Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3
4
5
6
7
8
9
10
11 = 1. Introduction =
12
13 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14
15 (((
16 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 )))
18
19 (((
20 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 )))
22
23 (((
24 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 )))
26
27 (((
28 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 )))
30
31 (((
32 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 )))
34
35
36 [[image:1654503236291-817.png]]
37
38
39 [[image:1654503265560-120.png]]
40
41
42
43 == 1.2 ​Features ==
44
45 * LoRaWAN 1.0.3 Class A
46 * Ultra low power consumption
47 * Monitor Soil Moisture
48 * Monitor Soil Temperature
49 * Monitor Soil Conductivity
50 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 * AT Commands to change parameters
52 * Uplink on periodically
53 * Downlink to change configure
54 * IP66 Waterproof Enclosure
55 * 4000mAh or 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60
61 [[image:image-20220606162220-5.png]]
62
63
64
65 == ​1.4 Applications ==
66
67 * Smart Agriculture
68
69
70 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71
72
73 (% class="wikigeneratedid" %)
74 == 1.5 Firmware Change log ==
75
76
77 **LSE01 v1.0 :**  Release
78
79
80
81 = 2. Configure LSE01 to connect to LoRaWAN network =
82
83 == 2.1 How it works ==
84
85 (((
86 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 )))
88
89 (((
90 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 )))
92
93
94
95 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96
97 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98
99
100 [[image:1654503992078-669.png]]
101
102
103 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104
105
106 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107
108 Each LSE01 is shipped with a sticker with the default device EUI as below:
109
110 [[image:image-20220606163732-6.jpeg]]
111
112 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
113
114 **Add APP EUI in the application**
115
116
117 [[image:1654504596150-405.png]]
118
119
120
121 **Add APP KEY and DEV EUI**
122
123 [[image:1654504683289-357.png]]
124
125 |(((
126
127 )))
128
129 **Step 2**: Power on LSE01
130
131
132 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133
134
135
136 |(((
137
138 )))
139
140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
141
142
143
144
145
146 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
147
148 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
149
150
151
152
153 1.
154 11. ​Uplink Payload
155 111. MOD=0(Default Mode)
156
157 LSE01 will uplink payload via LoRaWAN with below payload format: 
158
159
160 Uplink payload includes in total 11 bytes.
161
162
163 |(((
164 **Size**
165
166 **(bytes)**
167 )))|**2**|**2**|**2**|**2**|**2**|**1**
168 |**Value**|[[BAT>>path:#bat]]|(((
169 Temperature
170
171 (Reserve, Ignore now)
172 )))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
173 MOD & Digital Interrupt
174
175 (Optional)
176 )))
177
178 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
179
180
181 1.
182 11.
183 111. MOD=1(Original value)
184
185 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
186
187 |(((
188 **Size**
189
190 **(bytes)**
191 )))|**2**|**2**|**2**|**2**|**2**|**1**
192 |**Value**|[[BAT>>path:#bat]]|(((
193 Temperature
194
195 (Reserve, Ignore now)
196 )))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
197 MOD & Digital Interrupt
198
199 (Optional)
200 )))
201
202 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
203
204 1.
205 11.
206 111. Battery Info
207
208 Check the battery voltage for LSE01.
209
210 Ex1: 0x0B45 = 2885mV
211
212 Ex2: 0x0B49 = 2889mV
213
214
215
216 1.
217 11.
218 111. Soil Moisture
219
220 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
221
222 For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
223
224 **05DC(H) = 1500(D) /100 = 15%.**
225
226
227 1.
228 11.
229 111. Soil Temperature
230
231 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
232
233 **Example**:
234
235 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
236
237 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
238
239
240 1.
241 11.
242 111. Soil Conductivity (EC)
243
244 Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
245
246 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
247
248
249 Generally, the EC value of irrigation water is less than 800uS / cm.
250
251 1.
252 11.
253 111. MOD
254
255 Firmware version at least v2.1 supports changing mode.
256
257 For example, bytes[10]=90
258
259 mod=(bytes[10]>>7)&0x01=1.
260
261
262 Downlink Command:
263
264 If payload = 0x0A00, workmode=0
265
266 If** **payload =** **0x0A01, workmode=1
267
268
269 1.
270 11.
271 111. ​Decode payload in The Things Network
272
273 While using TTN network, you can add the payload format to decode the payload.
274
275
276 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
277
278 The payload decoder function for TTN is here:
279
280 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
281
282
283 1.
284 11. Uplink Interval
285
286 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
287
288 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
289
290 1.
291 11. ​Downlink Payload
292
293 By default, LSE50 prints the downlink payload to console port.
294
295 |**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
296 |TDC (Transmit Time Interval)|Any|01|4
297 |RESET|Any|04|2
298 |AT+CFM|Any|05|4
299 |INTMOD|Any|06|4
300 |MOD|Any|0A|2
301
302 **Examples**
303
304
305 **Set TDC**
306
307 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
308
309 Payload:    01 00 00 1E    TDC=30S
310
311 Payload:    01 00 00 3C    TDC=60S
312
313
314 **Reset**
315
316 If payload = 0x04FF, it will reset the LSE01
317
318
319 **CFM**
320
321 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
322
323 1.
324 11. ​Show Data in DataCake IoT Server
325
326 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
327
328
329 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
330
331 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
332
333
334 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
335
336
337 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
338
339
340
341
342
343 Step 3: Create an account or log in Datacake.
344
345 Step 4: Search the LSE01 and add DevEUI.
346
347
348 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
349
350
351
352 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
353
354
355 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
356
357
358
359 1.
360 11. Frequency Plans
361
362 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
363
364 1.
365 11.
366 111. EU863-870 (EU868)
367
368 Uplink:
369
370 868.1 - SF7BW125 to SF12BW125
371
372 868.3 - SF7BW125 to SF12BW125 and SF7BW250
373
374 868.5 - SF7BW125 to SF12BW125
375
376 867.1 - SF7BW125 to SF12BW125
377
378 867.3 - SF7BW125 to SF12BW125
379
380 867.5 - SF7BW125 to SF12BW125
381
382 867.7 - SF7BW125 to SF12BW125
383
384 867.9 - SF7BW125 to SF12BW125
385
386 868.8 - FSK
387
388
389 Downlink:
390
391 Uplink channels 1-9 (RX1)
392
393 869.525 - SF9BW125 (RX2 downlink only)
394
395
396 1.
397 11.
398 111. US902-928(US915)
399
400 Used in USA, Canada and South America. Default use CHE=2
401
402 Uplink:
403
404 903.9 - SF7BW125 to SF10BW125
405
406 904.1 - SF7BW125 to SF10BW125
407
408 904.3 - SF7BW125 to SF10BW125
409
410 904.5 - SF7BW125 to SF10BW125
411
412 904.7 - SF7BW125 to SF10BW125
413
414 904.9 - SF7BW125 to SF10BW125
415
416 905.1 - SF7BW125 to SF10BW125
417
418 905.3 - SF7BW125 to SF10BW125
419
420
421 Downlink:
422
423 923.3 - SF7BW500 to SF12BW500
424
425 923.9 - SF7BW500 to SF12BW500
426
427 924.5 - SF7BW500 to SF12BW500
428
429 925.1 - SF7BW500 to SF12BW500
430
431 925.7 - SF7BW500 to SF12BW500
432
433 926.3 - SF7BW500 to SF12BW500
434
435 926.9 - SF7BW500 to SF12BW500
436
437 927.5 - SF7BW500 to SF12BW500
438
439 923.3 - SF12BW500(RX2 downlink only)
440
441
442 1.
443 11.
444 111. CN470-510 (CN470)
445
446 Used in China, Default use CHE=1
447
448 Uplink:
449
450 486.3 - SF7BW125 to SF12BW125
451
452 486.5 - SF7BW125 to SF12BW125
453
454 486.7 - SF7BW125 to SF12BW125
455
456 486.9 - SF7BW125 to SF12BW125
457
458 487.1 - SF7BW125 to SF12BW125
459
460 487.3 - SF7BW125 to SF12BW125
461
462 487.5 - SF7BW125 to SF12BW125
463
464 487.7 - SF7BW125 to SF12BW125
465
466
467 Downlink:
468
469 506.7 - SF7BW125 to SF12BW125
470
471 506.9 - SF7BW125 to SF12BW125
472
473 507.1 - SF7BW125 to SF12BW125
474
475 507.3 - SF7BW125 to SF12BW125
476
477 507.5 - SF7BW125 to SF12BW125
478
479 507.7 - SF7BW125 to SF12BW125
480
481 507.9 - SF7BW125 to SF12BW125
482
483 508.1 - SF7BW125 to SF12BW125
484
485 505.3 - SF12BW125 (RX2 downlink only)
486
487
488 1.
489 11.
490 111. AU915-928(AU915)
491
492 Default use CHE=2
493
494 Uplink:
495
496 916.8 - SF7BW125 to SF12BW125
497
498 917.0 - SF7BW125 to SF12BW125
499
500 917.2 - SF7BW125 to SF12BW125
501
502 917.4 - SF7BW125 to SF12BW125
503
504 917.6 - SF7BW125 to SF12BW125
505
506 917.8 - SF7BW125 to SF12BW125
507
508 918.0 - SF7BW125 to SF12BW125
509
510 918.2 - SF7BW125 to SF12BW125
511
512
513 Downlink:
514
515 923.3 - SF7BW500 to SF12BW500
516
517 923.9 - SF7BW500 to SF12BW500
518
519 924.5 - SF7BW500 to SF12BW500
520
521 925.1 - SF7BW500 to SF12BW500
522
523 925.7 - SF7BW500 to SF12BW500
524
525 926.3 - SF7BW500 to SF12BW500
526
527 926.9 - SF7BW500 to SF12BW500
528
529 927.5 - SF7BW500 to SF12BW500
530
531 923.3 - SF12BW500(RX2 downlink only)
532
533 1.
534 11.
535 111. AS920-923 & AS923-925 (AS923)
536
537 **Default Uplink channel:**
538
539 923.2 - SF7BW125 to SF10BW125
540
541 923.4 - SF7BW125 to SF10BW125
542
543
544 **Additional Uplink Channel**:
545
546 (OTAA mode, channel added by JoinAccept message)
547
548 **AS920~~AS923 for Japan, Malaysia, Singapore**:
549
550 922.2 - SF7BW125 to SF10BW125
551
552 922.4 - SF7BW125 to SF10BW125
553
554 922.6 - SF7BW125 to SF10BW125
555
556 922.8 - SF7BW125 to SF10BW125
557
558 923.0 - SF7BW125 to SF10BW125
559
560 922.0 - SF7BW125 to SF10BW125
561
562
563 **AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
564
565 923.6 - SF7BW125 to SF10BW125
566
567 923.8 - SF7BW125 to SF10BW125
568
569 924.0 - SF7BW125 to SF10BW125
570
571 924.2 - SF7BW125 to SF10BW125
572
573 924.4 - SF7BW125 to SF10BW125
574
575 924.6 - SF7BW125 to SF10BW125
576
577
578
579 **Downlink:**
580
581 Uplink channels 1-8 (RX1)
582
583 923.2 - SF10BW125 (RX2)
584
585
586 1.
587 11.
588 111. KR920-923 (KR920)
589
590 Default channel:
591
592 922.1 - SF7BW125 to SF12BW125
593
594 922.3 - SF7BW125 to SF12BW125
595
596 922.5 - SF7BW125 to SF12BW125
597
598
599 Uplink: (OTAA mode, channel added by JoinAccept message)
600
601 922.1 - SF7BW125 to SF12BW125
602
603 922.3 - SF7BW125 to SF12BW125
604
605 922.5 - SF7BW125 to SF12BW125
606
607 922.7 - SF7BW125 to SF12BW125
608
609 922.9 - SF7BW125 to SF12BW125
610
611 923.1 - SF7BW125 to SF12BW125
612
613 923.3 - SF7BW125 to SF12BW125
614
615
616 Downlink:
617
618 Uplink channels 1-7(RX1)
619
620 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
621
622
623 1.
624 11.
625 111. IN865-867 (IN865)
626
627 Uplink:
628
629 865.0625 - SF7BW125 to SF12BW125
630
631 865.4025 - SF7BW125 to SF12BW125
632
633 865.9850 - SF7BW125 to SF12BW125
634
635
636 Downlink:
637
638 Uplink channels 1-3 (RX1)
639
640 866.550 - SF10BW125 (RX2)
641
642
643 1.
644 11. LED Indicator
645
646 The LSE01 has an internal LED which is to show the status of different state.
647
648
649 * Blink once when device power on.
650 * Solid ON for 5 seconds once device successful Join the network.
651 * Blink once when device transmit a packet.
652
653 1.
654 11. Installation in Soil
655
656 **Measurement the soil surface**
657
658
659 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
660
661 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
662
663
664
665
666
667
668
669 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
670
671
672
673 Dig a hole with diameter > 20CM.
674
675 Horizontal insert the probe to the soil and fill the hole for long term measurement.
676
677
678
679
680 1.
681 11. ​Firmware Change Log
682
683 **Firmware download link:**
684
685 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
686
687
688 **Firmware Upgrade Method:**
689
690 [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
691
692
693 **V1.0.**
694
695 Release
696
697
698
699 1.
700 11. ​Battery Analysis
701 111. ​Battery Type
702
703 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
704
705
706 The battery is designed to last for more than 5 years for the LSN50.
707
708
709 The battery related documents as below:
710
711 * [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 * [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
713 * [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
714
715 |(((
716 JST-XH-2P connector
717 )))
718
719 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
720
721
722
723 1.
724 11.
725 111. ​Battery Note
726
727 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728
729
730 1.
731 11.
732 111. ​Replace the battery
733
734 If Battery is lower than 2.7v, user should replace the battery of LSE01.
735
736
737 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
738
739
740 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741
742
743
744
745
746
747 = 3. ​Using the AT Commands =
748
749 == 3.1 Access AT Commands ==
750
751
752 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753
754 [[image:1654501986557-872.png]]
755
756
757 Or if you have below board, use below connection:
758
759
760 [[image:1654502005655-729.png]]
761
762
763
764 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
765
766
767 [[image:1654502050864-459.png]]
768
769
770 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
771
772
773 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
774
775 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
776
777 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
778
779 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
780
781
782 (% style="color:#037691" %)**General Commands**(%%)      
783
784 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
785
786 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
787
788 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
789
790 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
791
792
793 (% style="color:#037691" %)**Keys, IDs and EUIs management**
794
795 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
796
797 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
798
799 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
800
801 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
802
803 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
804
805 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
806
807 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
808
809 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
810
811 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
812
813 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
814
815 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
816
817 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
818
819 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
820
821 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
822
823 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
824
825 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
826
827
828 (% style="color:#037691" %)**LoRa Network Management**
829
830 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
831
832 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
833
834 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
835
836 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
837
838 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
839
840 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
841
842 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
843
844 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
845
846 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
847
848 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
849
850 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
851
852 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
853
854 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
855
856 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
857
858 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
859
860
861 (% style="color:#037691" %)**Information** 
862
863 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
864
865 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
866
867 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
868
869 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
870
871 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
872
873 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
874
875 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
876
877
878 = ​4. FAQ =
879
880 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881
882 You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
883 When downloading the images, choose the required image file for download. ​
884
885
886 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
887
888
889 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
890
891
892 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
893
894 [[image:image-20220606154726-3.png]]
895
896 When you use the TTN network, the US915 frequency bands use are:
897
898 * 903.9 - SF7BW125 to SF10BW125
899 * 904.1 - SF7BW125 to SF10BW125
900 * 904.3 - SF7BW125 to SF10BW125
901 * 904.5 - SF7BW125 to SF10BW125
902 * 904.7 - SF7BW125 to SF10BW125
903 * 904.9 - SF7BW125 to SF10BW125
904 * 905.1 - SF7BW125 to SF10BW125
905 * 905.3 - SF7BW125 to SF10BW125
906 * 904.6 - SF8BW500
907
908 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909
910 (% class="box infomessage" %)
911 (((
912 **AT+CHE=2**
913 )))
914
915 (% class="box infomessage" %)
916 (((
917 **ATZ**
918 )))
919
920 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
921
922
923 The **AU915** band is similar. Below are the AU915 Uplink Channels.
924
925 [[image:image-20220606154825-4.png]]
926
927
928
929 = 5. Trouble Shooting =
930
931 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
932
933 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
934
935
936 == 5.2 AT Command input doesn’t work ==
937
938 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
939
940
941 == 5.3 Device rejoin in at the second uplink packet ==
942
943 (% style="color:#4f81bd" %)**Issue describe as below:**
944
945 [[image:1654500909990-784.png]]
946
947
948 (% style="color:#4f81bd" %)**Cause for this issue:**
949
950 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
951
952
953 (% style="color:#4f81bd" %)**Solution: **
954
955 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956
957 [[image:1654500929571-736.png]]
958
959
960 = 6. ​Order Info =
961
962
963 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
964
965
966 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
967
968 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
969 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
970 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
971 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
972 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
973 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
974 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
975 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976
977 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
978
979 * (% style="color:red" %)**4**(%%): 4000mAh battery
980 * (% style="color:red" %)**8**(%%): 8500mAh battery
981
982 = 7. Packing Info =
983
984 (((
985 **Package Includes**:
986 )))
987
988 * (((
989 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
990 )))
991
992 (((
993
994 )))
995
996 (((
997 **Dimension and weight**:
998 )))
999
1000 * (((
1001 Device Size: cm
1002 )))
1003 * (((
1004 Device Weight: g
1005 )))
1006 * (((
1007 Package Size / pcs : cm
1008 )))
1009 * (((
1010 Weight / pcs : g
1011 )))
1012
1013 = 8. Support =
1014
1015 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1016 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1017
1018
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0