Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 19 removed)
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,23 +12,28 @@ 12 12 13 13 14 14 14 +**Table of Contents:** 15 15 16 + 17 + 18 + 19 + 20 + 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is N DDS75DistanceDetectionSensor ==23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 23 -((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 31 31 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 32 32 33 33 ))) 34 34 ... ... @@ -35,28 +35,26 @@ 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:1657 327959271-447.png]]42 +[[image:1657245163077-232.png]] 39 39 40 40 41 41 42 -== 1.2 46 +== 1.2 Features == 43 43 44 44 45 45 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 46 -* Ultra low power consumption 47 -* Distance Detection by Ultrasonic technology 48 -* Flat object range 280mm - 7500mm 49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 -* Cable Length: 25cm 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 55 55 * Micro SIM card slot for NB-IoT SIM 56 56 * 8500mAh Battery for long term use 57 57 58 - 59 - 60 60 == 1.3 Specification == 61 61 62 62 ... ... @@ -74,116 +74,90 @@ 74 74 * - B20 @H-FDD: 800MHz 75 75 * - B28 @H-FDD: 700MHz 76 76 79 +(% style="color:#037691" %)**Probe Specification:** 77 77 78 - (%style="color:#037691"%)**Battery:**81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 83 +[[image:image-20220708101224-1.png]] 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 91 - 92 - 93 - 94 - 95 95 == 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 100 * Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 104 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 105 106 106 107 - 108 - 109 109 == 1.5 Pin Definitions == 110 110 111 111 112 -[[image:1657 328609906-564.png]]97 +[[image:1657246476176-652.png]] 113 113 114 114 115 115 101 += 2. Use NSE01 to communicate with IoT Server = 116 116 117 -= 2. Use NDDS75 to communicate with IoT Server = 118 - 119 119 == 2.1 How it works == 120 120 105 + 121 121 ((( 122 -The N DDS75is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 123 123 ))) 124 124 125 125 126 126 ((( 127 -The diagram below shows the working flow in default firmware of N DDS75:112 +The diagram below shows the working flow in default firmware of NSE01: 128 128 ))) 129 129 130 -((( 131 - 132 -))) 115 +[[image:image-20220708101605-2.png]] 133 133 134 -[[image:1657328659945-416.png]] 135 - 136 136 ((( 137 137 138 138 ))) 139 139 140 140 141 -== 2.2 Configure the NDDS75 == 142 142 123 +== 2.2 Configure the NSE01 == 143 143 125 + 144 144 === 2.2.1 Test Requirement === 145 145 146 -((( 147 -To use NDDS75 in your city, make sure meet below requirements: 148 -))) 149 149 129 +To use NSE01 in your city, make sure meet below requirements: 130 + 150 150 * Your local operator has already distributed a NB-IoT Network there. 151 151 * The local NB-IoT network used the band that NSE01 supports. 152 152 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 153 153 154 154 ((( 155 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The DDS75will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 156 156 ))) 157 157 158 158 159 -[[image:1657 328756309-230.png]]140 +[[image:1657249419225-449.png]] 160 160 161 161 162 162 163 163 === 2.2.2 Insert SIM card === 164 164 165 -((( 166 166 Insert the NB-IoT Card get from your provider. 167 -))) 168 168 169 -((( 170 170 User need to take out the NB-IoT module and insert the SIM card like below: 171 -))) 172 172 173 173 174 -[[image:1657 328884227-504.png]]151 +[[image:1657249468462-536.png]] 175 175 176 176 177 177 178 -=== 2.2.3 Connect USB – TTL to N DDS75to configure it ===155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 179 179 180 180 ((( 181 181 ((( 182 -User need to configure N DDS75via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75support AT Commands, user can use a USB to TTL adapter to connect to NDDS75and use AT Commands to configure it, as below.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 183 183 ))) 184 184 ))) 185 185 186 -[[image:image-20220709092052-2.png]] 187 187 188 188 **Connection:** 189 189 ... ... @@ -203,14 +203,12 @@ 203 203 * Flow Control: (% style="color:green" %)**None** 204 204 205 205 ((( 206 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on N DDS75. NDDS75will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 207 207 ))) 208 208 209 -[[image: 1657329814315-101.png]]185 +[[image:image-20220708110657-3.png]] 210 210 211 -((( 212 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 213 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 214 214 215 215 216 216 ... ... @@ -313,14 +313,12 @@ 313 313 In this mode, uplink payload includes in total 18 bytes 314 314 315 315 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 -|=(% style="width: 60px;" %)(((290 +|=(% style="width: 50px;" %)((( 317 317 **Size(bytes)** 318 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width:60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width:90px;" %)**2**|=(% style="width:50px;" %)**1**319 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H 2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 320 320 321 -((( 322 322 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 -))) 324 324 325 325 326 326 [[image:image-20220708111918-4.png]] ... ... @@ -345,37 +345,23 @@ 345 345 346 346 === 2.4.1 Device ID === 347 347 348 -((( 349 349 By default, the Device ID equal to the last 6 bytes of IMEI. 350 -))) 351 351 352 -((( 353 353 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 -))) 355 355 356 -((( 357 357 **Example:** 358 -))) 359 359 360 -((( 361 361 AT+DEUI=A84041F15612 362 -))) 363 363 364 -((( 365 365 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 -))) 367 367 368 368 369 369 370 370 === 2.4.2 Version Info === 371 371 372 -((( 373 373 Specify the software version: 0x64=100, means firmware version 1.00. 374 -))) 375 375 376 -((( 377 377 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 -))) 379 379 380 380 381 381 ... ... @@ -397,33 +397,19 @@ 397 397 398 398 === 2.4.4 Signal Strength === 399 399 400 -((( 401 401 NB-IoT Network signal Strength. 402 -))) 403 403 404 -((( 405 405 **Ex1: 0x1d = 29** 406 -))) 407 407 408 -((( 409 409 (% style="color:blue" %)**0**(%%) -113dBm or less 410 -))) 411 411 412 -((( 413 413 (% style="color:blue" %)**1**(%%) -111dBm 414 -))) 415 415 416 -((( 417 417 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 -))) 419 419 420 -((( 421 421 (% style="color:blue" %)**31** (%%) -51dBm or greater 422 -))) 423 423 424 -((( 425 425 (% style="color:blue" %)**99** (%%) Not known or not detectable 426 -))) 427 427 428 428 429 429 ... ... @@ -430,16 +430,12 @@ 430 430 === 2.4.5 Soil Moisture === 431 431 432 432 ((( 433 -((( 434 434 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 435 ))) 436 -))) 437 437 438 438 ((( 439 -((( 440 440 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 441 ))) 442 -))) 443 443 444 444 ((( 445 445 ... ... @@ -454,7 +454,7 @@ 454 454 === 2.4.6 Soil Temperature === 455 455 456 456 ((( 457 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 458 ))) 459 459 460 460 ((( ... ... @@ -495,56 +495,34 @@ 495 495 496 496 === 2.4.8 Digital Interrupt === 497 497 498 -((( 499 499 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 -))) 501 501 502 -((( 503 503 The command is: 504 -))) 505 505 506 -((( 507 507 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 -))) 509 509 510 510 511 -((( 512 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 -))) 445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 514 514 515 515 516 -((( 517 517 Example: 518 -))) 519 519 520 -((( 521 521 0x(00): Normal uplink packet. 522 -))) 523 523 524 -((( 525 525 0x(01): Interrupt Uplink Packet. 526 -))) 527 527 528 528 529 529 530 530 === 2.4.9 +5V Output === 531 531 532 -((( 533 533 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 -))) 535 535 536 536 537 -((( 538 538 The 5V output time can be controlled by AT Command. 539 -))) 540 540 541 -((( 542 542 (% style="color:blue" %)**AT+5VT=1000** 543 -))) 544 544 545 -((( 546 546 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 -))) 548 548 549 549 550 550 ... ... @@ -555,6 +555,7 @@ 555 555 [[image:image-20220708133731-5.png]] 556 556 557 557 476 + 558 558 ((( 559 559 (% style="color:blue" %)**Examples:** 560 560 ))) ... ... @@ -594,9 +594,7 @@ 594 594 595 595 * (% style="color:blue" %)**INTMOD** 596 596 597 -((( 598 598 Downlink Payload: 06000003, Set AT+INTMOD=3 599 -))) 600 600 601 601 602 602 ... ... @@ -619,9 +619,7 @@ 619 619 620 620 __**Measurement the soil surface**__ 621 621 622 -((( 623 623 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 -))) 625 625 626 626 [[image:1657259653666-883.png]] 627 627 ... ... @@ -653,7 +653,7 @@ 653 653 [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 654 654 655 655 656 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H 5.1200BHowtoUpgradeFirmware"]]571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 657 657 658 658 659 659 ... ... @@ -662,22 +662,16 @@ 662 662 === 2.9.1 Battery Type === 663 663 664 664 665 -((( 666 666 The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 667 -))) 668 668 669 669 670 -((( 671 -The battery is designed to last for several years depends on the actually use environment and update interval. 672 -))) 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 673 673 674 674 675 -((( 676 676 The battery related documents as below: 677 -))) 678 678 679 679 * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 -* [[Lithium-Thionyl Chloride Battery 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 681 * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 682 682 683 683 ((( ... ... @@ -686,44 +686,29 @@ 686 686 687 687 688 688 689 - ===2.9.2Power consumption Analyze ===598 +2.9.2 690 690 691 -((( 692 692 Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 693 -))) 694 694 695 695 696 -((( 697 697 Instruction to use as below: 698 -))) 699 699 700 -((( 701 -(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 702 -))) 703 703 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 704 704 705 -((( 706 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 707 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 708 708 709 -* ((( 710 -Product Model 711 -))) 712 -* ((( 713 -Uplink Interval 714 -))) 715 -* ((( 716 -Working Mode 717 -))) 718 718 719 -((( 720 -And the Life expectation in difference case will be shown on the right. 721 -))) 611 +Step 2: Open it and choose 722 722 723 -[[image:image-20220708141352-7.jpeg]] 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 724 724 617 +And the Life expectation in difference case will be shown on the right. 725 725 726 726 620 + 727 727 === 2.9.3 Battery Note === 728 728 729 729 ((( ... ... @@ -734,174 +734,290 @@ 734 734 735 735 === 2.9.4 Replace the battery === 736 736 737 -((( 738 738 The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 739 -))) 740 740 741 741 742 742 743 -= 3. AccessNB-IoTModule=635 += 3. Using the AT Commands = 744 744 745 -((( 746 -Users can directly access the AT command set of the NB-IoT module. 747 -))) 637 +== 3.1 Access AT Commands == 748 748 749 -((( 750 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 751 -))) 752 752 753 - [[image:1657261278785-153.png]]640 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 754 754 642 +[[image:1654501986557-872.png||height="391" width="800"]] 755 755 756 756 757 - =4. UsingtheATCommands=645 +Or if you have below board, use below connection: 758 758 759 -== 4.1 Access AT Commands == 760 760 761 - See this link for detail:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]648 +[[image:1654502005655-729.png||height="503" width="801"]] 762 762 763 763 764 -AT+<CMD>? : Help on <CMD> 765 765 766 - AT+<CMD>:Run<CMD>652 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 767 767 768 -AT+<CMD>=<value> : Set the value 769 769 770 - AT+<CMD>=?Get the value655 + [[image:1654502050864-459.png||height="564" width="806"]] 771 771 772 772 658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 659 + 660 + 661 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 662 + 663 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 664 + 665 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 666 + 667 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 668 + 669 + 773 773 (% style="color:#037691" %)**General Commands**(%%) 774 774 775 -AT 672 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 776 776 777 -AT? 674 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 778 778 779 -ATZ 676 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 780 780 781 -AT+TDC 678 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 782 782 783 -AT+CFG : Print all configurations 784 784 785 - AT+CFGMOD: Workingmode selection681 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 786 786 787 -AT+I NTMOD:Setthe trigger interruptmode683 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 788 788 789 -AT+ 5VTSetextend the timeof5V power685 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 790 790 791 -AT+P ROChooseagreement687 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 792 792 793 -AT+ WEIGREGet weightorsetweight to 0689 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 794 794 795 -AT+ WEIGAPGet or SettheGapValue of weight691 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 796 796 797 -AT+ RXDL: Extendthe sendingandreceivingtime693 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 798 798 799 -AT+ CNTFACGettcountingparameters695 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 800 800 801 -AT+ SERVADDR:ServerAddress697 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 802 802 699 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 803 803 804 -(% style="color:# 037691" %)**COAPManagement**701 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 805 805 806 -AT+ URIsourceparameters703 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 807 807 705 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 808 808 809 -(% style="color:# 037691" %)**UDPManagement**707 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 810 810 811 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)709 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 812 812 711 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 813 813 814 -(% style="color:# 037691" %)**MQTTManagement**713 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 815 815 816 -AT+CLIENT : Get or Set MQTT client 817 817 818 - AT+UNAMEGetSetMQTT Username716 +(% style="color:#037691" %)**LoRa Network Management** 819 819 820 -AT+ PWDGetor SetMQTT password718 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 821 821 822 -AT+ PUBTOPICGetorSetMQTTpublishtopic720 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 823 823 824 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic722 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 825 825 724 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 826 826 827 -(% style="color:# 037691" %)**Information**726 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 828 828 829 -AT+F DRctoryDataReset728 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 830 830 831 -AT+ PWORDSerialAccessPassword730 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 832 832 732 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 833 833 734 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 834 834 835 -= 5.FAQ=736 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 836 836 837 -= =5.1HowtoUpgradeFirmware==738 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 838 838 740 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 839 839 742 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 743 + 744 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 745 + 746 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 747 + 748 + 749 +(% style="color:#037691" %)**Information** 750 + 751 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 752 + 753 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 754 + 755 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 756 + 757 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 758 + 759 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 760 + 761 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 762 + 763 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 764 + 765 + 766 += 4. FAQ = 767 + 768 +== 4.1 How to change the LoRa Frequency Bands/Region? == 769 + 840 840 ((( 841 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 772 +When downloading the images, choose the required image file for download. 842 842 ))) 843 843 844 844 ((( 845 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]776 + 846 846 ))) 847 847 848 848 ((( 849 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.780 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 850 850 ))) 851 851 783 +((( 784 + 785 +))) 852 852 787 +((( 788 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 853 853 854 -== 5.2 Can I calibrate NSE01 to different soil types? == 791 +((( 792 + 793 +))) 855 855 856 856 ((( 857 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].796 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 858 858 ))) 859 859 799 +[[image:image-20220606154726-3.png]] 860 860 861 -= 6. Trouble Shooting = 862 862 863 - ==6.1 Connection problemwhenuploadingfirmware==802 +When you use the TTN network, the US915 frequency bands use are: 864 864 804 +* 903.9 - SF7BW125 to SF10BW125 805 +* 904.1 - SF7BW125 to SF10BW125 806 +* 904.3 - SF7BW125 to SF10BW125 807 +* 904.5 - SF7BW125 to SF10BW125 808 +* 904.7 - SF7BW125 to SF10BW125 809 +* 904.9 - SF7BW125 to SF10BW125 810 +* 905.1 - SF7BW125 to SF10BW125 811 +* 905.3 - SF7BW125 to SF10BW125 812 +* 904.6 - SF8BW500 865 865 866 866 ((( 867 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 815 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 816 + 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 868 868 ))) 869 869 870 -(% class="wikigeneratedid" %) 871 871 ((( 872 872 823 + 824 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 873 873 ))) 874 874 827 +((( 828 + 829 +))) 875 875 876 -== 6.2 AT Command input doesn't work == 831 +((( 832 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 877 877 835 +[[image:image-20220606154825-4.png]] 836 + 837 + 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 839 + 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 843 += 5. Trouble Shooting = 844 + 845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 846 + 847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 848 + 849 + 850 +== 5.2 AT Command input doesn't work == 851 + 878 878 ((( 879 879 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 880 880 881 - 856 + 857 +== 5.3 Device rejoin in at the second uplink packet == 858 + 859 +(% style="color:#4f81bd" %)**Issue describe as below:** 860 + 861 +[[image:1654500909990-784.png]] 862 + 863 + 864 +(% style="color:#4f81bd" %)**Cause for this issue:** 865 + 866 +((( 867 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 882 882 ))) 883 883 884 884 885 - =7. OrderInfo=871 +(% style="color:#4f81bd" %)**Solution: ** 886 886 873 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 887 887 888 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**875 +[[image:1654500929571-736.png||height="458" width="832"]] 889 889 890 890 878 += 6. Order Info = 879 + 880 + 881 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 882 + 883 + 884 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 885 + 886 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 887 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 888 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 889 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 890 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 891 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 892 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 893 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 894 + 895 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 896 + 897 +* (% style="color:red" %)**4**(%%): 4000mAh battery 898 +* (% style="color:red" %)**8**(%%): 8500mAh battery 899 + 891 891 (% class="wikigeneratedid" %) 892 892 ((( 893 893 894 894 ))) 895 895 896 -= 8.905 += 7. Packing Info = 897 897 898 898 ((( 899 899 900 900 901 901 (% style="color:#037691" %)**Package Includes**: 911 +))) 902 902 903 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1904 - *Externalantennax 1913 +* ((( 914 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 905 905 ))) 906 906 907 907 ((( ... ... @@ -908,19 +908,24 @@ 908 908 909 909 910 910 (% style="color:#037691" %)**Dimension and weight**: 921 +))) 911 911 912 -* Size: 195 x 125 x 55 mm913 - * Weight:420g923 +* ((( 924 +Device Size: cm 914 914 ))) 926 +* ((( 927 +Device Weight: g 928 +))) 929 +* ((( 930 +Package Size / pcs : cm 931 +))) 932 +* ((( 933 +Weight / pcs : g 915 915 916 -((( 917 917 918 - 919 - 920 - 921 921 ))) 922 922 923 -= 9.938 += 8. Support = 924 924 925 925 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 926 926 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content