<
From version < 77.2 >
edited by Xiaoling
on 2022/07/09 09:05
To version < 57.3 >
edited by Xiaoling
on 2022/07/08 11:40
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,28 +35,26 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
58 -
59 -
60 60  == 1.3  Specification ==
61 61  
62 62  
... ... @@ -74,65 +74,44 @@
74 74  * - B20 @H-FDD: 800MHz
75 75  * - B28 @H-FDD: 700MHz
76 76  
79 +(% style="color:#037691" %)**Probe Specification:**
77 77  
78 -(% style="color:#037691" %)**Battery:**
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
83 +[[image:image-20220708101224-1.png]]
85 85  
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 -
92 -
93 -
94 -
95 95  == ​1.4  Applications ==
96 96  
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 100  * Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 103  
104 104  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 105  ​
106 106  
107 -
108 -
109 109  == 1.5  Pin Definitions ==
110 110  
111 111  
112 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
113 113  
114 114  
115 115  
116 -
117 117  = 2.  Use NSE01 to communicate with IoT Server =
118 118  
119 119  == 2.1  How it works ==
120 120  
105 +
121 121  (((
122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
123 123  )))
124 124  
125 125  
126 126  (((
127 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
128 128  )))
129 129  
130 -(((
131 -
132 -)))
115 +[[image:image-20220708101605-2.png]]
133 133  
134 -[[image:1657328659945-416.png]]
135 -
136 136  (((
137 137  
138 138  )))
... ... @@ -145,9 +145,7 @@
145 145  === 2.2.1 Test Requirement ===
146 146  
147 147  
148 -(((
149 149  To use NSE01 in your city, make sure meet below requirements:
150 -)))
151 151  
152 152  * Your local operator has already distributed a NB-IoT Network there.
153 153  * The local NB-IoT network used the band that NSE01 supports.
... ... @@ -164,13 +164,9 @@
164 164  
165 165  === 2.2.2 Insert SIM card ===
166 166  
167 -(((
168 168  Insert the NB-IoT Card get from your provider.
169 -)))
170 170  
171 -(((
172 172  User need to take out the NB-IoT module and insert the SIM card like below:
173 -)))
174 174  
175 175  
176 176  [[image:1657249468462-536.png]]
... ... @@ -197,10 +197,10 @@
197 197  
198 198  In the PC, use below serial tool settings:
199 199  
200 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
201 201  * Data bits:** (% style="color:green" %)8(%%)**
202 202  * Stop bits: (% style="color:green" %)**1**
203 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
204 204  * Flow Control: (% style="color:green" %)**None**
205 205  
206 206  (((
... ... @@ -209,9 +209,7 @@
209 209  
210 210  [[image:image-20220708110657-3.png]]
211 211  
212 -(((
213 213  (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
214 -)))
215 215  
216 216  
217 217  
... ... @@ -249,6 +249,7 @@
249 249  [[image:1657249864775-321.png]]
250 250  
251 251  
225 +
252 252  [[image:1657249930215-289.png]]
253 253  
254 254  
... ... @@ -272,6 +272,7 @@
272 272  [[image:1657249990869-686.png]]
273 273  
274 274  
249 +
275 275  (((
276 276  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
277 277  )))
... ... @@ -292,7 +292,6 @@
292 292  [[image:1657250255956-604.png]]
293 293  
294 294  
295 -
296 296  === 2.2.8 Change Update Interval ===
297 297  
298 298  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -314,14 +314,12 @@
314 314  In this mode, uplink payload includes in total 18 bytes
315 315  
316 316  (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
317 -|=(% style="width: 60px;" %)(((
291 +|=(% style="width: 50px;" %)(((
318 318  **Size(bytes)**
319 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
320 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
293 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
294 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
321 321  
322 -(((
323 323  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
324 -)))
325 325  
326 326  
327 327  [[image:image-20220708111918-4.png]]
... ... @@ -341,46 +341,33 @@
341 341  * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
342 342  * Interrupt: 0x00 = 0
343 343  
344 -== 2.4  Payload Explanation and Sensor Interface ==
345 345  
346 346  
347 -=== 2.4.1  Device ID ===
348 348  
349 -(((
319 +== 2.4  Payload Explanation and Sensor Interface ==
320 +
321 +2.4.1  Device ID
322 +
350 350  By default, the Device ID equal to the last 6 bytes of IMEI.
351 -)))
352 352  
353 -(((
354 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
355 -)))
325 +User can use **(% style="color:blue" %)AT+DEUI**(%%) to set Device ID
356 356  
357 -(((
358 358  **Example:**
359 -)))
360 360  
361 -(((
362 362  AT+DEUI=A84041F15612
363 -)))
364 364  
365 -(((
366 366  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
367 -)))
368 368  
369 369  
334 +2.4.2  Version Info
370 370  
371 -=== 2.4.2  Version Info ===
372 -
373 -(((
374 374  Specify the software version: 0x64=100, means firmware version 1.00.
375 -)))
376 376  
377 -(((
378 378  For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
379 -)))
380 380  
381 381  
382 382  
383 -=== 2.4.3  Battery Info ===
342 +=== 2.3.3 Battery Info ===
384 384  
385 385  (((
386 386  Check the battery voltage for LSE01.
... ... @@ -396,51 +396,15 @@
396 396  
397 397  
398 398  
399 -=== 2.4.4  Signal Strength ===
358 +=== 2.3.4 Soil Moisture ===
400 400  
401 401  (((
402 -NB-IoT Network signal Strength.
403 -)))
404 -
405 -(((
406 -**Ex1: 0x1d = 29**
407 -)))
408 -
409 -(((
410 -(% style="color:blue" %)**0**(%%)  -113dBm or less
411 -)))
412 -
413 -(((
414 -(% style="color:blue" %)**1**(%%)  -111dBm
415 -)))
416 -
417 -(((
418 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
419 -)))
420 -
421 -(((
422 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
423 -)))
424 -
425 -(((
426 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
427 -)))
428 -
429 -
430 -
431 -=== 2.4.5  Soil Moisture ===
432 -
433 -(((
434 -(((
435 435  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
436 436  )))
437 -)))
438 438  
439 439  (((
440 -(((
441 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
365 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
442 442  )))
443 -)))
444 444  
445 445  (((
446 446  
... ... @@ -452,10 +452,10 @@
452 452  
453 453  
454 454  
455 -=== 2.4. Soil Temperature ===
378 +=== 2.3.5 Soil Temperature ===
456 456  
457 457  (((
458 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
381 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
459 459  )))
460 460  
461 461  (((
... ... @@ -472,7 +472,7 @@
472 472  
473 473  
474 474  
475 -=== 2.4. Soil Conductivity (EC) ===
398 +=== 2.3.6 Soil Conductivity (EC) ===
476 476  
477 477  (((
478 478  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -479,7 +479,7 @@
479 479  )))
480 480  
481 481  (((
482 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
405 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
483 483  )))
484 484  
485 485  (((
... ... @@ -494,68 +494,52 @@
494 494  
495 495  )))
496 496  
497 -=== 2.4. Digital Interrupt ===
420 +=== 2.3.7 MOD ===
498 498  
499 -(((
500 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
501 -)))
422 +Firmware version at least v2.1 supports changing mode.
502 502  
503 -(((
504 -The command is:
505 -)))
424 +For example, bytes[10]=90
506 506  
507 -(((
508 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
509 -)))
426 +mod=(bytes[10]>>7)&0x01=1.
510 510  
511 511  
512 -(((
513 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
514 -)))
429 +**Downlink Command:**
515 515  
431 +If payload = 0x0A00, workmode=0
516 516  
517 -(((
518 -Example:
519 -)))
433 +If** **payload =** **0x0A01, workmode=1
520 520  
521 -(((
522 -0x(00): Normal uplink packet.
523 -)))
524 524  
525 -(((
526 -0x(01): Interrupt Uplink Packet.
527 -)))
528 528  
437 +=== 2.3.8 ​Decode payload in The Things Network ===
529 529  
439 +While using TTN network, you can add the payload format to decode the payload.
530 530  
531 -=== 2.4.9  ​+5V Output ===
532 532  
533 -(((
534 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
535 -)))
442 +[[image:1654505570700-128.png]]
536 536  
537 -
538 538  (((
539 -The 5V output time can be controlled by AT Command.
445 +The payload decoder function for TTN is here:
540 540  )))
541 541  
542 542  (((
543 -(% style="color:blue" %)**AT+5VT=1000**
449 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
544 544  )))
545 545  
546 -(((
547 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 -)))
549 549  
453 +== 2.4 Uplink Interval ==
550 550  
455 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
551 551  
552 -== 2.5  Downlink Payload ==
553 553  
554 -By default, NSE01 prints the downlink payload to console port.
555 555  
556 -[[image:image-20220708133731-5.png]]
459 +== 2.5 Downlink Payload ==
557 557  
461 +By default, LSE50 prints the downlink payload to console port.
558 558  
463 +[[image:image-20220606165544-8.png]]
464 +
465 +
559 559  (((
560 560  (% style="color:blue" %)**Examples:**
561 561  )))
... ... @@ -569,7 +569,7 @@
569 569  )))
570 570  
571 571  (((
572 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
479 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
573 573  )))
574 574  
575 575  (((
... ... @@ -589,144 +589,432 @@
589 589  )))
590 590  
591 591  (((
592 -If payload = 0x04FF, it will reset the NSE01
499 +If payload = 0x04FF, it will reset the LSE01
593 593  )))
594 594  
595 595  
596 -* (% style="color:blue" %)**INTMOD**
503 +* (% style="color:blue" %)**CFM**
597 597  
598 -(((
599 -Downlink Payload: 06000003, Set AT+INTMOD=3
600 -)))
505 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
601 601  
602 602  
603 603  
604 -== 2.6 LED Indicator ==
509 +== 2.6 ​Show Data in DataCake IoT Server ==
605 605  
606 606  (((
607 -The NSE01 has an internal LED which is to show the status of different state.
512 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
513 +)))
608 608  
515 +(((
516 +
517 +)))
609 609  
610 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
611 -* Then the LED will be on for 1 second means device is boot normally.
612 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
613 -* For each uplink probe, LED will be on for 500ms.
519 +(((
520 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
614 614  )))
615 615  
523 +(((
524 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
525 +)))
616 616  
617 617  
528 +[[image:1654505857935-743.png]]
618 618  
619 -== 2.7  Installation in Soil ==
620 620  
621 -__**Measurement the soil surface**__
531 +[[image:1654505874829-548.png]]
622 622  
623 -(((
624 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
625 -)))
626 626  
627 -[[image:1657259653666-883.png]]
534 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
628 628  
536 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
629 629  
630 -(((
631 -
632 632  
633 -(((
634 -Dig a hole with diameter > 20CM.
635 -)))
539 +[[image:1654505905236-553.png]]
636 636  
637 -(((
638 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
639 -)))
640 -)))
641 641  
642 -[[image:1654506665940-119.png]]
542 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
643 643  
644 -(((
645 -
646 -)))
544 +[[image:1654505925508-181.png]]
647 647  
648 648  
649 -== 2.8  ​Firmware Change Log ==
650 650  
548 +== 2.7 Frequency Plans ==
651 651  
652 -Download URL & Firmware Change log
550 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
653 653  
654 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
655 655  
553 +=== 2.7.1 EU863-870 (EU868) ===
656 656  
657 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
555 +(% style="color:#037691" %)** Uplink:**
658 658  
557 +868.1 - SF7BW125 to SF12BW125
659 659  
559 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
660 660  
661 -== 2. Battery Analysis ==
561 +868.5 - SF7BW125 to SF12BW125
662 662  
663 -=== 2.9.1  Battery Type ===
563 +867.1 - SF7BW125 to SF12BW125
664 664  
565 +867.3 - SF7BW125 to SF12BW125
665 665  
567 +867.5 - SF7BW125 to SF12BW125
568 +
569 +867.7 - SF7BW125 to SF12BW125
570 +
571 +867.9 - SF7BW125 to SF12BW125
572 +
573 +868.8 - FSK
574 +
575 +
576 +(% style="color:#037691" %)** Downlink:**
577 +
578 +Uplink channels 1-9 (RX1)
579 +
580 +869.525 - SF9BW125 (RX2 downlink only)
581 +
582 +
583 +
584 +=== 2.7.2 US902-928(US915) ===
585 +
586 +Used in USA, Canada and South America. Default use CHE=2
587 +
588 +(% style="color:#037691" %)**Uplink:**
589 +
590 +903.9 - SF7BW125 to SF10BW125
591 +
592 +904.1 - SF7BW125 to SF10BW125
593 +
594 +904.3 - SF7BW125 to SF10BW125
595 +
596 +904.5 - SF7BW125 to SF10BW125
597 +
598 +904.7 - SF7BW125 to SF10BW125
599 +
600 +904.9 - SF7BW125 to SF10BW125
601 +
602 +905.1 - SF7BW125 to SF10BW125
603 +
604 +905.3 - SF7BW125 to SF10BW125
605 +
606 +
607 +(% style="color:#037691" %)**Downlink:**
608 +
609 +923.3 - SF7BW500 to SF12BW500
610 +
611 +923.9 - SF7BW500 to SF12BW500
612 +
613 +924.5 - SF7BW500 to SF12BW500
614 +
615 +925.1 - SF7BW500 to SF12BW500
616 +
617 +925.7 - SF7BW500 to SF12BW500
618 +
619 +926.3 - SF7BW500 to SF12BW500
620 +
621 +926.9 - SF7BW500 to SF12BW500
622 +
623 +927.5 - SF7BW500 to SF12BW500
624 +
625 +923.3 - SF12BW500(RX2 downlink only)
626 +
627 +
628 +
629 +=== 2.7.3 CN470-510 (CN470) ===
630 +
631 +Used in China, Default use CHE=1
632 +
633 +(% style="color:#037691" %)**Uplink:**
634 +
635 +486.3 - SF7BW125 to SF12BW125
636 +
637 +486.5 - SF7BW125 to SF12BW125
638 +
639 +486.7 - SF7BW125 to SF12BW125
640 +
641 +486.9 - SF7BW125 to SF12BW125
642 +
643 +487.1 - SF7BW125 to SF12BW125
644 +
645 +487.3 - SF7BW125 to SF12BW125
646 +
647 +487.5 - SF7BW125 to SF12BW125
648 +
649 +487.7 - SF7BW125 to SF12BW125
650 +
651 +
652 +(% style="color:#037691" %)**Downlink:**
653 +
654 +506.7 - SF7BW125 to SF12BW125
655 +
656 +506.9 - SF7BW125 to SF12BW125
657 +
658 +507.1 - SF7BW125 to SF12BW125
659 +
660 +507.3 - SF7BW125 to SF12BW125
661 +
662 +507.5 - SF7BW125 to SF12BW125
663 +
664 +507.7 - SF7BW125 to SF12BW125
665 +
666 +507.9 - SF7BW125 to SF12BW125
667 +
668 +508.1 - SF7BW125 to SF12BW125
669 +
670 +505.3 - SF12BW125 (RX2 downlink only)
671 +
672 +
673 +
674 +=== 2.7.4 AU915-928(AU915) ===
675 +
676 +Default use CHE=2
677 +
678 +(% style="color:#037691" %)**Uplink:**
679 +
680 +916.8 - SF7BW125 to SF12BW125
681 +
682 +917.0 - SF7BW125 to SF12BW125
683 +
684 +917.2 - SF7BW125 to SF12BW125
685 +
686 +917.4 - SF7BW125 to SF12BW125
687 +
688 +917.6 - SF7BW125 to SF12BW125
689 +
690 +917.8 - SF7BW125 to SF12BW125
691 +
692 +918.0 - SF7BW125 to SF12BW125
693 +
694 +918.2 - SF7BW125 to SF12BW125
695 +
696 +
697 +(% style="color:#037691" %)**Downlink:**
698 +
699 +923.3 - SF7BW500 to SF12BW500
700 +
701 +923.9 - SF7BW500 to SF12BW500
702 +
703 +924.5 - SF7BW500 to SF12BW500
704 +
705 +925.1 - SF7BW500 to SF12BW500
706 +
707 +925.7 - SF7BW500 to SF12BW500
708 +
709 +926.3 - SF7BW500 to SF12BW500
710 +
711 +926.9 - SF7BW500 to SF12BW500
712 +
713 +927.5 - SF7BW500 to SF12BW500
714 +
715 +923.3 - SF12BW500(RX2 downlink only)
716 +
717 +
718 +
719 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
720 +
721 +(% style="color:#037691" %)**Default Uplink channel:**
722 +
723 +923.2 - SF7BW125 to SF10BW125
724 +
725 +923.4 - SF7BW125 to SF10BW125
726 +
727 +
728 +(% style="color:#037691" %)**Additional Uplink Channel**:
729 +
730 +(OTAA mode, channel added by JoinAccept message)
731 +
732 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
733 +
734 +922.2 - SF7BW125 to SF10BW125
735 +
736 +922.4 - SF7BW125 to SF10BW125
737 +
738 +922.6 - SF7BW125 to SF10BW125
739 +
740 +922.8 - SF7BW125 to SF10BW125
741 +
742 +923.0 - SF7BW125 to SF10BW125
743 +
744 +922.0 - SF7BW125 to SF10BW125
745 +
746 +
747 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
748 +
749 +923.6 - SF7BW125 to SF10BW125
750 +
751 +923.8 - SF7BW125 to SF10BW125
752 +
753 +924.0 - SF7BW125 to SF10BW125
754 +
755 +924.2 - SF7BW125 to SF10BW125
756 +
757 +924.4 - SF7BW125 to SF10BW125
758 +
759 +924.6 - SF7BW125 to SF10BW125
760 +
761 +
762 +(% style="color:#037691" %)** Downlink:**
763 +
764 +Uplink channels 1-8 (RX1)
765 +
766 +923.2 - SF10BW125 (RX2)
767 +
768 +
769 +
770 +=== 2.7.6 KR920-923 (KR920) ===
771 +
772 +Default channel:
773 +
774 +922.1 - SF7BW125 to SF12BW125
775 +
776 +922.3 - SF7BW125 to SF12BW125
777 +
778 +922.5 - SF7BW125 to SF12BW125
779 +
780 +
781 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
782 +
783 +922.1 - SF7BW125 to SF12BW125
784 +
785 +922.3 - SF7BW125 to SF12BW125
786 +
787 +922.5 - SF7BW125 to SF12BW125
788 +
789 +922.7 - SF7BW125 to SF12BW125
790 +
791 +922.9 - SF7BW125 to SF12BW125
792 +
793 +923.1 - SF7BW125 to SF12BW125
794 +
795 +923.3 - SF7BW125 to SF12BW125
796 +
797 +
798 +(% style="color:#037691" %)**Downlink:**
799 +
800 +Uplink channels 1-7(RX1)
801 +
802 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
803 +
804 +
805 +
806 +=== 2.7.7 IN865-867 (IN865) ===
807 +
808 +(% style="color:#037691" %)** Uplink:**
809 +
810 +865.0625 - SF7BW125 to SF12BW125
811 +
812 +865.4025 - SF7BW125 to SF12BW125
813 +
814 +865.9850 - SF7BW125 to SF12BW125
815 +
816 +
817 +(% style="color:#037691" %) **Downlink:**
818 +
819 +Uplink channels 1-3 (RX1)
820 +
821 +866.550 - SF10BW125 (RX2)
822 +
823 +
824 +
825 +
826 +== 2.8 LED Indicator ==
827 +
828 +The LSE01 has an internal LED which is to show the status of different state.
829 +
830 +* Blink once when device power on.
831 +* Solid ON for 5 seconds once device successful Join the network.
832 +* Blink once when device transmit a packet.
833 +
834 +== 2.9 Installation in Soil ==
835 +
836 +**Measurement the soil surface**
837 +
838 +
839 +[[image:1654506634463-199.png]] ​
840 +
666 666  (((
667 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
842 +(((
843 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
668 668  )))
845 +)))
669 669  
670 670  
848 +
849 +[[image:1654506665940-119.png]]
850 +
671 671  (((
672 -The battery is designed to last for several years depends on the actually use environment and update interval. 
852 +Dig a hole with diameter > 20CM.
673 673  )))
674 674  
855 +(((
856 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
857 +)))
675 675  
859 +
860 +== 2.10 ​Firmware Change Log ==
861 +
676 676  (((
677 -The battery related documents as below:
863 +**Firmware download link:**
678 678  )))
679 679  
680 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
682 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
866 +(((
867 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
868 +)))
683 683  
684 684  (((
685 -[[image:image-20220708140453-6.png]]
871 +
686 686  )))
687 687  
874 +(((
875 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
876 +)))
688 688  
878 +(((
879 +
880 +)))
689 689  
690 -=== 2.9.2  Power consumption Analyze ===
882 +(((
883 +**V1.0.**
884 +)))
691 691  
692 692  (((
693 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
887 +Release
694 694  )))
695 695  
696 696  
891 +== 2.11 ​Battery Analysis ==
892 +
893 +=== 2.11.1 ​Battery Type ===
894 +
697 697  (((
698 -Instruction to use as below:
896 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
699 699  )))
700 700  
701 701  (((
702 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
900 +The battery is designed to last for more than 5 years for the LSN50.
703 703  )))
704 704  
705 -
706 706  (((
707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
904 +(((
905 +The battery-related documents are as below:
708 708  )))
907 +)))
709 709  
710 710  * (((
711 -Product Model
910 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
713 713  * (((
714 -Uplink Interval
913 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
715 715  )))
716 716  * (((
717 -Working Mode
916 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
718 718  )))
719 719  
720 -(((
721 -And the Life expectation in difference case will be shown on the right.
722 -)))
919 + [[image:image-20220610172436-1.png]]
723 723  
724 -[[image:image-20220708141352-7.jpeg]]
725 725  
726 726  
923 +=== 2.11.2 ​Battery Note ===
727 727  
728 -=== 2.9.3  ​Battery Note ===
729 -
730 730  (((
731 731  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
732 732  )))
... ... @@ -733,176 +733,302 @@
733 733  
734 734  
735 735  
736 -=== 2.9. Replace the battery ===
931 +=== 2.11.3 Replace the battery ===
737 737  
738 738  (((
739 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
934 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
740 740  )))
741 741  
742 -
743 -
744 -= 3. ​ Access NB-IoT Module =
745 -
746 746  (((
747 -Users can directly access the AT command set of the NB-IoT module.
938 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
748 748  )))
749 749  
750 750  (((
751 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
942 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
752 752  )))
753 753  
754 -[[image:1657261278785-153.png]]
755 755  
756 756  
947 += 3. ​Using the AT Commands =
757 757  
758 -= 4.  Using the AT Commands =
949 +== 3.1 Access AT Commands ==
759 759  
760 -== 4.1  Access AT Commands ==
761 761  
762 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
952 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
763 763  
954 +[[image:1654501986557-872.png||height="391" width="800"]]
764 764  
765 -AT+<CMD>?  : Help on <CMD>
766 766  
767 -AT+<CMD>         : Run <CMD>
957 +Or if you have below board, use below connection:
768 768  
769 -AT+<CMD>=<value> : Set the value
770 770  
771 -AT+<CMD>=?  : Get the value
960 +[[image:1654502005655-729.png||height="503" width="801"]]
772 772  
773 773  
963 +
964 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
965 +
966 +
967 + [[image:1654502050864-459.png||height="564" width="806"]]
968 +
969 +
970 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
971 +
972 +
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
978 +
979 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
980 +
981 +
774 774  (% style="color:#037691" %)**General Commands**(%%)      
775 775  
776 -AT  : Attention       
984 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
777 777  
778 -AT?  : Short Help     
986 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
779 779  
780 -ATZ  : MCU Reset    
988 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
781 781  
782 -AT+TDC  : Application Data Transmission Interval
990 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
783 783  
784 -AT+CFG  : Print all configurations
785 785  
786 -AT+CFGMOD           : Working mode selection
993 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
787 787  
788 -AT+INTMOD            : Set the trigger interrupt mode
995 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
789 789  
790 -AT+5VT  : Set extend the time of 5V power  
997 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
791 791  
792 -AT+PRO  : Choose agreement
999 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
793 793  
794 -AT+WEIGRE  : Get weight or set weight to 0
1001 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
795 795  
796 -AT+WEIGAP  : Get or Set the GapValue of weight
1003 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
797 797  
798 -AT+RXDL  : Extend the sending and receiving time
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
799 799  
800 -AT+CNTFAC  : Get or set counting parameters
1007 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
801 801  
802 -AT+SERVADDR  : Server Address
1009 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
803 803  
1011 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
804 804  
805 -(% style="color:#037691" %)**COAP Management**      
1013 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
806 806  
807 -AT+URI            : Resource parameters
1015 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
808 808  
1017 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
809 809  
810 -(% style="color:#037691" %)**UDP Management**
1019 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
811 811  
812 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1021 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
813 813  
1023 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
814 814  
815 -(% style="color:#037691" %)**MQTT Management**
1025 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
816 816  
817 -AT+CLIENT               : Get or Set MQTT client
818 818  
819 -AT+UNAME  : Get or Set MQTT Username
1028 +(% style="color:#037691" %)**LoRa Network Management**
820 820  
821 -AT+PWD                  : Get or Set MQTT password
1030 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
822 822  
823 -AT+PUBTOPI : Get or Set MQTT publish topic
1032 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
824 824  
825 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1034 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
826 826  
1036 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
827 827  
828 -(% style="color:#037691" %)**Information**          
1038 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
829 829  
830 -AT+FDR  : Factory Data Reset
1040 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
831 831  
832 -AT+PWOR : Serial Access Password
1042 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
833 833  
1044 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
834 834  
1046 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
835 835  
836 -= ​5.  FAQ =
1048 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
837 837  
838 -== 5.1 How to Upgrade Firmware ==
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
839 839  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
840 840  
1054 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1057 +
1058 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1059 +
1060 +
1061 +(% style="color:#037691" %)**Information** 
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1072 +
1073 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1074 +
1075 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1076 +
1077 +
1078 += ​4. FAQ =
1079 +
1080 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1081 +
841 841  (((
842 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1083 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1084 +When downloading the images, choose the required image file for download. ​
843 843  )))
844 844  
845 845  (((
846 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1088 +
847 847  )))
848 848  
849 849  (((
850 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1092 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
851 851  )))
852 852  
1095 +(((
1096 +
1097 +)))
853 853  
1099 +(((
1100 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1101 +)))
854 854  
855 -== 5.2  Can I calibrate NSE01 to different soil types? ==
1103 +(((
1104 +
1105 +)))
856 856  
857 857  (((
858 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1108 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
859 859  )))
860 860  
1111 +[[image:image-20220606154726-3.png]]
861 861  
862 -= 6.  Trouble Shooting =
863 863  
864 -== 6.1  ​Connection problem when uploading firmware ==
1114 +When you use the TTN network, the US915 frequency bands use are:
865 865  
1116 +* 903.9 - SF7BW125 to SF10BW125
1117 +* 904.1 - SF7BW125 to SF10BW125
1118 +* 904.3 - SF7BW125 to SF10BW125
1119 +* 904.5 - SF7BW125 to SF10BW125
1120 +* 904.7 - SF7BW125 to SF10BW125
1121 +* 904.9 - SF7BW125 to SF10BW125
1122 +* 905.1 - SF7BW125 to SF10BW125
1123 +* 905.3 - SF7BW125 to SF10BW125
1124 +* 904.6 - SF8BW500
866 866  
867 867  (((
868 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1127 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1128 +
1129 +* (% style="color:#037691" %)**AT+CHE=2**
1130 +* (% style="color:#037691" %)**ATZ**
869 869  )))
870 870  
871 -(% class="wikigeneratedid" %)
872 872  (((
873 873  
1135 +
1136 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
874 874  )))
875 875  
1139 +(((
1140 +
1141 +)))
876 876  
877 -== 6.2  AT Command input doesn't work ==
1143 +(((
1144 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1145 +)))
878 878  
1147 +[[image:image-20220606154825-4.png]]
1148 +
1149 +
1150 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1151 +
1152 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1153 +
1154 +
1155 += 5. Trouble Shooting =
1156 +
1157 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1158 +
1159 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1160 +
1161 +
1162 +== 5.2 AT Command input doesn't work ==
1163 +
879 879  (((
880 880  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1166 +)))
881 881  
882 -
1168 +
1169 +== 5.3 Device rejoin in at the second uplink packet ==
1170 +
1171 +(% style="color:#4f81bd" %)**Issue describe as below:**
1172 +
1173 +[[image:1654500909990-784.png]]
1174 +
1175 +
1176 +(% style="color:#4f81bd" %)**Cause for this issue:**
1177 +
1178 +(((
1179 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
883 883  )))
884 884  
885 885  
886 -= 7. ​ Order Info =
1183 +(% style="color:#4f81bd" %)**Solution: **
887 887  
1185 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
888 888  
889 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1187 +[[image:1654500929571-736.png||height="458" width="832"]]
890 890  
891 891  
1190 += 6. ​Order Info =
1191 +
1192 +
1193 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1194 +
1195 +
1196 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1197 +
1198 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1199 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1200 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1201 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1202 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1203 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1204 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1205 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1206 +
1207 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1208 +
1209 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1210 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1211 +
892 892  (% class="wikigeneratedid" %)
893 893  (((
894 894  
895 895  )))
896 896  
897 -= 8.  Packing Info =
1217 += 7. Packing Info =
898 898  
899 899  (((
900 900  
901 901  
902 902  (% style="color:#037691" %)**Package Includes**:
1223 +)))
903 903  
904 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
905 -* External antenna x 1
1225 +* (((
1226 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
906 906  )))
907 907  
908 908  (((
... ... @@ -909,19 +909,24 @@
909 909  
910 910  
911 911  (% style="color:#037691" %)**Dimension and weight**:
1233 +)))
912 912  
913 -* Size: 195 x 125 x 55 mm
914 -* Weight:   420g
1235 +* (((
1236 +Device Size: cm
915 915  )))
1238 +* (((
1239 +Device Weight: g
1240 +)))
1241 +* (((
1242 +Package Size / pcs : cm
1243 +)))
1244 +* (((
1245 +Weight / pcs : g
916 916  
917 -(((
918 918  
919 -
920 -
921 -
922 922  )))
923 923  
924 -= 9.  Support =
1250 += 8. Support =
925 925  
926 926  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
927 927  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0