<
From version < 8.4 >
edited by Xiaoling
on 2022/06/06 15:51
To version < 20.3 >
edited by Xiaoling
on 2022/06/06 16:40
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,6 @@
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
5 5  
6 6  
7 7  
... ... @@ -9,44 +9,40 @@
9 9  
10 10  
11 11  
11 += 1. Introduction =
12 12  
13 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
13 13  
15 +(((
16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 +)))
14 14  
19 +(((
20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 +)))
15 15  
16 -
17 -
18 -
19 -
20 -
21 -
22 -
23 -1. Introduction
24 -11. ​What is LoRaWAN Soil Moisture & EC Sensor
25 -
26 -The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27 -
28 -
29 -It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
30 -
31 -
23 +(((
32 32  The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 +)))
33 33  
27 +(((
28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 +)))
34 34  
35 -LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
36 -
37 -
31 +(((
38 38  Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 +)))
39 39  
40 40  
41 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
36 +[[image:1654503236291-817.png]]
42 42  
43 43  
44 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
39 +[[image:1654503265560-120.png]]
45 45  
46 46  
47 47  
48 -*
49 -*1. ​Features
43 +== 1.2 ​Features ==
44 +
50 50  * LoRaWAN 1.0.3 Class A
51 51  * Ultra low power consumption
52 52  * Monitor Soil Moisture
... ... @@ -59,63 +59,50 @@
59 59  * IP66 Waterproof Enclosure
60 60  * 4000mAh or 8500mAh Battery for long term use
61 61  
62 -1.
63 -11. Specification
57 +== 1.3 Specification ==
64 64  
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 -|**Range**|**0-100.00%**|(((
69 -**0-20000uS/cm**
61 +[[image:image-20220606162220-5.png]]
70 70  
71 -**(25℃)(0-20.0EC)**
72 -)))|**-40.00℃~85.00℃**
73 -|**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 -|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 -|**Accuracy**|(((
76 -**±3% (0-53%)**
77 77  
78 -**±5% (>53%)**
79 -)))|**2%FS,**|(((
80 -**-10℃~50℃:<0.3℃**
81 81  
82 -**All other: <0.6℃**
83 -)))
84 -|(((
85 -**Measure**
65 +== ​1.4 Applications ==
86 86  
87 -**Method**
88 -)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
89 -
90 -*
91 -*1. ​Applications
92 92  * Smart Agriculture
93 93  
94 -1.
95 -11. ​Firmware Change log
96 96  
97 -**LSE01 v1.0:**
70 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 +​
98 98  
99 -* Release
73 +(% class="wikigeneratedid" %)
74 +== 1.5 Firmware Change log ==
100 100  
101 -1. Configure LSE01 to connect to LoRaWAN network
102 -11. How it works
103 103  
104 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
77 +**LSE01 v1.0 :**  Release
105 105  
106 106  
107 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
108 108  
81 += 2. Configure LSE01 to connect to LoRaWAN network =
109 109  
83 +== 2.1 How it works ==
110 110  
85 +(((
86 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 +)))
111 111  
112 -1.
113 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
89 +(((
90 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 +)))
114 114  
93 +
94 +
95 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 +
115 115  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
116 116  
117 117  
118 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
100 +[[image:1654503992078-669.png]]
119 119  
120 120  
121 121  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
... ... @@ -125,56 +125,40 @@
125 125  
126 126  Each LSE01 is shipped with a sticker with the default device EUI as below:
127 127  
110 +[[image:image-20220606163732-6.jpeg]]
128 128  
129 -
130 -
131 131  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
132 132  
133 -
134 134  **Add APP EUI in the application**
135 135  
136 136  
137 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
117 +[[image:1654504596150-405.png]]
138 138  
139 139  
140 140  
141 141  **Add APP KEY and DEV EUI**
142 142  
123 +[[image:1654504683289-357.png]]
143 143  
144 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
145 145  
146 -|(((
147 -
148 -)))
149 149  
150 -
151 151  **Step 2**: Power on LSE01
152 152  
153 153  
154 154  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 155  
132 +[[image:image-20220606163915-7.png]]
156 156  
157 157  
158 -|(((
159 -
160 -)))
161 -
162 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
163 -
164 -
165 -
166 -
167 -
168 168  **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
137 +[[image:1654504778294-788.png]]
171 171  
172 172  
173 173  
141 +== 2.3 Uplink Payload ==
174 174  
175 -1.
176 -11. ​Uplink Payload
177 -111. MOD=0(Default Mode)
143 +=== 2.3.1 MOD~=0(Default Mode) ===
178 178  
179 179  LSE01 will uplink payload via LoRaWAN with below payload format: 
180 180  
... ... @@ -201,7 +201,7 @@
201 201  
202 202  
203 203  1.
204 -11.
170 +11.
205 205  111. MOD=1(Original value)
206 206  
207 207  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
... ... @@ -224,7 +224,7 @@
224 224  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
225 225  
226 226  1.
227 -11.
193 +11.
228 228  111. Battery Info
229 229  
230 230  Check the battery voltage for LSE01.
... ... @@ -235,8 +235,8 @@
235 235  
236 236  
237 237  
238 -1.
239 -11.
204 +1.
205 +11.
240 240  111. Soil Moisture
241 241  
242 242  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
... ... @@ -246,8 +246,8 @@
246 246  **05DC(H) = 1500(D) /100 = 15%.**
247 247  
248 248  
249 -1.
250 -11.
215 +1.
216 +11.
251 251  111. Soil Temperature
252 252  
253 253   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
... ... @@ -259,8 +259,8 @@
259 259  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
260 260  
261 261  
262 -1.
263 -11.
228 +1.
229 +11.
264 264  111. Soil Conductivity (EC)
265 265  
266 266  Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -270,8 +270,8 @@
270 270  
271 271  Generally, the EC value of irrigation water is less than 800uS / cm.
272 272  
273 -1.
274 -11.
239 +1.
240 +11.
275 275  111. MOD
276 276  
277 277  Firmware version at least v2.1 supports changing mode.
... ... @@ -288,8 +288,8 @@
288 288  If** **payload =** **0x0A01, workmode=1
289 289  
290 290  
291 -1.
292 -11.
257 +1.
258 +11.
293 293  111. ​Decode payload in The Things Network
294 294  
295 295  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -302,7 +302,7 @@
302 302  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
303 303  
304 304  
305 -1.
271 +1.
306 306  11. Uplink Interval
307 307  
308 308  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
... ... @@ -309,7 +309,7 @@
309 309  
310 310  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
311 311  
312 -1.
278 +1.
313 313  11. ​Downlink Payload
314 314  
315 315  By default, LSE50 prints the downlink payload to console port.
... ... @@ -342,7 +342,7 @@
342 342  
343 343  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
344 344  
345 -1.
311 +1.
346 346  11. ​Show Data in DataCake IoT Server
347 347  
348 348  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -383,8 +383,8 @@
383 383  
384 384  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
385 385  
386 -1.
387 -11.
352 +1.
353 +11.
388 388  111. EU863-870 (EU868)
389 389  
390 390  Uplink:
... ... @@ -415,8 +415,8 @@
415 415  869.525 - SF9BW125 (RX2 downlink only)
416 416  
417 417  
418 -1.
419 -11.
384 +1.
385 +11.
420 420  111. US902-928(US915)
421 421  
422 422  Used in USA, Canada and South America. Default use CHE=2
... ... @@ -461,8 +461,8 @@
461 461  923.3 - SF12BW500(RX2 downlink only)
462 462  
463 463  
464 -1.
465 -11.
430 +1.
431 +11.
466 466  111. CN470-510 (CN470)
467 467  
468 468  Used in China, Default use CHE=1
... ... @@ -507,8 +507,8 @@
507 507  505.3 - SF12BW125 (RX2 downlink only)
508 508  
509 509  
510 -1.
511 -11.
476 +1.
477 +11.
512 512  111. AU915-928(AU915)
513 513  
514 514  Default use CHE=2
... ... @@ -552,8 +552,8 @@
552 552  
553 553  923.3 - SF12BW500(RX2 downlink only)
554 554  
555 -1.
556 -11.
521 +1.
522 +11.
557 557  111. AS920-923 & AS923-925 (AS923)
558 558  
559 559  **Default Uplink channel:**
... ... @@ -605,8 +605,8 @@
605 605  923.2 - SF10BW125 (RX2)
606 606  
607 607  
608 -1.
609 -11.
574 +1.
575 +11.
610 610  111. KR920-923 (KR920)
611 611  
612 612  Default channel:
... ... @@ -642,8 +642,8 @@
642 642  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
643 643  
644 644  
645 -1.
646 -11.
611 +1.
612 +11.
647 647  111. IN865-867 (IN865)
648 648  
649 649  Uplink:
... ... @@ -662,7 +662,7 @@
662 662  866.550 - SF10BW125 (RX2)
663 663  
664 664  
665 -1.
631 +1.
666 666  11. LED Indicator
667 667  
668 668  The LSE01 has an internal LED which is to show the status of different state.
... ... @@ -672,7 +672,7 @@
672 672  * Solid ON for 5 seconds once device successful Join the network.
673 673  * Blink once when device transmit a packet.
674 674  
675 -1.
641 +1.
676 676  11. Installation in Soil
677 677  
678 678  **Measurement the soil surface**
... ... @@ -699,7 +699,7 @@
699 699  
700 700  
701 701  
702 -1.
668 +1.
703 703  11. ​Firmware Change Log
704 704  
705 705  **Firmware download link:**
... ... @@ -718,7 +718,7 @@
718 718  
719 719  
720 720  
721 -1.
687 +1.
722 722  11. ​Battery Analysis
723 723  111. ​Battery Type
724 724  
... ... @@ -742,15 +742,15 @@
742 742  
743 743  
744 744  
745 -1.
746 -11.
711 +1.
712 +11.
747 747  111. ​Battery Note
748 748  
749 749  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
750 750  
751 751  
752 -1.
753 -11.
718 +1.
719 +11.
754 754  111. ​Replace the battery
755 755  
756 756  If Battery is lower than 2.7v, user should replace the battery of LSE01.
... ... @@ -766,140 +766,137 @@
766 766  
767 767  
768 768  
769 -1. ​Using the AT Commands
770 -11. ​Access AT Commands
735 += 3. ​Using the AT Commands =
771 771  
737 +== 3.1 Access AT Commands ==
738 +
739 +
772 772  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
773 773  
774 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
742 +[[image:1654501986557-872.png]]
775 775  
776 776  
777 777  Or if you have below board, use below connection:
778 778  
779 779  
780 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
748 +[[image:1654502005655-729.png]]
781 781  
782 782  
783 783  
784 -In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below:
752 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
785 785  
786 786  
787 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
755 + [[image:1654502050864-459.png]]
788 788  
789 789  
790 790  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
791 791  
792 792  
793 -AT+<CMD>?        : Help on <CMD>
761 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
794 794  
795 -AT+<CMD>         : Run <CMD>
763 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
796 796  
797 -AT+<CMD>=<value> : Set the value
765 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
798 798  
799 -AT+<CMD>=?       : Get the value
767 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
800 800  
801 801  
802 -**General Commands**      
770 +(% style="color:#037691" %)**General Commands**(%%)      
803 803  
804 -AT                    : Attention       
772 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
805 805  
806 -AT?                            : Short Help     
774 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
807 807  
808 -ATZ                            : MCU Reset    
776 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
809 809  
810 -AT+TDC           : Application Data Transmission Interval 
778 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
811 811  
812 812  
813 -**Keys, IDs and EUIs management**
781 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
814 814  
815 -AT+APPEUI              : Application EUI      
783 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
816 816  
817 -AT+APPKEY              : Application Key     
785 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
818 818  
819 -AT+APPSKEY            : Application Session Key
787 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
820 820  
821 -AT+DADDR              : Device Address     
789 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
822 822  
823 -AT+DEUI                   : Device EUI     
791 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
824 824  
825 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
793 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
826 826  
827 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
795 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
828 828  
829 -AT+CFM          : Confirm Mode       
797 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
830 830  
831 -AT+CFS                     : Confirm Status       
799 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
832 832  
833 -AT+JOIN          : Join LoRa? Network       
801 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
834 834  
835 -AT+NJM          : LoRa? Network Join Mode    
803 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
836 836  
837 -AT+NJS                     : LoRa? Network Join Status    
805 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
838 838  
839 -AT+RECV                  : Print Last Received Data in Raw Format
807 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
840 840  
841 -AT+RECVB                : Print Last Received Data in Binary Format      
809 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
842 842  
843 -AT+SEND                  : Send Text Data      
811 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
844 844  
845 -AT+SENB                  : Send Hexadecimal Data
813 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
846 846  
847 847  
848 -**LoRa Network Management**
816 +(% style="color:#037691" %)**LoRa Network Management**
849 849  
850 -AT+ADR          : Adaptive Rate
818 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
851 851  
852 -AT+CLASS                : LoRa Class(Currently only support class A
820 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
853 853  
854 -AT+DCS           : Duty Cycle Setting 
822 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
855 855  
856 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
824 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
857 857  
858 -AT+FCD           : Frame Counter Downlink       
826 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
859 859  
860 -AT+FCU           : Frame Counter Uplink   
828 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
861 861  
862 -AT+JN1DL                : Join Accept Delay1
830 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
863 863  
864 -AT+JN2DL                : Join Accept Delay2
832 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
865 865  
866 -AT+PNM                   : Public Network Mode   
834 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
867 867  
868 -AT+RX1DL                : Receive Delay1      
836 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
869 869  
870 -AT+RX2DL                : Receive Delay2      
838 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
871 871  
872 -AT+RX2DR               : Rx2 Window Data Rate 
840 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
873 873  
874 -AT+RX2FQ               : Rx2 Window Frequency
842 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
875 875  
876 -AT+TXP           : Transmit Power
844 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
877 877  
878 -AT+ MOD                 : Set work mode
846 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
879 879  
880 880  
881 -**Information** 
849 +(% style="color:#037691" %)**Information** 
882 882  
883 -AT+RSSI           : RSSI of the Last Received Packet   
851 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
884 884  
885 -AT+SNR           : SNR of the Last Received Packet   
853 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
886 886  
887 -AT+VER           : Image Version and Frequency Band       
855 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
888 888  
889 -AT+FDR           : Factory Data Reset
857 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
890 890  
891 -AT+PORT                  : Application Port    
859 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
892 892  
893 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
861 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
894 894  
895 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
863 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
896 896  
897 897  
898 -
899 -
900 -
901 -
902 -
903 903  = ​4. FAQ =
904 904  
905 905  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
... ... @@ -930,7 +930,6 @@
930 930  * 905.3 - SF7BW125 to SF10BW125
931 931  * 904.6 - SF8BW500
932 932  
933 -
934 934  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
935 935  
936 936  (% class="box infomessage" %)
1654501986557-872.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +767.2 KB
Content
1654502005655-729.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +915.0 KB
Content
1654502050864-459.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +174.6 KB
Content
1654503236291-817.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +685.6 KB
Content
1654503265560-120.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0