Soil Moisture ===
376
377 (((
378 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 )))
380
381 (((
382 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
383 )))
384
385 (((
386
387 )))
388
389 (((
390 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
391 )))
392
393
394
395 === 2.4.6  Soil Temperature ===
396
397 (((
398 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
399 )))
400
401 (((
402 **Example**:
403 )))
404
405 (((
406 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
407 )))
408
409 (((
410 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
411 )))
412
413
414
415 === 2.4.7  Soil Conductivity (EC) ===
416
417 (((
418 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
419 )))
420
421 (((
422 For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
423 )))
424
425 (((
426 Generally, the EC value of irrigation water is less than 800uS / cm.
427 )))
428
429 (((
430
431 )))
432
433 (((
434
435 )))
436
437 === 2.4.8  Digital Interrupt ===
438
439 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
440
441 The command is:
442
443 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
444
445
446 The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
447
448
449 Example:
450
451 0x(00): Normal uplink packet.
452
453 0x(01): Interrupt Uplink Packet.
454
455
456
457 === 2.4.9  ​+5V Output ===
458
459 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
460
461
462 The 5V output time can be controlled by AT Command.
463
464 (% style="color:blue" %)**AT+5VT=1000**
465
466 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
467
468
469
470 == 2.4 Uplink Interval ==
471
472 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
473
474
475
476 == 2.5 Downlink Payload ==
477
478 By default, LSE50 prints the downlink payload to console port.
479
480 [[image:image-20220606165544-8.png]]
481
482
483 (((
484 (% style="color:blue" %)**Examples:**
485 )))
486
487 (((
488
489 )))
490
491 * (((
492 (% style="color:blue" %)**Set TDC**
493 )))
494
495 (((
496 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
497 )))
498
499 (((
500 Payload:    01 00 00 1E    TDC=30S
501 )))
502
503 (((
504 Payload:    01 00 00 3C    TDC=60S
505 )))
506
507 (((
508
509 )))
510
511 * (((
512 (% style="color:blue" %)**Reset**
513 )))
514
515 (((
516 If payload = 0x04FF, it will reset the LSE01
517 )))
518
519
520 * (% style="color:blue" %)**CFM**
521
522 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
523
524
525
526 == 2.6 ​Show Data in DataCake IoT Server ==
527
528 (((
529 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
530 )))
531
532 (((
533
534 )))
535
536 (((
537 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
538 )))
539
540 (((
541 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
542 )))
543
544
545 [[image:1654505857935-743.png]]
546
547
548 [[image:1654505874829-548.png]]
549
550
551 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
552
553 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
554
555
556 [[image:1654505905236-553.png]]
557
558
559 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
560
561 [[image:1654505925508-181.png]]
562
563
564
565 == 2.7 Frequency Plans ==
566
567 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
568
569
570 === 2.7.1 EU863-870 (EU868) ===
571
572 (% style="color:#037691" %)** Uplink:**
573
574 868.1 - SF7BW125 to SF12BW125
575
576 868.3 - SF7BW125 to SF12BW125 and SF7BW250
577
578 868.5 - SF7BW125 to SF12BW125
579
580 867.1 - SF7BW125 to SF12BW125
581
582 867.3 - SF7BW125 to SF12BW125
583
584 867.5 - SF7BW125 to SF12BW125
585
586 867.7 - SF7BW125 to SF12BW125
587
588 867.9 - SF7BW125 to SF12BW125
589
590 868.8 - FSK
591
592
593 (% style="color:#037691" %)** Downlink:**
594
595 Uplink channels 1-9 (RX1)
596
597 869.525 - SF9BW125 (RX2 downlink only)
598
599
600
601 === 2.7.2 US902-928(US915) ===
602
603 Used in USA, Canada and South America. Default use CHE=2
604
605 (% style="color:#037691" %)**Uplink:**
606
607 903.9 - SF7BW125 to SF10BW125
608
609 904.1 - SF7BW125 to SF10BW125
610
611 904.3 - SF7BW125 to SF10BW125
612
613 904.5 - SF7BW125 to SF10BW125
614
615 904.7 - SF7BW125 to SF10BW125
616
617 904.9 - SF7BW125 to SF10BW125
618
619 905.1 - SF7BW125 to SF10BW125
620
621 905.3 - SF7BW125 to SF10BW125
622
623
624 (% style="color:#037691" %)**Downlink:**
625
626 923.3 - SF7BW500 to SF12BW500
627
628 923.9 - SF7BW500 to SF12BW500
629
630 924.5 - SF7BW500 to SF12BW500
631
632 925.1 - SF7BW500 to SF12BW500
633
634 925.7 - SF7BW500 to SF12BW500
635
636 926.3 - SF7BW500 to SF12BW500
637
638 926.9 - SF7BW500 to SF12BW500
639
640 927.5 - SF7BW500 to SF12BW500
641
642 923.3 - SF12BW500(RX2 downlink only)
643
644
645
646 === 2.7.3 CN470-510 (CN470) ===
647
648 Used in China, Default use CHE=1
649
650 (% style="color:#037691" %)**Uplink:**
651
652 486.3 - SF7BW125 to SF12BW125
653
654 486.5 - SF7BW125 to SF12BW125
655
656 486.7 - SF7BW125 to SF12BW125
657
658 486.9 - SF7BW125 to SF12BW125
659
660 487.1 - SF7BW125 to SF12BW125
661
662 487.3 - SF7BW125 to SF12BW125
663
664 487.5 - SF7BW125 to SF12BW125
665
666 487.7 - SF7BW125 to SF12BW125
667
668
669 (% style="color:#037691" %)**Downlink:**
670
671 506.7 - SF7BW125 to SF12BW125
672
673 506.9 - SF7BW125 to SF12BW125
674
675 507.1 - SF7BW125 to SF12BW125
676
677 507.3 - SF7BW125 to SF12BW125
678
679 507.5 - SF7BW125 to SF12BW125
680
681 507.7 - SF7BW125 to SF12BW125
682
683 507.9 - SF7BW125 to SF12BW125
684
685 508.1 - SF7BW125 to SF12BW125
686
687 505.3 - SF12BW125 (RX2 downlink only)
688
689
690
691 === 2.7.4 AU915-928(AU915) ===
692
693 Default use CHE=2
694
695 (% style="color:#037691" %)**Uplink:**
696
697 916.8 - SF7BW125 to SF12BW125
698
699 917.0 - SF7BW125 to SF12BW125
700
701 917.2 - SF7BW125 to SF12BW125
702
703 917.4 - SF7BW125 to SF12BW125
704
705 917.6 - SF7BW125 to SF12BW125
706
707 917.8 - SF7BW125 to SF12BW125
708
709 918.0 - SF7BW125 to SF12BW125
710
711 918.2 - SF7BW125 to SF12BW125
712
713
714 (% style="color:#037691" %)**Downlink:**
715
716 923.3 - SF7BW500 to SF12BW500
717
718 923.9 - SF7BW500 to SF12BW500
719
720 924.5 - SF7BW500 to SF12BW500
721
722 925.1 - SF7BW500 to SF12BW500
723
724 925.7 - SF7BW500 to SF12BW500
725
726 926.3 - SF7BW500 to SF12BW500
727
728 926.9 - SF7BW500 to SF12BW500
729
730 927.5 - SF7BW500 to SF12BW500
731
732 923.3 - SF12BW500(RX2 downlink only)
733
734
735
736 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
737
738 (% style="color:#037691" %)**Default Uplink channel:**
739
740 923.2 - SF7BW125 to SF10BW125
741
742 923.4 - SF7BW125 to SF10BW125
743
744
745 (% style="color:#037691" %)**Additional Uplink Channel**:
746
747 (OTAA mode, channel added by JoinAccept message)
748
749 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
750
751 922.2 - SF7BW125 to SF10BW125
752
753 922.4 - SF7BW125 to SF10BW125
754
755 922.6 - SF7BW125 to SF10BW125
756
757 922.8 - SF7BW125 to SF10BW125
758
759 923.0 - SF7BW125 to SF10BW125
760
761 922.0 - SF7BW125 to SF10BW125
762
763
764 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
765
766 923.6 - SF7BW125 to SF10BW125
767
768 923.8 - SF7BW125 to SF10BW125
769
770 924.0 - SF7BW125 to SF10BW125
771
772 924.2 - SF7BW125 to SF10BW125
773
774 924.4 - SF7BW125 to SF10BW125
775
776 924.6 - SF7BW125 to SF10BW125
777
778
779 (% style="color:#037691" %)** Downlink:**
780
781 Uplink channels 1-8 (RX1)
782
783 923.2 - SF10BW125 (RX2)
784
785
786
787 === 2.7.6 KR920-923 (KR920) ===
788
789 Default channel:
790
791 922.1 - SF7BW125 to SF12BW125
792
793 922.3 - SF7BW125 to SF12BW125
794
795 922.5 - SF7BW125 to SF12BW125
796
797
798 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
799
800 922.1 - SF7BW125 to SF12BW125
801
802 922.3 - SF7BW125 to SF12BW125
803
804 922.5 - SF7BW125 to SF12BW125
805
806 922.7 - SF7BW125 to SF12BW125
807
808 922.9 - SF7BW125 to SF12BW125
809
810 923.1 - SF7BW125 to SF12BW125
811
812 923.3 - SF7BW125 to SF12BW125
813
814
815 (% style="color:#037691" %)**Downlink:**
816
817 Uplink channels 1-7(RX1)
818
819 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
820
821
822
823 === 2.7.7 IN865-867 (IN865) ===
824
825 (% style="color:#037691" %)** Uplink:**
826
827 865.0625 - SF7BW125 to SF12BW125
828
829 865.4025 - SF7BW125 to SF12BW125
830
831 865.9850 - SF7BW125 to SF12BW125
832
833
834 (% style="color:#037691" %) **Downlink:**
835
836 Uplink channels 1-3 (RX1)
837
838 866.550 - SF10BW125 (RX2)
839
840
841
842
843 == 2.8 LED Indicator ==
844
845 The LSE01 has an internal LED which is to show the status of different state.
846
847 * Blink once when device power on.
848 * Solid ON for 5 seconds once device successful Join the network.
849 * Blink once when device transmit a packet.
850
851 == 2.9 Installation in Soil ==
852
853 **Measurement the soil surface**
854
855
856 [[image:1654506634463-199.png]] ​
857
858 (((
859 (((
860 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
861 )))
862 )))
863
864
865
866 [[image:1654506665940-119.png]]
867
868 (((
869 Dig a hole with diameter > 20CM.
870 )))
871
872 (((
873 Horizontal insert the probe to the soil and fill the hole for long term measurement.
874 )))
875
876
877 == 2.10 ​Firmware Change Log ==
878
879 (((
880 **Firmware download link:**
881 )))
882
883 (((
884 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
885 )))
886
887 (((
888
889 )))
890
891 (((
892 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
893 )))
894
895 (((
896
897 )))
898
899 (((
900 **V1.0.**
901 )))
902
903 (((
904 Release
905 )))
906
907
908 == 2.11 ​Battery Analysis ==
909
910 === 2.11.1 ​Battery Type ===
911
912 (((
913 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
914 )))
915
916 (((
917 The battery is designed to last for more than 5 years for the LSN50.
918 )))
919
920 (((
921 (((
922 The battery-related documents are as below:
923 )))
924 )))
925
926 * (((
927 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
928 )))
929 * (((
930 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
931 )))
932 * (((
933 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
934 )))
935
936 [[image:image-20220610172436-1.png]]
937
938
939
940 === 2.11.2 ​Battery Note ===
941
942 (((
943 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
944 )))
945
946
947
948 === 2.11.3 Replace the battery ===
949
950 (((
951 If Battery is lower than 2.7v, user should replace the battery of LSE01.
952 )))
953
954 (((
955 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
956 )))
957
958 (((
959 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
960 )))
961
962
963
964 = 3. ​Using the AT Commands =
965
966 == 3.1 Access AT Commands ==
967
968
969 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
970
971 [[image:1654501986557-872.png||height="391" width="800"]]
972
973
974 Or if you have below board, use below connection:
975
976
977 [[image:1654502005655-729.png||height="503" width="801"]]
978
979
980
981 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
982
983
984 [[image:1654502050864-459.png||height="564" width="806"]]
985
986
987 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
988
989
990 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
991
992 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
993
994 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
995
996 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
997
998
999 (% style="color:#037691" %)**General Commands**(%%)      
1000
1001 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
1002
1003 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
1004
1005 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
1006
1007 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
1008
1009
1010 (% style="color:#037691" %)**Keys, IDs and EUIs management**
1011
1012 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1013
1014 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1015
1016 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1017
1018 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1019
1020 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1021
1022 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1023
1024 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1025
1026 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1027
1028 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1029
1030 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1031
1032 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1033
1034 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1035
1036 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1037
1038 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1039
1040 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1041
1042 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1043
1044
1045 (% style="color:#037691" %)**LoRa Network Management**
1046
1047 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1048
1049 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1050
1051 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1052
1053 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1054
1055 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1056
1057 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1058
1059 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1060
1061 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1062
1063 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1064
1065 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1066
1067 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1068
1069 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1070
1071 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1072
1073 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1074
1075 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1076
1077
1078 (% style="color:#037691" %)**Information** 
1079
1080 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1081
1082 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1083
1084 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1085
1086 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1087
1088 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1089
1090 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1091
1092 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1093
1094
1095 = ​4. FAQ =
1096
1097 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1098
1099 (((
1100 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1101 When downloading the images, choose the required image file for download. ​
1102 )))
1103
1104 (((
1105
1106 )))
1107
1108 (((
1109 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1110 )))
1111
1112 (((
1113
1114 )))
1115
1116 (((
1117 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1118 )))
1119
1120 (((
1121
1122 )))
1123
1124 (((
1125 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1126 )))
1127
1128 [[image:image-20220606154726-3.png]]
1129
1130
1131 When you use the TTN network, the US915 frequency bands use are:
1132
1133 * 903.9 - SF7BW125 to SF10BW125
1134 * 904.1 - SF7BW125 to SF10BW125
1135 * 904.3 - SF7BW125 to SF10BW125
1136 * 904.5 - SF7BW125 to SF10BW125
1137 * 904.7 - SF7BW125 to SF10BW125
1138 * 904.9 - SF7BW125 to SF10BW125
1139 * 905.1 - SF7BW125 to SF10BW125
1140 * 905.3 - SF7BW125 to SF10BW125
1141 * 904.6 - SF8BW500
1142
1143 (((
1144 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1145
1146 * (% style="color:#037691" %)**AT+CHE=2**
1147 * (% style="color:#037691" %)**ATZ**
1148 )))
1149
1150 (((
1151
1152
1153 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1154 )))
1155
1156 (((
1157
1158 )))
1159
1160 (((
1161 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1162 )))
1163
1164 [[image:image-20220606154825-4.png]]
1165
1166
1167 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1168
1169 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1170
1171
1172 = 5. Trouble Shooting =
1173
1174 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1175
1176 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1177
1178
1179 == 5.2 AT Command input doesn't work ==
1180
1181 (((
1182 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1183 )))
1184
1185
1186 == 5.3 Device rejoin in at the second uplink packet ==
1187
1188 (% style="color:#4f81bd" %)**Issue describe as below:**
1189
1190 [[image:1654500909990-784.png]]
1191
1192
1193 (% style="color:#4f81bd" %)**Cause for this issue:**
1194
1195 (((
1196 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1197 )))
1198
1199
1200 (% style="color:#4f81bd" %)**Solution: **
1201
1202 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1203
1204 [[image:1654500929571-736.png||height="458" width="832"]]
1205
1206
1207 = 6. ​Order Info =
1208
1209
1210 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1211
1212
1213 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1214
1215 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1216 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1217 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1218 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1219 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1220 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1221 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1222 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1223
1224 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1225
1226 * (% style="color:red" %)**4**(%%): 4000mAh battery
1227 * (% style="color:red" %)**8**(%%): 8500mAh battery
1228
1229 (% class="wikigeneratedid" %)
1230 (((
1231
1232 )))
1233
1234 = 7. Packing Info =
1235
1236 (((
1237
1238
1239 (% style="color:#037691" %)**Package Includes**:
1240 )))
1241
1242 * (((
1243 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1244 )))
1245
1246 (((
1247
1248
1249 (% style="color:#037691" %)**Dimension and weight**:
1250 )))
1251
1252 * (((
1253 Device Size: cm
1254 )))
1255 * (((
1256 Device Weight: g
1257 )))
1258 * (((
1259 Package Size / pcs : cm
1260 )))
1261 * (((
1262 Weight / pcs : g
1263
1264
1265 )))
1266
1267 = 8. Support =
1268
1269 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1270 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0