<
From version < 80.1 >
edited by Xiaoling
on 2022/07/09 09:20
To version < 57.9 >
edited by Xiaoling
on 2022/07/08 12:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,28 +35,26 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
58 -
59 -
60 60  == 1.3  Specification ==
61 61  
62 62  
... ... @@ -74,70 +74,50 @@
74 74  * - B20 @H-FDD: 800MHz
75 75  * - B28 @H-FDD: 700MHz
76 76  
79 +(% style="color:#037691" %)**Probe Specification:**
77 77  
78 -(% style="color:#037691" %)**Battery:**
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
83 +[[image:image-20220708101224-1.png]]
85 85  
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 -
92 -
93 -
94 -
95 95  == ​1.4  Applications ==
96 96  
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 100  * Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 103  
104 104  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 105  ​
106 106  
107 -
108 -
109 109  == 1.5  Pin Definitions ==
110 110  
111 111  
112 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
113 113  
114 114  
115 115  
116 -
117 117  = 2.  Use NSE01 to communicate with IoT Server =
118 118  
119 119  == 2.1  How it works ==
120 120  
105 +
121 121  (((
122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
123 123  )))
124 124  
125 125  
126 126  (((
127 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
128 128  )))
129 129  
130 -(((
131 -
132 -)))
115 +[[image:image-20220708101605-2.png]]
133 133  
134 -[[image:1657328659945-416.png]]
135 -
136 136  (((
137 137  
138 138  )))
139 139  
140 140  
122 +
141 141  == 2.2 ​ Configure the NSE01 ==
142 142  
143 143  
... ... @@ -144,9 +144,7 @@
144 144  === 2.2.1 Test Requirement ===
145 145  
146 146  
147 -(((
148 148  To use NSE01 in your city, make sure meet below requirements:
149 -)))
150 150  
151 151  * Your local operator has already distributed a NB-IoT Network there.
152 152  * The local NB-IoT network used the band that NSE01 supports.
... ... @@ -163,13 +163,9 @@
163 163  
164 164  === 2.2.2 Insert SIM card ===
165 165  
166 -(((
167 167  Insert the NB-IoT Card get from your provider.
168 -)))
169 169  
170 -(((
171 171  User need to take out the NB-IoT module and insert the SIM card like below:
172 -)))
173 173  
174 174  
175 175  [[image:1657249468462-536.png]]
... ... @@ -208,9 +208,7 @@
208 208  
209 209  [[image:image-20220708110657-3.png]]
210 210  
211 -(((
212 212  (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
213 -)))
214 214  
215 215  
216 216  
... ... @@ -313,14 +313,12 @@
313 313  In this mode, uplink payload includes in total 18 bytes
314 314  
315 315  (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 -|=(% style="width: 60px;" %)(((
290 +|=(% style="width: 50px;" %)(((
317 317  **Size(bytes)**
318 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
320 320  
321 -(((
322 322  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 -)))
324 324  
325 325  
326 326  [[image:image-20220708111918-4.png]]
... ... @@ -340,42 +340,29 @@
340 340  * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 341  * Interrupt: 0x00 = 0
342 342  
315 +
343 343  == 2.4  Payload Explanation and Sensor Interface ==
344 344  
345 345  
346 346  === 2.4.1  Device ID ===
347 347  
348 -(((
349 349  By default, the Device ID equal to the last 6 bytes of IMEI.
350 -)))
351 351  
352 -(((
353 353  User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 -)))
355 355  
356 -(((
357 357  **Example:**
358 -)))
359 359  
360 -(((
361 361  AT+DEUI=A84041F15612
362 -)))
363 363  
364 -(((
365 365  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 -)))
367 367  
368 368  
369 369  
370 370  === 2.4.2  Version Info ===
371 371  
372 -(((
373 373  Specify the software version: 0x64=100, means firmware version 1.00.
374 -)))
375 375  
376 -(((
377 377  For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 -)))
379 379  
380 380  
381 381  
... ... @@ -397,33 +397,19 @@
397 397  
398 398  === 2.4.4  Signal Strength ===
399 399  
400 -(((
401 401  NB-IoT Network signal Strength.
402 -)))
403 403  
404 -(((
405 405  **Ex1: 0x1d = 29**
406 -)))
407 407  
408 -(((
409 409  (% style="color:blue" %)**0**(%%)  -113dBm or less
410 -)))
411 411  
412 -(((
413 413  (% style="color:blue" %)**1**(%%)  -111dBm
414 -)))
415 415  
416 -(((
417 417  (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 -)))
419 419  
420 -(((
421 421  (% style="color:blue" %)**31**  (%%) -51dBm or greater
422 -)))
423 423  
424 -(((
425 425  (% style="color:blue" %)**99**   (%%) Not known or not detectable
426 -)))
427 427  
428 428  
429 429  
... ... @@ -430,16 +430,12 @@
430 430  === 2.4.5  Soil Moisture ===
431 431  
432 432  (((
433 -(((
434 434  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 435  )))
436 -)))
437 437  
438 438  (((
439 -(((
440 440  For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 441  )))
442 -)))
443 443  
444 444  (((
445 445  
... ... @@ -454,7 +454,7 @@
454 454  === 2.4.6  Soil Temperature ===
455 455  
456 456  (((
457 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 458  )))
459 459  
460 460  (((
... ... @@ -495,66 +495,52 @@
495 495  
496 496  === 2.4.8  Digital Interrupt ===
497 497  
498 -(((
499 499  Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 -)))
501 501  
502 -(((
503 503  The command is:
504 -)))
505 505  
506 -(((
507 507  (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 -)))
509 509  
510 510  
511 -(((
512 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 -)))
446 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
514 514  
515 515  
516 -(((
517 517  Example:
518 -)))
519 519  
520 -(((
521 521  0x(00): Normal uplink packet.
522 -)))
523 523  
524 -(((
525 525  0x(01): Interrupt Uplink Packet.
526 -)))
527 527  
528 528  
529 529  
457 +
530 530  === 2.4.9  ​+5V Output ===
531 531  
532 -(((
460 +
533 533  NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 -)))
535 535  
536 536  
537 -(((
538 538  The 5V output time can be controlled by AT Command.
539 -)))
540 540  
541 -(((
542 542  (% style="color:blue" %)**AT+5VT=1000**
543 -)))
544 544  
545 -(((
546 546  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 -)))
548 548  
549 549  
550 550  
551 -== 2. Downlink Payload ==
472 +== 2.4 Uplink Interval ==
552 552  
553 -By default, NSE01 prints the downlink payload to console port.
474 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
554 554  
555 -[[image:image-20220708133731-5.png]]
556 556  
557 557  
478 +== 2.5 Downlink Payload ==
479 +
480 +By default, LSE50 prints the downlink payload to console port.
481 +
482 +[[image:image-20220606165544-8.png]]
483 +
484 +
558 558  (((
559 559  (% style="color:blue" %)**Examples:**
560 560  )))
... ... @@ -568,7 +568,7 @@
568 568  )))
569 569  
570 570  (((
571 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
498 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
572 572  )))
573 573  
574 574  (((
... ... @@ -588,144 +588,432 @@
588 588  )))
589 589  
590 590  (((
591 -If payload = 0x04FF, it will reset the NSE01
518 +If payload = 0x04FF, it will reset the LSE01
592 592  )))
593 593  
594 594  
595 -* (% style="color:blue" %)**INTMOD**
522 +* (% style="color:blue" %)**CFM**
596 596  
597 -(((
598 -Downlink Payload: 06000003, Set AT+INTMOD=3
599 -)))
524 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
600 600  
601 601  
602 602  
603 -== 2.6 LED Indicator ==
528 +== 2.6 ​Show Data in DataCake IoT Server ==
604 604  
605 605  (((
606 -The NSE01 has an internal LED which is to show the status of different state.
531 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
532 +)))
607 607  
534 +(((
535 +
536 +)))
608 608  
609 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 -* Then the LED will be on for 1 second means device is boot normally.
611 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 -* For each uplink probe, LED will be on for 500ms.
538 +(((
539 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
613 613  )))
614 614  
542 +(((
543 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
544 +)))
615 615  
616 616  
547 +[[image:1654505857935-743.png]]
617 617  
618 -== 2.7  Installation in Soil ==
619 619  
620 -__**Measurement the soil surface**__
550 +[[image:1654505874829-548.png]]
621 621  
622 -(((
623 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 -)))
625 625  
626 -[[image:1657259653666-883.png]]
553 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
627 627  
555 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
628 628  
629 -(((
630 -
631 631  
632 -(((
633 -Dig a hole with diameter > 20CM.
634 -)))
558 +[[image:1654505905236-553.png]]
635 635  
636 -(((
637 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 -)))
639 -)))
640 640  
641 -[[image:1654506665940-119.png]]
561 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
642 642  
643 -(((
644 -
645 -)))
563 +[[image:1654505925508-181.png]]
646 646  
647 647  
648 -== 2.8  ​Firmware Change Log ==
649 649  
567 +== 2.7 Frequency Plans ==
650 650  
651 -Download URL & Firmware Change log
569 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
652 652  
653 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
654 654  
572 +=== 2.7.1 EU863-870 (EU868) ===
655 655  
656 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
574 +(% style="color:#037691" %)** Uplink:**
657 657  
576 +868.1 - SF7BW125 to SF12BW125
658 658  
578 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
659 659  
660 -== 2. Battery Analysis ==
580 +868.5 - SF7BW125 to SF12BW125
661 661  
662 -=== 2.9.1  Battery Type ===
582 +867.1 - SF7BW125 to SF12BW125
663 663  
584 +867.3 - SF7BW125 to SF12BW125
664 664  
586 +867.5 - SF7BW125 to SF12BW125
587 +
588 +867.7 - SF7BW125 to SF12BW125
589 +
590 +867.9 - SF7BW125 to SF12BW125
591 +
592 +868.8 - FSK
593 +
594 +
595 +(% style="color:#037691" %)** Downlink:**
596 +
597 +Uplink channels 1-9 (RX1)
598 +
599 +869.525 - SF9BW125 (RX2 downlink only)
600 +
601 +
602 +
603 +=== 2.7.2 US902-928(US915) ===
604 +
605 +Used in USA, Canada and South America. Default use CHE=2
606 +
607 +(% style="color:#037691" %)**Uplink:**
608 +
609 +903.9 - SF7BW125 to SF10BW125
610 +
611 +904.1 - SF7BW125 to SF10BW125
612 +
613 +904.3 - SF7BW125 to SF10BW125
614 +
615 +904.5 - SF7BW125 to SF10BW125
616 +
617 +904.7 - SF7BW125 to SF10BW125
618 +
619 +904.9 - SF7BW125 to SF10BW125
620 +
621 +905.1 - SF7BW125 to SF10BW125
622 +
623 +905.3 - SF7BW125 to SF10BW125
624 +
625 +
626 +(% style="color:#037691" %)**Downlink:**
627 +
628 +923.3 - SF7BW500 to SF12BW500
629 +
630 +923.9 - SF7BW500 to SF12BW500
631 +
632 +924.5 - SF7BW500 to SF12BW500
633 +
634 +925.1 - SF7BW500 to SF12BW500
635 +
636 +925.7 - SF7BW500 to SF12BW500
637 +
638 +926.3 - SF7BW500 to SF12BW500
639 +
640 +926.9 - SF7BW500 to SF12BW500
641 +
642 +927.5 - SF7BW500 to SF12BW500
643 +
644 +923.3 - SF12BW500(RX2 downlink only)
645 +
646 +
647 +
648 +=== 2.7.3 CN470-510 (CN470) ===
649 +
650 +Used in China, Default use CHE=1
651 +
652 +(% style="color:#037691" %)**Uplink:**
653 +
654 +486.3 - SF7BW125 to SF12BW125
655 +
656 +486.5 - SF7BW125 to SF12BW125
657 +
658 +486.7 - SF7BW125 to SF12BW125
659 +
660 +486.9 - SF7BW125 to SF12BW125
661 +
662 +487.1 - SF7BW125 to SF12BW125
663 +
664 +487.3 - SF7BW125 to SF12BW125
665 +
666 +487.5 - SF7BW125 to SF12BW125
667 +
668 +487.7 - SF7BW125 to SF12BW125
669 +
670 +
671 +(% style="color:#037691" %)**Downlink:**
672 +
673 +506.7 - SF7BW125 to SF12BW125
674 +
675 +506.9 - SF7BW125 to SF12BW125
676 +
677 +507.1 - SF7BW125 to SF12BW125
678 +
679 +507.3 - SF7BW125 to SF12BW125
680 +
681 +507.5 - SF7BW125 to SF12BW125
682 +
683 +507.7 - SF7BW125 to SF12BW125
684 +
685 +507.9 - SF7BW125 to SF12BW125
686 +
687 +508.1 - SF7BW125 to SF12BW125
688 +
689 +505.3 - SF12BW125 (RX2 downlink only)
690 +
691 +
692 +
693 +=== 2.7.4 AU915-928(AU915) ===
694 +
695 +Default use CHE=2
696 +
697 +(% style="color:#037691" %)**Uplink:**
698 +
699 +916.8 - SF7BW125 to SF12BW125
700 +
701 +917.0 - SF7BW125 to SF12BW125
702 +
703 +917.2 - SF7BW125 to SF12BW125
704 +
705 +917.4 - SF7BW125 to SF12BW125
706 +
707 +917.6 - SF7BW125 to SF12BW125
708 +
709 +917.8 - SF7BW125 to SF12BW125
710 +
711 +918.0 - SF7BW125 to SF12BW125
712 +
713 +918.2 - SF7BW125 to SF12BW125
714 +
715 +
716 +(% style="color:#037691" %)**Downlink:**
717 +
718 +923.3 - SF7BW500 to SF12BW500
719 +
720 +923.9 - SF7BW500 to SF12BW500
721 +
722 +924.5 - SF7BW500 to SF12BW500
723 +
724 +925.1 - SF7BW500 to SF12BW500
725 +
726 +925.7 - SF7BW500 to SF12BW500
727 +
728 +926.3 - SF7BW500 to SF12BW500
729 +
730 +926.9 - SF7BW500 to SF12BW500
731 +
732 +927.5 - SF7BW500 to SF12BW500
733 +
734 +923.3 - SF12BW500(RX2 downlink only)
735 +
736 +
737 +
738 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
739 +
740 +(% style="color:#037691" %)**Default Uplink channel:**
741 +
742 +923.2 - SF7BW125 to SF10BW125
743 +
744 +923.4 - SF7BW125 to SF10BW125
745 +
746 +
747 +(% style="color:#037691" %)**Additional Uplink Channel**:
748 +
749 +(OTAA mode, channel added by JoinAccept message)
750 +
751 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
752 +
753 +922.2 - SF7BW125 to SF10BW125
754 +
755 +922.4 - SF7BW125 to SF10BW125
756 +
757 +922.6 - SF7BW125 to SF10BW125
758 +
759 +922.8 - SF7BW125 to SF10BW125
760 +
761 +923.0 - SF7BW125 to SF10BW125
762 +
763 +922.0 - SF7BW125 to SF10BW125
764 +
765 +
766 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
767 +
768 +923.6 - SF7BW125 to SF10BW125
769 +
770 +923.8 - SF7BW125 to SF10BW125
771 +
772 +924.0 - SF7BW125 to SF10BW125
773 +
774 +924.2 - SF7BW125 to SF10BW125
775 +
776 +924.4 - SF7BW125 to SF10BW125
777 +
778 +924.6 - SF7BW125 to SF10BW125
779 +
780 +
781 +(% style="color:#037691" %)** Downlink:**
782 +
783 +Uplink channels 1-8 (RX1)
784 +
785 +923.2 - SF10BW125 (RX2)
786 +
787 +
788 +
789 +=== 2.7.6 KR920-923 (KR920) ===
790 +
791 +Default channel:
792 +
793 +922.1 - SF7BW125 to SF12BW125
794 +
795 +922.3 - SF7BW125 to SF12BW125
796 +
797 +922.5 - SF7BW125 to SF12BW125
798 +
799 +
800 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
801 +
802 +922.1 - SF7BW125 to SF12BW125
803 +
804 +922.3 - SF7BW125 to SF12BW125
805 +
806 +922.5 - SF7BW125 to SF12BW125
807 +
808 +922.7 - SF7BW125 to SF12BW125
809 +
810 +922.9 - SF7BW125 to SF12BW125
811 +
812 +923.1 - SF7BW125 to SF12BW125
813 +
814 +923.3 - SF7BW125 to SF12BW125
815 +
816 +
817 +(% style="color:#037691" %)**Downlink:**
818 +
819 +Uplink channels 1-7(RX1)
820 +
821 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
822 +
823 +
824 +
825 +=== 2.7.7 IN865-867 (IN865) ===
826 +
827 +(% style="color:#037691" %)** Uplink:**
828 +
829 +865.0625 - SF7BW125 to SF12BW125
830 +
831 +865.4025 - SF7BW125 to SF12BW125
832 +
833 +865.9850 - SF7BW125 to SF12BW125
834 +
835 +
836 +(% style="color:#037691" %) **Downlink:**
837 +
838 +Uplink channels 1-3 (RX1)
839 +
840 +866.550 - SF10BW125 (RX2)
841 +
842 +
843 +
844 +
845 +== 2.8 LED Indicator ==
846 +
847 +The LSE01 has an internal LED which is to show the status of different state.
848 +
849 +* Blink once when device power on.
850 +* Solid ON for 5 seconds once device successful Join the network.
851 +* Blink once when device transmit a packet.
852 +
853 +== 2.9 Installation in Soil ==
854 +
855 +**Measurement the soil surface**
856 +
857 +
858 +[[image:1654506634463-199.png]] ​
859 +
665 665  (((
666 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
861 +(((
862 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
667 667  )))
864 +)))
668 668  
669 669  
867 +
868 +[[image:1654506665940-119.png]]
869 +
670 670  (((
671 -The battery is designed to last for several years depends on the actually use environment and update interval. 
871 +Dig a hole with diameter > 20CM.
672 672  )))
673 673  
874 +(((
875 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
876 +)))
674 674  
878 +
879 +== 2.10 ​Firmware Change Log ==
880 +
675 675  (((
676 -The battery related documents as below:
882 +**Firmware download link:**
677 677  )))
678 678  
679 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
885 +(((
886 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
887 +)))
682 682  
683 683  (((
684 -[[image:image-20220708140453-6.png]]
890 +
685 685  )))
686 686  
893 +(((
894 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
895 +)))
687 687  
897 +(((
898 +
899 +)))
688 688  
689 -=== 2.9.2  Power consumption Analyze ===
901 +(((
902 +**V1.0.**
903 +)))
690 690  
691 691  (((
692 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
906 +Release
693 693  )))
694 694  
695 695  
910 +== 2.11 ​Battery Analysis ==
911 +
912 +=== 2.11.1 ​Battery Type ===
913 +
696 696  (((
697 -Instruction to use as below:
915 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 698  )))
699 699  
700 700  (((
701 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
919 +The battery is designed to last for more than 5 years for the LSN50.
702 702  )))
703 703  
704 -
705 705  (((
706 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
923 +(((
924 +The battery-related documents are as below:
707 707  )))
926 +)))
708 708  
709 709  * (((
710 -Product Model
929 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 711  )))
712 712  * (((
713 -Uplink Interval
932 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 714  )))
715 715  * (((
716 -Working Mode
935 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
717 717  )))
718 718  
719 -(((
720 -And the Life expectation in difference case will be shown on the right.
721 -)))
938 + [[image:image-20220610172436-1.png]]
722 722  
723 -[[image:image-20220708141352-7.jpeg]]
724 724  
725 725  
942 +=== 2.11.2 ​Battery Note ===
726 726  
727 -=== 2.9.3  ​Battery Note ===
728 -
729 729  (((
730 730  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
731 731  )))
... ... @@ -732,176 +732,302 @@
732 732  
733 733  
734 734  
735 -=== 2.9. Replace the battery ===
950 +=== 2.11.3 Replace the battery ===
736 736  
737 737  (((
738 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
953 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
739 739  )))
740 740  
741 -
742 -
743 -= 3. ​ Access NB-IoT Module =
744 -
745 745  (((
746 -Users can directly access the AT command set of the NB-IoT module.
957 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
747 747  )))
748 748  
749 749  (((
750 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
961 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
751 751  )))
752 752  
753 -[[image:1657261278785-153.png]]
754 754  
755 755  
966 += 3. ​Using the AT Commands =
756 756  
757 -= 4.  Using the AT Commands =
968 +== 3.1 Access AT Commands ==
758 758  
759 -== 4.1  Access AT Commands ==
760 760  
761 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
971 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
762 762  
973 +[[image:1654501986557-872.png||height="391" width="800"]]
763 763  
764 -AT+<CMD>?  : Help on <CMD>
765 765  
766 -AT+<CMD>         : Run <CMD>
976 +Or if you have below board, use below connection:
767 767  
768 -AT+<CMD>=<value> : Set the value
769 769  
770 -AT+<CMD>=?  : Get the value
979 +[[image:1654502005655-729.png||height="503" width="801"]]
771 771  
772 772  
982 +
983 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
984 +
985 +
986 + [[image:1654502050864-459.png||height="564" width="806"]]
987 +
988 +
989 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
990 +
991 +
992 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
993 +
994 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
995 +
996 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
997 +
998 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
999 +
1000 +
773 773  (% style="color:#037691" %)**General Commands**(%%)      
774 774  
775 -AT  : Attention       
1003 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
776 776  
777 -AT?  : Short Help     
1005 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
778 778  
779 -ATZ  : MCU Reset    
1007 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
780 780  
781 -AT+TDC  : Application Data Transmission Interval
1009 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
782 782  
783 -AT+CFG  : Print all configurations
784 784  
785 -AT+CFGMOD           : Working mode selection
1012 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
786 786  
787 -AT+INTMOD            : Set the trigger interrupt mode
1014 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
788 788  
789 -AT+5VT  : Set extend the time of 5V power  
1016 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
790 790  
791 -AT+PRO  : Choose agreement
1018 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
792 792  
793 -AT+WEIGRE  : Get weight or set weight to 0
1020 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
794 794  
795 -AT+WEIGAP  : Get or Set the GapValue of weight
1022 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
796 796  
797 -AT+RXDL  : Extend the sending and receiving time
1024 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
798 798  
799 -AT+CNTFAC  : Get or set counting parameters
1026 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
800 800  
801 -AT+SERVADDR  : Server Address
1028 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
802 802  
1030 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
803 803  
804 -(% style="color:#037691" %)**COAP Management**      
1032 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
805 805  
806 -AT+URI            : Resource parameters
1034 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
807 807  
1036 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
808 808  
809 -(% style="color:#037691" %)**UDP Management**
1038 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
810 810  
811 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1040 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
812 812  
1042 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
813 813  
814 -(% style="color:#037691" %)**MQTT Management**
1044 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
815 815  
816 -AT+CLIENT               : Get or Set MQTT client
817 817  
818 -AT+UNAME  : Get or Set MQTT Username
1047 +(% style="color:#037691" %)**LoRa Network Management**
819 819  
820 -AT+PWD                  : Get or Set MQTT password
1049 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
821 821  
822 -AT+PUBTOPI : Get or Set MQTT publish topic
1051 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
823 823  
824 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1053 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
825 825  
1055 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
826 826  
827 -(% style="color:#037691" %)**Information**          
1057 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
828 828  
829 -AT+FDR  : Factory Data Reset
1059 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
830 830  
831 -AT+PWOR : Serial Access Password
1061 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
832 832  
1063 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
833 833  
1065 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
834 834  
835 -= ​5.  FAQ =
1067 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
836 836  
837 -== 5.1 How to Upgrade Firmware ==
1069 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
838 838  
1071 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
839 839  
1073 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1074 +
1075 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1076 +
1077 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1078 +
1079 +
1080 +(% style="color:#037691" %)**Information** 
1081 +
1082 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1083 +
1084 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1085 +
1086 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1087 +
1088 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1089 +
1090 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1091 +
1092 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1093 +
1094 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1095 +
1096 +
1097 += ​4. FAQ =
1098 +
1099 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1100 +
840 840  (((
841 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1102 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1103 +When downloading the images, choose the required image file for download. ​
842 842  )))
843 843  
844 844  (((
845 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1107 +
846 846  )))
847 847  
848 848  (((
849 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1111 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
850 850  )))
851 851  
1114 +(((
1115 +
1116 +)))
852 852  
1118 +(((
1119 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1120 +)))
853 853  
854 -== 5.2  Can I calibrate NSE01 to different soil types? ==
1122 +(((
1123 +
1124 +)))
855 855  
856 856  (((
857 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1127 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
858 858  )))
859 859  
1130 +[[image:image-20220606154726-3.png]]
860 860  
861 -= 6.  Trouble Shooting =
862 862  
863 -== 6.1  ​Connection problem when uploading firmware ==
1133 +When you use the TTN network, the US915 frequency bands use are:
864 864  
1135 +* 903.9 - SF7BW125 to SF10BW125
1136 +* 904.1 - SF7BW125 to SF10BW125
1137 +* 904.3 - SF7BW125 to SF10BW125
1138 +* 904.5 - SF7BW125 to SF10BW125
1139 +* 904.7 - SF7BW125 to SF10BW125
1140 +* 904.9 - SF7BW125 to SF10BW125
1141 +* 905.1 - SF7BW125 to SF10BW125
1142 +* 905.3 - SF7BW125 to SF10BW125
1143 +* 904.6 - SF8BW500
865 865  
866 866  (((
867 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1146 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1147 +
1148 +* (% style="color:#037691" %)**AT+CHE=2**
1149 +* (% style="color:#037691" %)**ATZ**
868 868  )))
869 869  
870 -(% class="wikigeneratedid" %)
871 871  (((
872 872  
1154 +
1155 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
873 873  )))
874 874  
1158 +(((
1159 +
1160 +)))
875 875  
876 -== 6.2  AT Command input doesn't work ==
1162 +(((
1163 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1164 +)))
877 877  
1166 +[[image:image-20220606154825-4.png]]
1167 +
1168 +
1169 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1170 +
1171 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1172 +
1173 +
1174 += 5. Trouble Shooting =
1175 +
1176 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1177 +
1178 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1179 +
1180 +
1181 +== 5.2 AT Command input doesn't work ==
1182 +
878 878  (((
879 879  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1185 +)))
880 880  
881 -
1187 +
1188 +== 5.3 Device rejoin in at the second uplink packet ==
1189 +
1190 +(% style="color:#4f81bd" %)**Issue describe as below:**
1191 +
1192 +[[image:1654500909990-784.png]]
1193 +
1194 +
1195 +(% style="color:#4f81bd" %)**Cause for this issue:**
1196 +
1197 +(((
1198 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
882 882  )))
883 883  
884 884  
885 -= 7. ​ Order Info =
1202 +(% style="color:#4f81bd" %)**Solution: **
886 886  
1204 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
887 887  
888 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1206 +[[image:1654500929571-736.png||height="458" width="832"]]
889 889  
890 890  
1209 += 6. ​Order Info =
1210 +
1211 +
1212 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1213 +
1214 +
1215 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1216 +
1217 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1218 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1219 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1220 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1221 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1222 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1223 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1224 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1225 +
1226 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1227 +
1228 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1229 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1230 +
891 891  (% class="wikigeneratedid" %)
892 892  (((
893 893  
894 894  )))
895 895  
896 -= 8.  Packing Info =
1236 += 7. Packing Info =
897 897  
898 898  (((
899 899  
900 900  
901 901  (% style="color:#037691" %)**Package Includes**:
1242 +)))
902 902  
903 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 -* External antenna x 1
1244 +* (((
1245 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
905 905  )))
906 906  
907 907  (((
... ... @@ -908,19 +908,24 @@
908 908  
909 909  
910 910  (% style="color:#037691" %)**Dimension and weight**:
1252 +)))
911 911  
912 -* Size: 195 x 125 x 55 mm
913 -* Weight:   420g
1254 +* (((
1255 +Device Size: cm
914 914  )))
1257 +* (((
1258 +Device Weight: g
1259 +)))
1260 +* (((
1261 +Package Size / pcs : cm
1262 +)))
1263 +* (((
1264 +Weight / pcs : g
915 915  
916 -(((
917 917  
918 -
919 -
920 -
921 921  )))
922 922  
923 -= 9.  Support =
1269 += 8. Support =
924 924  
925 925  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
926 926  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0