Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6 **Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18
19 (((
20 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 )))
22
23 (((
24 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 )))
26
27 (((
28 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 )))
34
35 (((
36 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 )))
38
39
40 [[image:1654503236291-817.png]]
41
42
43 [[image:1654503265560-120.png]]
44
45
46
47 == 1.2 ​Features ==
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra low power consumption
51 * Monitor Soil Moisture
52 * Monitor Soil Temperature
53 * Monitor Soil Conductivity
54 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 * AT Commands to change parameters
56 * Uplink on periodically
57 * Downlink to change configure
58 * IP66 Waterproof Enclosure
59 * 4000mAh or 8500mAh Battery for long term use
60
61
62 == 1.3 Specification ==
63
64 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65
66 [[image:image-20220606162220-5.png]]
67
68
69
70 == ​1.4 Applications ==
71
72 * Smart Agriculture
73
74 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75
76
77 == 1.5 Firmware Change log ==
78
79
80 **LSE01 v1.0 :**  Release
81
82
83
84 = 2. Configure LSE01 to connect to LoRaWAN network =
85
86 == 2.1 How it works ==
87
88 (((
89 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 )))
91
92 (((
93 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
94 )))
95
96
97
98 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99
100 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101
102
103 [[image:1654503992078-669.png]]
104
105
106 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107
108
109 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110
111 Each LSE01 is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220606163732-6.jpeg]]
114
115 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116
117 **Add APP EUI in the application**
118
119
120 [[image:1654504596150-405.png]]
121
122
123
124 **Add APP KEY and DEV EUI**
125
126 [[image:1654504683289-357.png]]
127
128
129
130 **Step 2**: Power on LSE01
131
132
133 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134
135 [[image:image-20220606163915-7.png]]
136
137
138 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139
140 [[image:1654504778294-788.png]]
141
142
143
144 == 2.3 Uplink Payload ==
145
146 === 2.3.1 MOD~=0(Default Mode) ===
147
148 LSE01 will uplink payload via LoRaWAN with below payload format: 
149
150
151 Uplink payload includes in total 11 bytes.
152
153 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 |(((
155 **Size**
156
157 **(bytes)**
158 )))|**2**|**2**|**2**|**2**|**2**|**1**
159 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 Temperature
161
162 (Reserve, Ignore now)
163 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 MOD & Digital Interrupt
165
166 (Optional)
167 )))
168
169
170
171
172
173 === 2.3.2 MOD~=1(Original value) ===
174
175 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176
177 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
178 |(((
179 **Size**
180
181 **(bytes)**
182 )))|**2**|**2**|**2**|**2**|**2**|**1**
183 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 Temperature
185
186 (Reserve, Ignore now)
187 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 MOD & Digital Interrupt
189
190 (Optional)
191 )))
192
193
194
195
196 === 2.3.3 Battery Info ===
197
198 Check the battery voltage for LSE01.
199
200 Ex1: 0x0B45 = 2885mV
201
202 Ex2: 0x0B49 = 2889mV
203
204
205
206 === 2.3.4 Soil Moisture ===
207
208 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209
210 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
211
212
213 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
214
215
216
217 === 2.3.5 Soil Temperature ===
218
219 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
220
221 **Example**:
222
223 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
224
225 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226
227
228
229 === 2.3.6 Soil Conductivity (EC) ===
230
231 (((
232 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
233 )))
234
235 (((
236 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
237 )))
238
239 (((
240 Generally, the EC value of irrigation water is less than 800uS / cm.
241 )))
242
243 (((
244
245 )))
246
247 (((
248
249 )))
250
251 === 2.3.7 MOD ===
252
253 Firmware version at least v2.1 supports changing mode.
254
255 For example, bytes[10]=90
256
257 mod=(bytes[10]>>7)&0x01=1.
258
259
260 **Downlink Command:**
261
262 If payload = 0x0A00, workmode=0
263
264 If** **payload =** **0x0A01, workmode=1
265
266
267
268 === 2.3.8 ​Decode payload in The Things Network ===
269
270 While using TTN network, you can add the payload format to decode the payload.
271
272
273 [[image:1654505570700-128.png]]
274
275 The payload decoder function for TTN is here:
276
277 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
278
279
280
281 == 2.4 Uplink Interval ==
282
283 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284
285
286
287 == 2.5 Downlink Payload ==
288
289 By default, LSE50 prints the downlink payload to console port.
290
291 [[image:image-20220606165544-8.png]]
292
293
294 **Examples:**
295
296
297 * **Set TDC**
298
299 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
300
301 Payload:    01 00 00 1E    TDC=30S
302
303 Payload:    01 00 00 3C    TDC=60S
304
305
306 * **Reset**
307
308 If payload = 0x04FF, it will reset the LSE01
309
310
311 * **CFM**
312
313 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
314
315
316
317 == 2.6 ​Show Data in DataCake IoT Server ==
318
319 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
320
321
322 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
323
324 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
325
326
327 [[image:1654505857935-743.png]]
328
329
330 [[image:1654505874829-548.png]]
331
332 Step 3: Create an account or log in Datacake.
333
334 Step 4: Search the LSE01 and add DevEUI.
335
336
337 [[image:1654505905236-553.png]]
338
339
340 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
341
342 [[image:1654505925508-181.png]]
343
344
345
346 == 2.7 Frequency Plans ==
347
348 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
349
350
351 === 2.7.1 EU863-870 (EU868) ===
352
353 (% style="color:#037691" %)** Uplink:**
354
355 868.1 - SF7BW125 to SF12BW125
356
357 868.3 - SF7BW125 to SF12BW125 and SF7BW250
358
359 868.5 - SF7BW125 to SF12BW125
360
361 867.1 - SF7BW125 to SF12BW125
362
363 867.3 - SF7BW125 to SF12BW125
364
365 867.5 - SF7BW125 to SF12BW125
366
367 867.7 - SF7BW125 to SF12BW125
368
369 867.9 - SF7BW125 to SF12BW125
370
371 868.8 - FSK
372
373
374 (% style="color:#037691" %)** Downlink:**
375
376 Uplink channels 1-9 (RX1)
377
378 869.525 - SF9BW125 (RX2 downlink only)
379
380
381
382 === 2.7.2 US902-928(US915) ===
383
384 Used in USA, Canada and South America. Default use CHE=2
385
386 (% style="color:#037691" %)**Uplink:**
387
388 903.9 - SF7BW125 to SF10BW125
389
390 904.1 - SF7BW125 to SF10BW125
391
392 904.3 - SF7BW125 to SF10BW125
393
394 904.5 - SF7BW125 to SF10BW125
395
396 904.7 - SF7BW125 to SF10BW125
397
398 904.9 - SF7BW125 to SF10BW125
399
400 905.1 - SF7BW125 to SF10BW125
401
402 905.3 - SF7BW125 to SF10BW125
403
404
405 (% style="color:#037691" %)**Downlink:**
406
407 923.3 - SF7BW500 to SF12BW500
408
409 923.9 - SF7BW500 to SF12BW500
410
411 924.5 - SF7BW500 to SF12BW500
412
413 925.1 - SF7BW500 to SF12BW500
414
415 925.7 - SF7BW500 to SF12BW500
416
417 926.3 - SF7BW500 to SF12BW500
418
419 926.9 - SF7BW500 to SF12BW500
420
421 927.5 - SF7BW500 to SF12BW500
422
423 923.3 - SF12BW500(RX2 downlink only)
424
425
426
427 === 2.7.3 CN470-510 (CN470) ===
428
429 Used in China, Default use CHE=1
430
431 (% style="color:#037691" %)**Uplink:**
432
433 486.3 - SF7BW125 to SF12BW125
434
435 486.5 - SF7BW125 to SF12BW125
436
437 486.7 - SF7BW125 to SF12BW125
438
439 486.9 - SF7BW125 to SF12BW125
440
441 487.1 - SF7BW125 to SF12BW125
442
443 487.3 - SF7BW125 to SF12BW125
444
445 487.5 - SF7BW125 to SF12BW125
446
447 487.7 - SF7BW125 to SF12BW125
448
449
450 (% style="color:#037691" %)**Downlink:**
451
452 506.7 - SF7BW125 to SF12BW125
453
454 506.9 - SF7BW125 to SF12BW125
455
456 507.1 - SF7BW125 to SF12BW125
457
458 507.3 - SF7BW125 to SF12BW125
459
460 507.5 - SF7BW125 to SF12BW125
461
462 507.7 - SF7BW125 to SF12BW125
463
464 507.9 - SF7BW125 to SF12BW125
465
466 508.1 - SF7BW125 to SF12BW125
467
468 505.3 - SF12BW125 (RX2 downlink only)
469
470
471
472 === 2.7.4 AU915-928(AU915) ===
473
474 Default use CHE=2
475
476 (% style="color:#037691" %)**Uplink:**
477
478 916.8 - SF7BW125 to SF12BW125
479
480 917.0 - SF7BW125 to SF12BW125
481
482 917.2 - SF7BW125 to SF12BW125
483
484 917.4 - SF7BW125 to SF12BW125
485
486 917.6 - SF7BW125 to SF12BW125
487
488 917.8 - SF7BW125 to SF12BW125
489
490 918.0 - SF7BW125 to SF12BW125
491
492 918.2 - SF7BW125 to SF12BW125
493
494
495 (% style="color:#037691" %)**Downlink:**
496
497 923.3 - SF7BW500 to SF12BW500
498
499 923.9 - SF7BW500 to SF12BW500
500
501 924.5 - SF7BW500 to SF12BW500
502
503 925.1 - SF7BW500 to SF12BW500
504
505 925.7 - SF7BW500 to SF12BW500
506
507 926.3 - SF7BW500 to SF12BW500
508
509 926.9 - SF7BW500 to SF12BW500
510
511 927.5 - SF7BW500 to SF12BW500
512
513 923.3 - SF12BW500(RX2 downlink only)
514
515
516
517 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
518
519 (% style="color:#037691" %)**Default Uplink channel:**
520
521 923.2 - SF7BW125 to SF10BW125
522
523 923.4 - SF7BW125 to SF10BW125
524
525
526 (% style="color:#037691" %)**Additional Uplink Channel**:
527
528 (OTAA mode, channel added by JoinAccept message)
529
530 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
531
532 922.2 - SF7BW125 to SF10BW125
533
534 922.4 - SF7BW125 to SF10BW125
535
536 922.6 - SF7BW125 to SF10BW125
537
538 922.8 - SF7BW125 to SF10BW125
539
540 923.0 - SF7BW125 to SF10BW125
541
542 922.0 - SF7BW125 to SF10BW125
543
544
545 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
546
547 923.6 - SF7BW125 to SF10BW125
548
549 923.8 - SF7BW125 to SF10BW125
550
551 924.0 - SF7BW125 to SF10BW125
552
553 924.2 - SF7BW125 to SF10BW125
554
555 924.4 - SF7BW125 to SF10BW125
556
557 924.6 - SF7BW125 to SF10BW125
558
559
560 (% style="color:#037691" %)** Downlink:**
561
562 Uplink channels 1-8 (RX1)
563
564 923.2 - SF10BW125 (RX2)
565
566
567
568 === 2.7.6 KR920-923 (KR920) ===
569
570 Default channel:
571
572 922.1 - SF7BW125 to SF12BW125
573
574 922.3 - SF7BW125 to SF12BW125
575
576 922.5 - SF7BW125 to SF12BW125
577
578
579 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
580
581 922.1 - SF7BW125 to SF12BW125
582
583 922.3 - SF7BW125 to SF12BW125
584
585 922.5 - SF7BW125 to SF12BW125
586
587 922.7 - SF7BW125 to SF12BW125
588
589 922.9 - SF7BW125 to SF12BW125
590
591 923.1 - SF7BW125 to SF12BW125
592
593 923.3 - SF7BW125 to SF12BW125
594
595
596 (% style="color:#037691" %)**Downlink:**
597
598 Uplink channels 1-7(RX1)
599
600 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
601
602
603
604 === 2.7.7 IN865-867 (IN865) ===
605
606 (% style="color:#037691" %)** Uplink:**
607
608 865.0625 - SF7BW125 to SF12BW125
609
610 865.4025 - SF7BW125 to SF12BW125
611
612 865.9850 - SF7BW125 to SF12BW125
613
614
615 (% style="color:#037691" %) **Downlink:**
616
617 Uplink channels 1-3 (RX1)
618
619 866.550 - SF10BW125 (RX2)
620
621
622
623
624 == 2.8 LED Indicator ==
625
626 The LSE01 has an internal LED which is to show the status of different state.
627
628 * Blink once when device power on.
629 * Solid ON for 5 seconds once device successful Join the network.
630 * Blink once when device transmit a packet.
631
632 == 2.9 Installation in Soil ==
633
634 **Measurement the soil surface**
635
636
637 [[image:1654506634463-199.png]] ​
638
639 (((
640 (((
641 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
642 )))
643 )))
644
645
646 [[image:1654506665940-119.png]]
647
648 (((
649 Dig a hole with diameter > 20CM.
650 )))
651
652 (((
653 Horizontal insert the probe to the soil and fill the hole for long term measurement.
654 )))
655
656
657 == 2.10 ​Firmware Change Log ==
658
659 (((
660 **Firmware download link:**
661 )))
662
663 (((
664 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
665 )))
666
667 (((
668
669 )))
670
671 (((
672 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
673 )))
674
675 (((
676
677 )))
678
679 (((
680 **V1.0.**
681 )))
682
683 (((
684 Release
685 )))
686
687
688 == 2.11 ​Battery Analysis ==
689
690 === 2.11.1 ​Battery Type ===
691
692 (((
693 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
694 )))
695
696 (((
697 The battery is designed to last for more than 5 years for the LSN50.
698 )))
699
700 (((
701 (((
702 The battery-related documents are as below:
703 )))
704 )))
705
706 * (((
707 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
708 )))
709 * (((
710 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
711 )))
712 * (((
713 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
714 )))
715
716 [[image:image-20220606171726-9.png]]
717
718
719
720 === 2.11.2 ​Battery Note ===
721
722 (((
723 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
724 )))
725
726
727
728 === 2.11.3 Replace the battery ===
729
730 (((
731 If Battery is lower than 2.7v, user should replace the battery of LSE01.
732 )))
733
734 (((
735 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
736 )))
737
738 (((
739 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
740 )))
741
742
743
744 = 3. ​Using the AT Commands =
745
746 == 3.1 Access AT Commands ==
747
748
749 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
750
751 [[image:1654501986557-872.png||height="391" width="800"]]
752
753
754 Or if you have below board, use below connection:
755
756
757 [[image:1654502005655-729.png||height="503" width="801"]]
758
759
760
761 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
762
763
764 [[image:1654502050864-459.png||height="564" width="806"]]
765
766
767 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
768
769
770 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
771
772 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
773
774 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
775
776 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
777
778
779 (% style="color:#037691" %)**General Commands**(%%)      
780
781 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
782
783 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
784
785 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
786
787 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
788
789
790 (% style="color:#037691" %)**Keys, IDs and EUIs management**
791
792 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
793
794 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
795
796 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
797
798 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
799
800 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
801
802 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
803
804 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
805
806 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
807
808 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
809
810 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
811
812 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
813
814 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
815
816 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
817
818 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
819
820 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
821
822 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
823
824
825 (% style="color:#037691" %)**LoRa Network Management**
826
827 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
828
829 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
830
831 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
832
833 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
834
835 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
836
837 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
838
839 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
840
841 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
842
843 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
844
845 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
846
847 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
848
849 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
850
851 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
852
853 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
854
855 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
856
857
858 (% style="color:#037691" %)**Information** 
859
860 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
861
862 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
863
864 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
865
866 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
867
868 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
869
870 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
871
872 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
873
874
875 = ​4. FAQ =
876
877 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
878
879 (((
880 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
881 When downloading the images, choose the required image file for download. ​
882 )))
883
884 (((
885
886 )))
887
888 (((
889 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
890 )))
891
892 (((
893
894 )))
895
896 (((
897 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
898 )))
899
900 (((
901
902 )))
903
904 (((
905 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
906 )))
907
908 [[image:image-20220606154726-3.png]]
909
910
911 When you use the TTN network, the US915 frequency bands use are:
912
913 * 903.9 - SF7BW125 to SF10BW125
914 * 904.1 - SF7BW125 to SF10BW125
915 * 904.3 - SF7BW125 to SF10BW125
916 * 904.5 - SF7BW125 to SF10BW125
917 * 904.7 - SF7BW125 to SF10BW125
918 * 904.9 - SF7BW125 to SF10BW125
919 * 905.1 - SF7BW125 to SF10BW125
920 * 905.3 - SF7BW125 to SF10BW125
921 * 904.6 - SF8BW500
922
923 (((
924 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
925 )))
926
927 (% class="box infomessage" %)
928 (((
929 **AT+CHE=2**
930 )))
931
932 (% class="box infomessage" %)
933 (((
934 **ATZ**
935 )))
936
937 (((
938 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
939 )))
940
941 (((
942
943 )))
944
945 (((
946 The **AU915** band is similar. Below are the AU915 Uplink Channels.
947 )))
948
949 [[image:image-20220606154825-4.png]]
950
951
952
953 = 5. Trouble Shooting =
954
955 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
956
957 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
958
959
960 == 5.2 AT Command input doesn’t work ==
961
962 (((
963 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
964 )))
965
966
967 == 5.3 Device rejoin in at the second uplink packet ==
968
969 (% style="color:#4f81bd" %)**Issue describe as below:**
970
971 [[image:1654500909990-784.png]]
972
973
974 (% style="color:#4f81bd" %)**Cause for this issue:**
975
976 (((
977 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
978 )))
979
980
981 (% style="color:#4f81bd" %)**Solution: **
982
983 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
984
985 [[image:1654500929571-736.png||height="458" width="832"]]
986
987
988 = 6. ​Order Info =
989
990
991 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
992
993
994 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
995
996 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
997 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
998 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
999 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1000 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1001 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1002 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1003 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1004
1005 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1006
1007 * (% style="color:red" %)**4**(%%): 4000mAh battery
1008 * (% style="color:red" %)**8**(%%): 8500mAh battery
1009
1010 (% class="wikigeneratedid" %)
1011 (((
1012
1013 )))
1014
1015 = 7. Packing Info =
1016
1017 (((
1018
1019
1020 (% style="color:#037691" %)**Package Includes**:
1021 )))
1022
1023 * (((
1024 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1025 )))
1026
1027 (((
1028
1029
1030 (% style="color:#037691" %)**Dimension and weight**:
1031 )))
1032
1033 * (((
1034 Device Size: cm
1035 )))
1036 * (((
1037 Device Weight: g
1038 )))
1039 * (((
1040 Package Size / pcs : cm
1041 )))
1042 * (((
1043 Weight / pcs : g
1044
1045
1046
1047 )))
1048
1049 = 8. Support =
1050
1051 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1052 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1053
1054
1055 ~)~)~)
1056 ~)~)~)
1057 ~)~)~)
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0