<
From version < 88.1 >
edited by Xiaoling
on 2022/07/09 09:39
To version < 62.2 >
edited by Xiaoling
on 2022/07/08 14:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,27 +35,26 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
58 -
59 59  == 1.3  Specification ==
60 60  
61 61  
... ... @@ -73,112 +73,90 @@
73 73  * - B20 @H-FDD: 800MHz
74 74  * - B28 @H-FDD: 700MHz
75 75  
76 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
77 77  
78 -* Li/SOCI2 un-chargeable battery
79 -* Capacity: 8500mAh
80 -* Self Discharge: <1% / Year @ 25°C
81 -* Max continuously current: 130mA
82 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
83 83  
84 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
85 85  
86 -* STOP Mode: 10uA @ 3.3v
87 -* Max transmit power: 350mA@3.3v
88 88  
89 89  
90 -
91 91  == ​1.4  Applications ==
92 92  
93 -* Smart Buildings & Home Automation
94 -* Logistics and Supply Chain Management
95 -* Smart Metering
96 96  * Smart Agriculture
97 -* Smart Cities
98 -* Smart Factory
99 99  
100 100  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
101 101  ​
102 102  
103 -
104 -
105 105  == 1.5  Pin Definitions ==
106 106  
107 107  
108 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
109 109  
110 110  
111 111  
112 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
113 113  
114 114  == 2.1  How it works ==
115 115  
105 +
116 116  (((
117 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
118 118  )))
119 119  
120 120  
121 121  (((
122 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
123 123  )))
124 124  
125 -(((
126 -
127 -)))
115 +[[image:image-20220708101605-2.png]]
128 128  
129 -[[image:1657328659945-416.png]]
130 -
131 131  (((
132 132  
133 133  )))
134 134  
135 135  
136 -== 2.2 ​ Configure the NDDS75 ==
137 137  
123 +== 2.2 ​ Configure the NSE01 ==
138 138  
125 +
139 139  === 2.2.1 Test Requirement ===
140 140  
141 -(((
142 -To use NDDS75 in your city, make sure meet below requirements:
143 -)))
144 144  
129 +To use NSE01 in your city, make sure meet below requirements:
130 +
145 145  * Your local operator has already distributed a NB-IoT Network there.
146 146  * The local NB-IoT network used the band that NSE01 supports.
147 147  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
148 148  
149 149  (((
150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
151 151  )))
152 152  
153 153  
154 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
155 155  
156 156  
157 157  
158 158  === 2.2.2 Insert SIM card ===
159 159  
160 -(((
161 161  Insert the NB-IoT Card get from your provider.
162 -)))
163 163  
164 -(((
165 165  User need to take out the NB-IoT module and insert the SIM card like below:
166 -)))
167 167  
168 168  
169 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
170 170  
171 171  
172 172  
173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
174 174  
175 175  (((
176 176  (((
177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
178 178  )))
179 179  )))
180 180  
181 -[[image:image-20220709092052-2.png]]
182 182  
183 183  **Connection:**
184 184  
... ... @@ -198,14 +198,12 @@
198 198  * Flow Control: (% style="color:green" %)**None**
199 199  
200 200  (((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
202 202  )))
203 203  
204 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
205 205  
206 -(((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
208 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
209 209  
210 210  
211 211  
... ... @@ -222,30 +222,31 @@
222 222  
223 223  For parameter description, please refer to AT command set
224 224  
225 -[[image:1657330452568-615.png]]
204 +[[image:1657249793983-486.png]]
226 226  
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
229 229  
230 -[[image:1657330472797-498.png]]
209 +[[image:1657249831934-534.png]]
231 231  
232 232  
233 233  
234 234  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
235 235  
215 +This feature is supported since firmware version v1.0.1
236 236  
217 +
237 237  * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 238  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 239  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
240 240  
222 +[[image:1657249864775-321.png]]
241 241  
242 -[[image:1657330501006-241.png]]
243 243  
225 +[[image:1657249930215-289.png]]
244 244  
245 -[[image:1657330533775-472.png]]
246 246  
247 247  
248 -
249 249  === 2.2.6 Use MQTT protocol to uplink data ===
250 250  
251 251  This feature is supported since firmware version v110
... ... @@ -307,14 +307,12 @@
307 307  In this mode, uplink payload includes in total 18 bytes
308 308  
309 309  (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
310 -|=(% style="width: 60px;" %)(((
290 +|=(% style="width: 50px;" %)(((
311 311  **Size(bytes)**
312 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
313 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
314 314  
315 -(((
316 316  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
317 -)))
318 318  
319 319  
320 320  [[image:image-20220708111918-4.png]]
... ... @@ -339,37 +339,23 @@
339 339  
340 340  === 2.4.1  Device ID ===
341 341  
342 -(((
343 343  By default, the Device ID equal to the last 6 bytes of IMEI.
344 -)))
345 345  
346 -(((
347 347  User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
348 -)))
349 349  
350 -(((
351 351  **Example:**
352 -)))
353 353  
354 -(((
355 355  AT+DEUI=A84041F15612
356 -)))
357 357  
358 -(((
359 359  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
360 -)))
361 361  
362 362  
363 363  
364 364  === 2.4.2  Version Info ===
365 365  
366 -(((
367 367  Specify the software version: 0x64=100, means firmware version 1.00.
368 -)))
369 369  
370 -(((
371 371  For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
372 -)))
373 373  
374 374  
375 375  
... ... @@ -391,33 +391,19 @@
391 391  
392 392  === 2.4.4  Signal Strength ===
393 393  
394 -(((
395 395  NB-IoT Network signal Strength.
396 -)))
397 397  
398 -(((
399 399  **Ex1: 0x1d = 29**
400 -)))
401 401  
402 -(((
403 403  (% style="color:blue" %)**0**(%%)  -113dBm or less
404 -)))
405 405  
406 -(((
407 407  (% style="color:blue" %)**1**(%%)  -111dBm
408 -)))
409 409  
410 -(((
411 411  (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
412 -)))
413 413  
414 -(((
415 415  (% style="color:blue" %)**31**  (%%) -51dBm or greater
416 -)))
417 417  
418 -(((
419 419  (% style="color:blue" %)**99**   (%%) Not known or not detectable
420 -)))
421 421  
422 422  
423 423  
... ... @@ -424,16 +424,12 @@
424 424  === 2.4.5  Soil Moisture ===
425 425  
426 426  (((
427 -(((
428 428  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
429 429  )))
430 -)))
431 431  
432 432  (((
433 -(((
434 434  For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
435 435  )))
436 -)))
437 437  
438 438  (((
439 439  
... ... @@ -448,7 +448,7 @@
448 448  === 2.4.6  Soil Temperature ===
449 449  
450 450  (((
451 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
452 452  )))
453 453  
454 454  (((
... ... @@ -489,56 +489,34 @@
489 489  
490 490  === 2.4.8  Digital Interrupt ===
491 491  
492 -(((
493 493  Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
494 -)))
495 495  
496 -(((
497 497  The command is:
498 -)))
499 499  
500 -(((
501 501  (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
502 -)))
503 503  
504 504  
505 -(((
506 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
507 -)))
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
508 508  
509 509  
510 -(((
511 511  Example:
512 -)))
513 513  
514 -(((
515 515  0x(00): Normal uplink packet.
516 -)))
517 517  
518 -(((
519 519  0x(01): Interrupt Uplink Packet.
520 -)))
521 521  
522 522  
523 523  
524 524  === 2.4.9  ​+5V Output ===
525 525  
526 -(((
527 527  NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 -)))
529 529  
530 530  
531 -(((
532 532  The 5V output time can be controlled by AT Command.
533 -)))
534 534  
535 -(((
536 536  (% style="color:blue" %)**AT+5VT=1000**
537 -)))
538 538  
539 -(((
540 540  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
541 -)))
542 542  
543 543  
544 544  
... ... @@ -549,6 +549,7 @@
549 549  [[image:image-20220708133731-5.png]]
550 550  
551 551  
476 +
552 552  (((
553 553  (% style="color:blue" %)**Examples:**
554 554  )))
... ... @@ -588,9 +588,7 @@
588 588  
589 589  * (% style="color:blue" %)**INTMOD**
590 590  
591 -(((
592 592  Downlink Payload: 06000003, Set AT+INTMOD=3
593 -)))
594 594  
595 595  
596 596  
... ... @@ -613,9 +613,7 @@
613 613  
614 614  __**Measurement the soil surface**__
615 615  
616 -(((
617 617  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
618 -)))
619 619  
620 620  [[image:1657259653666-883.png]] ​
621 621  
... ... @@ -647,7 +647,7 @@
647 647  [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
648 648  
649 649  
650 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
651 651  
652 652  
653 653  
... ... @@ -656,22 +656,16 @@
656 656  === 2.9.1  ​Battery Type ===
657 657  
658 658  
659 -(((
660 660  The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
661 -)))
662 662  
663 663  
664 -(((
665 -The battery is designed to last for several years depends on the actually use environment and update interval. 
666 -)))
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
667 667  
668 668  
669 -(((
670 670  The battery related documents as below:
671 -)))
672 672  
673 673  * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
674 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
675 675  * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
676 676  
677 677  (((
... ... @@ -682,37 +682,24 @@
682 682  
683 683  === 2.9.2  Power consumption Analyze ===
684 684  
685 -(((
686 686  Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
687 -)))
688 688  
689 689  
690 -(((
691 691  Instruction to use as below:
692 -)))
693 693  
694 -(((
695 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
696 -)))
697 697  
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
698 698  
699 -(((
700 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
701 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
702 702  
703 -* (((
704 -Product Model
705 -)))
706 -* (((
707 -Uplink Interval
708 -)))
709 -* (((
710 -Working Mode
711 -)))
712 712  
713 -(((
611 +Step 2: Open it and choose
612 +
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
616 +
714 714  And the Life expectation in difference case will be shown on the right.
715 -)))
716 716  
717 717  [[image:image-20220708141352-7.jpeg]]
718 718  
... ... @@ -734,168 +734,286 @@
734 734  
735 735  
736 736  
737 -= 3. ​ Access NB-IoT Module =
639 += 3. ​Using the AT Commands =
738 738  
739 -(((
740 -Users can directly access the AT command set of the NB-IoT module.
741 -)))
641 +== 3.1 Access AT Commands ==
742 742  
743 -(((
744 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
745 -)))
746 746  
747 -[[image:1657261278785-153.png]]
644 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
748 748  
646 +[[image:1654501986557-872.png||height="391" width="800"]]
749 749  
750 750  
751 -= 4.  Using the AT Commands =
649 +Or if you have below board, use below connection:
752 752  
753 -== 4.1  Access AT Commands ==
754 754  
755 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
652 +[[image:1654502005655-729.png||height="503" width="801"]]
756 756  
757 757  
758 -AT+<CMD>?  : Help on <CMD>
759 759  
760 -AT+<CMD>         : Run <CMD>
656 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
761 761  
762 -AT+<CMD>=<value> : Set the value
763 763  
764 -AT+<CMD>=?  : Get the value
659 + [[image:1654502050864-459.png||height="564" width="806"]]
765 765  
766 766  
662 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
663 +
664 +
665 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
666 +
667 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
668 +
669 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
670 +
671 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
672 +
673 +
767 767  (% style="color:#037691" %)**General Commands**(%%)      
768 768  
769 -AT  : Attention       
676 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
770 770  
771 -AT?  : Short Help     
678 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
772 772  
773 -ATZ  : MCU Reset    
680 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
774 774  
775 -AT+TDC  : Application Data Transmission Interval
682 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
776 776  
777 -AT+CFG  : Print all configurations
778 778  
779 -AT+CFGMOD           : Working mode selection
685 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
780 780  
781 -AT+INTMOD            : Set the trigger interrupt mode
687 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
782 782  
783 -AT+5VT  : Set extend the time of 5V power  
689 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
784 784  
785 -AT+PRO  : Choose agreement
691 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
786 786  
787 -AT+WEIGRE  : Get weight or set weight to 0
693 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
788 788  
789 -AT+WEIGAP  : Get or Set the GapValue of weight
695 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
790 790  
791 -AT+RXDL  : Extend the sending and receiving time
697 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
792 792  
793 -AT+CNTFAC  : Get or set counting parameters
699 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
794 794  
795 -AT+SERVADDR  : Server Address
701 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
796 796  
703 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
797 797  
798 -(% style="color:#037691" %)**COAP Management**      
705 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
799 799  
800 -AT+URI            : Resource parameters
707 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
801 801  
709 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
802 802  
803 -(% style="color:#037691" %)**UDP Management**
711 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
804 804  
805 -AT+CFM          : Upload confirmation mode (only valid for UDP)
713 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
806 806  
715 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
807 807  
808 -(% style="color:#037691" %)**MQTT Management**
717 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
809 809  
810 -AT+CLIENT               : Get or Set MQTT client
811 811  
812 -AT+UNAME  : Get or Set MQTT Username
720 +(% style="color:#037691" %)**LoRa Network Management**
813 813  
814 -AT+PWD                  : Get or Set MQTT password
722 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
815 815  
816 -AT+PUBTOPI : Get or Set MQTT publish topic
724 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
817 817  
818 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
726 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
819 819  
728 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
820 820  
821 -(% style="color:#037691" %)**Information**          
730 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
822 822  
823 -AT+FDR  : Factory Data Reset
732 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
824 824  
825 -AT+PWOR : Serial Access Password
734 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
826 826  
736 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
827 827  
738 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
828 828  
829 -= ​5.  FAQ =
740 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
830 830  
831 -== 5.1 How to Upgrade Firmware ==
742 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
832 832  
744 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
833 833  
746 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
747 +
748 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
749 +
750 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
751 +
752 +
753 +(% style="color:#037691" %)**Information** 
754 +
755 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
756 +
757 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
758 +
759 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
760 +
761 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
762 +
763 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
764 +
765 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
766 +
767 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
768 +
769 +
770 += ​4. FAQ =
771 +
772 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
773 +
834 834  (((
835 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
775 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
776 +When downloading the images, choose the required image file for download. ​
836 836  )))
837 837  
838 838  (((
839 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
780 +
840 840  )))
841 841  
842 842  (((
843 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
784 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
844 844  )))
845 845  
787 +(((
788 +
789 +)))
846 846  
791 +(((
792 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
793 +)))
847 847  
848 -== 5.2  Can I calibrate NSE01 to different soil types? ==
795 +(((
796 +
797 +)))
849 849  
850 850  (((
851 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
800 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
852 852  )))
853 853  
803 +[[image:image-20220606154726-3.png]]
854 854  
855 -= 6.  Trouble Shooting =
856 856  
857 -== 6.1  ​Connection problem when uploading firmware ==
806 +When you use the TTN network, the US915 frequency bands use are:
858 858  
808 +* 903.9 - SF7BW125 to SF10BW125
809 +* 904.1 - SF7BW125 to SF10BW125
810 +* 904.3 - SF7BW125 to SF10BW125
811 +* 904.5 - SF7BW125 to SF10BW125
812 +* 904.7 - SF7BW125 to SF10BW125
813 +* 904.9 - SF7BW125 to SF10BW125
814 +* 905.1 - SF7BW125 to SF10BW125
815 +* 905.3 - SF7BW125 to SF10BW125
816 +* 904.6 - SF8BW500
859 859  
860 860  (((
861 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
819 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
820 +
821 +* (% style="color:#037691" %)**AT+CHE=2**
822 +* (% style="color:#037691" %)**ATZ**
862 862  )))
863 863  
864 -(% class="wikigeneratedid" %)
865 865  (((
866 866  
827 +
828 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
867 867  )))
868 868  
831 +(((
832 +
833 +)))
869 869  
870 -== 6.2  AT Command input doesn't work ==
835 +(((
836 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
837 +)))
871 871  
839 +[[image:image-20220606154825-4.png]]
840 +
841 +
842 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
843 +
844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
845 +
846 +
847 += 5. Trouble Shooting =
848 +
849 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
850 +
851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
852 +
853 +
854 +== 5.2 AT Command input doesn't work ==
855 +
872 872  (((
873 873  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
858 +)))
874 874  
875 -
860 +
861 +== 5.3 Device rejoin in at the second uplink packet ==
862 +
863 +(% style="color:#4f81bd" %)**Issue describe as below:**
864 +
865 +[[image:1654500909990-784.png]]
866 +
867 +
868 +(% style="color:#4f81bd" %)**Cause for this issue:**
869 +
870 +(((
871 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
876 876  )))
877 877  
878 878  
879 -= 7. ​ Order Info =
875 +(% style="color:#4f81bd" %)**Solution: **
880 880  
877 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
881 881  
882 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
879 +[[image:1654500929571-736.png||height="458" width="832"]]
883 883  
884 884  
882 += 6. ​Order Info =
883 +
884 +
885 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
886 +
887 +
888 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
889 +
890 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
891 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
892 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
893 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
894 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
895 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
896 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
897 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
898 +
899 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
900 +
901 +* (% style="color:red" %)**4**(%%): 4000mAh battery
902 +* (% style="color:red" %)**8**(%%): 8500mAh battery
903 +
885 885  (% class="wikigeneratedid" %)
886 886  (((
887 887  
888 888  )))
889 889  
890 -= 8.  Packing Info =
909 += 7. Packing Info =
891 891  
892 892  (((
893 893  
894 894  
895 895  (% style="color:#037691" %)**Package Includes**:
915 +)))
896 896  
897 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
898 -* External antenna x 1
917 +* (((
918 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
899 899  )))
900 900  
901 901  (((
... ... @@ -902,19 +902,24 @@
902 902  
903 903  
904 904  (% style="color:#037691" %)**Dimension and weight**:
925 +)))
905 905  
906 -* Size: 195 x 125 x 55 mm
907 -* Weight:   420g
927 +* (((
928 +Device Size: cm
908 908  )))
930 +* (((
931 +Device Weight: g
932 +)))
933 +* (((
934 +Package Size / pcs : cm
935 +)))
936 +* (((
937 +Weight / pcs : g
909 909  
910 -(((
911 911  
912 -
913 -
914 -
915 915  )))
916 916  
917 -= 9.  Support =
942 += 8. Support =
918 918  
919 919  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
920 920  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0