<
From version < 75.1 >
edited by Xiaoling
on 2022/07/09 08:52
To version < 57.1 >
edited by Xiaoling
on 2022/07/08 11:19
>
Change comment: Uploaded new attachment "image-20220708111918-4.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -39,8 +39,9 @@
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
48 +
44 44  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
45 45  * Monitor Soil Moisture
46 46  * Monitor Soil Temperature
... ... @@ -71,7 +71,7 @@
71 71  * - B20 @H-FDD: 800MHz
72 72  * - B28 @H-FDD: 700MHz
73 73  
74 -Probe(% style="color:#037691" %)** Specification:**
79 +(% style="color:#037691" %)**Probe Specification:**
75 75  
76 76  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
... ... @@ -121,9 +121,7 @@
121 121  === 2.2.1 Test Requirement ===
122 122  
123 123  
124 -(((
125 125  To use NSE01 in your city, make sure meet below requirements:
126 -)))
127 127  
128 128  * Your local operator has already distributed a NB-IoT Network there.
129 129  * The local NB-IoT network used the band that NSE01 supports.
... ... @@ -140,13 +140,9 @@
140 140  
141 141  === 2.2.2 Insert SIM card ===
142 142  
143 -(((
144 144  Insert the NB-IoT Card get from your provider.
145 -)))
146 146  
147 -(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
149 -)))
150 150  
151 151  
152 152  [[image:1657249468462-536.png]]
... ... @@ -173,10 +173,10 @@
173 173  
174 174  In the PC, use below serial tool settings:
175 175  
176 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
177 177  * Data bits:** (% style="color:green" %)8(%%)**
178 178  * Stop bits: (% style="color:green" %)**1**
179 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
180 180  * Flow Control: (% style="color:green" %)**None**
181 181  
182 182  (((
... ... @@ -185,9 +185,7 @@
185 185  
186 186  [[image:image-20220708110657-3.png]]
187 187  
188 -(((
189 189  (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
190 -)))
191 191  
192 192  
193 193  
... ... @@ -202,6 +202,8 @@
202 202  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
203 203  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
204 204  
202 +
203 +
205 205  For parameter description, please refer to AT command set
206 206  
207 207  [[image:1657249793983-486.png]]
... ... @@ -222,9 +222,12 @@
222 222  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
223 223  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
224 224  
224 +
225 +
225 225  [[image:1657249864775-321.png]]
226 226  
227 227  
229 +
228 228  [[image:1657249930215-289.png]]
229 229  
230 230  
... ... @@ -237,11 +237,13 @@
237 237  * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
238 238  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
239 239  * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
240 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
241 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
243 243  * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
244 244  
247 +
248 +
245 245  [[image:1657249978444-674.png]]
246 246  
247 247  
... ... @@ -248,6 +248,7 @@
248 248  [[image:1657249990869-686.png]]
249 249  
250 250  
255 +
251 251  (((
252 252  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
253 253  )))
... ... @@ -268,7 +268,6 @@
268 268  [[image:1657250255956-604.png]]
269 269  
270 270  
271 -
272 272  === 2.2.8 Change Update Interval ===
273 273  
274 274  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -275,6 +275,7 @@
275 275  
276 276  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
277 277  
282 +
278 278  (((
279 279  (% style="color:red" %)**NOTE:**
280 280  )))
... ... @@ -285,79 +285,55 @@
285 285  
286 286  
287 287  
288 -== 2.3  Uplink Payload ==
293 +== 2.3 Uplink Payload ==
289 289  
290 -In this mode, uplink payload includes in total 18 bytes
291 291  
292 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
293 -|=(% style="width: 60px;" %)(((
294 -**Size(bytes)**
295 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
296 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
296 +=== 2.3.1 MOD~=0(Default Mode) ===
297 297  
298 +LSE01 will uplink payload via LoRaWAN with below payload format: 
299 +
298 298  (((
299 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
301 +Uplink payload includes in total 11 bytes.
300 300  )))
301 301  
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 +|(((
306 +**Size**
302 302  
303 -[[image:image-20220708111918-4.png]]
308 +**(bytes)**
309 +)))|**2**|**2**|**2**|**2**|**2**|**1**
310 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 +Temperature
304 304  
313 +(Reserve, Ignore now)
314 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 +MOD & Digital Interrupt
305 305  
306 -The payload is ASCII string, representative same HEX:
307 -
308 -0x72403155615900640c7817075e0a8c02f900 where:
309 -
310 -* Device ID: 0x 724031556159 = 724031556159
311 -* Version: 0x0064=100=1.0.0
312 -
313 -* BAT: 0x0c78 = 3192 mV = 3.192V
314 -* Singal: 0x17 = 23
315 -* Soil Moisture: 0x075e= 1886 = 18.86  %
316 -* Soil Temperature:0x0a8c =2700=27 °C
317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 -* Interrupt: 0x00 = 0
319 -
320 -== 2.4  Payload Explanation and Sensor Interface ==
321 -
322 -
323 -=== 2.4.1  Device ID ===
324 -
325 -(((
326 -By default, the Device ID equal to the last 6 bytes of IMEI.
317 +(Optional)
327 327  )))
328 328  
329 -(((
330 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
331 -)))
320 +=== 2.3.2 MOD~=1(Original value) ===
332 332  
333 -(((
334 -**Example:**
335 -)))
322 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
336 336  
337 -(((
338 -AT+DEUI=A84041F15612
339 -)))
324 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 +|(((
326 +**Size**
340 340  
341 -(((
342 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
343 -)))
328 +**(bytes)**
329 +)))|**2**|**2**|**2**|**2**|**2**|**1**
330 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 +Temperature
344 344  
333 +(Reserve, Ignore now)
334 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 +MOD & Digital Interrupt
345 345  
346 -
347 -=== 2.4.2  Version Info ===
348 -
349 -(((
350 -Specify the software version: 0x64=100, means firmware version 1.00.
337 +(Optional)
351 351  )))
352 352  
353 -(((
354 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
355 -)))
340 +=== 2.3.3 Battery Info ===
356 356  
357 -
358 -
359 -=== 2.4.3  Battery Info ===
360 -
361 361  (((
362 362  Check the battery voltage for LSE01.
363 363  )))
... ... @@ -372,51 +372,15 @@
372 372  
373 373  
374 374  
375 -=== 2.4.4  Signal Strength ===
356 +=== 2.3.4 Soil Moisture ===
376 376  
377 377  (((
378 -NB-IoT Network signal Strength.
379 -)))
380 -
381 -(((
382 -**Ex1: 0x1d = 29**
383 -)))
384 -
385 -(((
386 -(% style="color:blue" %)**0**(%%)  -113dBm or less
387 -)))
388 -
389 -(((
390 -(% style="color:blue" %)**1**(%%)  -111dBm
391 -)))
392 -
393 -(((
394 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
395 -)))
396 -
397 -(((
398 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
399 -)))
400 -
401 -(((
402 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
403 -)))
404 -
405 -
406 -
407 -=== 2.4.5  Soil Moisture ===
408 -
409 -(((
410 -(((
411 411  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
412 412  )))
413 -)))
414 414  
415 415  (((
416 -(((
417 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
363 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
418 418  )))
419 -)))
420 420  
421 421  (((
422 422  
... ... @@ -428,10 +428,10 @@
428 428  
429 429  
430 430  
431 -=== 2.4. Soil Temperature ===
376 +=== 2.3.5 Soil Temperature ===
432 432  
433 433  (((
434 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
379 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
435 435  )))
436 436  
437 437  (((
... ... @@ -448,7 +448,7 @@
448 448  
449 449  
450 450  
451 -=== 2.4. Soil Conductivity (EC) ===
396 +=== 2.3.6 Soil Conductivity (EC) ===
452 452  
453 453  (((
454 454  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -455,7 +455,7 @@
455 455  )))
456 456  
457 457  (((
458 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
403 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
459 459  )))
460 460  
461 461  (((
... ... @@ -470,68 +470,52 @@
470 470  
471 471  )))
472 472  
473 -=== 2.4. Digital Interrupt ===
418 +=== 2.3.7 MOD ===
474 474  
475 -(((
476 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
477 -)))
420 +Firmware version at least v2.1 supports changing mode.
478 478  
479 -(((
480 -The command is:
481 -)))
422 +For example, bytes[10]=90
482 482  
483 -(((
484 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
485 -)))
424 +mod=(bytes[10]>>7)&0x01=1.
486 486  
487 487  
488 -(((
489 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
490 -)))
427 +**Downlink Command:**
491 491  
429 +If payload = 0x0A00, workmode=0
492 492  
493 -(((
494 -Example:
495 -)))
431 +If** **payload =** **0x0A01, workmode=1
496 496  
497 -(((
498 -0x(00): Normal uplink packet.
499 -)))
500 500  
501 -(((
502 -0x(01): Interrupt Uplink Packet.
503 -)))
504 504  
435 +=== 2.3.8 ​Decode payload in The Things Network ===
505 505  
437 +While using TTN network, you can add the payload format to decode the payload.
506 506  
507 -=== 2.4.9  ​+5V Output ===
508 508  
509 -(((
510 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
511 -)))
440 +[[image:1654505570700-128.png]]
512 512  
513 -
514 514  (((
515 -The 5V output time can be controlled by AT Command.
443 +The payload decoder function for TTN is here:
516 516  )))
517 517  
518 518  (((
519 -(% style="color:blue" %)**AT+5VT=1000**
447 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
520 520  )))
521 521  
522 -(((
523 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
524 -)))
525 525  
451 +== 2.4 Uplink Interval ==
526 526  
453 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
527 527  
528 -== 2.5  Downlink Payload ==
529 529  
530 -By default, NSE01 prints the downlink payload to console port.
531 531  
532 -[[image:image-20220708133731-5.png]]
457 +== 2.5 Downlink Payload ==
533 533  
459 +By default, LSE50 prints the downlink payload to console port.
534 534  
461 +[[image:image-20220606165544-8.png]]
462 +
463 +
535 535  (((
536 536  (% style="color:blue" %)**Examples:**
537 537  )))
... ... @@ -545,7 +545,7 @@
545 545  )))
546 546  
547 547  (((
548 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
477 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
549 549  )))
550 550  
551 551  (((
... ... @@ -565,144 +565,432 @@
565 565  )))
566 566  
567 567  (((
568 -If payload = 0x04FF, it will reset the NSE01
497 +If payload = 0x04FF, it will reset the LSE01
569 569  )))
570 570  
571 571  
572 -* (% style="color:blue" %)**INTMOD**
501 +* (% style="color:blue" %)**CFM**
573 573  
574 -(((
575 -Downlink Payload: 06000003, Set AT+INTMOD=3
576 -)))
503 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
577 577  
578 578  
579 579  
580 -== 2.6 LED Indicator ==
507 +== 2.6 ​Show Data in DataCake IoT Server ==
581 581  
582 582  (((
583 -The NSE01 has an internal LED which is to show the status of different state.
510 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
511 +)))
584 584  
513 +(((
514 +
515 +)))
585 585  
586 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
587 -* Then the LED will be on for 1 second means device is boot normally.
588 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
589 -* For each uplink probe, LED will be on for 500ms.
517 +(((
518 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
590 590  )))
591 591  
521 +(((
522 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 +)))
592 592  
593 593  
526 +[[image:1654505857935-743.png]]
594 594  
595 -== 2.7  Installation in Soil ==
596 596  
597 -__**Measurement the soil surface**__
529 +[[image:1654505874829-548.png]]
598 598  
599 -(((
600 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
601 -)))
602 602  
603 -[[image:1657259653666-883.png]]
532 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
604 604  
534 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
605 605  
606 -(((
607 -
608 608  
609 -(((
610 -Dig a hole with diameter > 20CM.
611 -)))
537 +[[image:1654505905236-553.png]]
612 612  
613 -(((
614 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
615 -)))
616 -)))
617 617  
618 -[[image:1654506665940-119.png]]
540 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
619 619  
620 -(((
621 -
622 -)))
542 +[[image:1654505925508-181.png]]
623 623  
624 624  
625 -== 2.8  ​Firmware Change Log ==
626 626  
546 +== 2.7 Frequency Plans ==
627 627  
628 -Download URL & Firmware Change log
548 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
629 629  
630 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
631 631  
551 +=== 2.7.1 EU863-870 (EU868) ===
632 632  
633 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
553 +(% style="color:#037691" %)** Uplink:**
634 634  
555 +868.1 - SF7BW125 to SF12BW125
635 635  
557 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
636 636  
637 -== 2. Battery Analysis ==
559 +868.5 - SF7BW125 to SF12BW125
638 638  
639 -=== 2.9.1  Battery Type ===
561 +867.1 - SF7BW125 to SF12BW125
640 640  
563 +867.3 - SF7BW125 to SF12BW125
641 641  
565 +867.5 - SF7BW125 to SF12BW125
566 +
567 +867.7 - SF7BW125 to SF12BW125
568 +
569 +867.9 - SF7BW125 to SF12BW125
570 +
571 +868.8 - FSK
572 +
573 +
574 +(% style="color:#037691" %)** Downlink:**
575 +
576 +Uplink channels 1-9 (RX1)
577 +
578 +869.525 - SF9BW125 (RX2 downlink only)
579 +
580 +
581 +
582 +=== 2.7.2 US902-928(US915) ===
583 +
584 +Used in USA, Canada and South America. Default use CHE=2
585 +
586 +(% style="color:#037691" %)**Uplink:**
587 +
588 +903.9 - SF7BW125 to SF10BW125
589 +
590 +904.1 - SF7BW125 to SF10BW125
591 +
592 +904.3 - SF7BW125 to SF10BW125
593 +
594 +904.5 - SF7BW125 to SF10BW125
595 +
596 +904.7 - SF7BW125 to SF10BW125
597 +
598 +904.9 - SF7BW125 to SF10BW125
599 +
600 +905.1 - SF7BW125 to SF10BW125
601 +
602 +905.3 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**Downlink:**
606 +
607 +923.3 - SF7BW500 to SF12BW500
608 +
609 +923.9 - SF7BW500 to SF12BW500
610 +
611 +924.5 - SF7BW500 to SF12BW500
612 +
613 +925.1 - SF7BW500 to SF12BW500
614 +
615 +925.7 - SF7BW500 to SF12BW500
616 +
617 +926.3 - SF7BW500 to SF12BW500
618 +
619 +926.9 - SF7BW500 to SF12BW500
620 +
621 +927.5 - SF7BW500 to SF12BW500
622 +
623 +923.3 - SF12BW500(RX2 downlink only)
624 +
625 +
626 +
627 +=== 2.7.3 CN470-510 (CN470) ===
628 +
629 +Used in China, Default use CHE=1
630 +
631 +(% style="color:#037691" %)**Uplink:**
632 +
633 +486.3 - SF7BW125 to SF12BW125
634 +
635 +486.5 - SF7BW125 to SF12BW125
636 +
637 +486.7 - SF7BW125 to SF12BW125
638 +
639 +486.9 - SF7BW125 to SF12BW125
640 +
641 +487.1 - SF7BW125 to SF12BW125
642 +
643 +487.3 - SF7BW125 to SF12BW125
644 +
645 +487.5 - SF7BW125 to SF12BW125
646 +
647 +487.7 - SF7BW125 to SF12BW125
648 +
649 +
650 +(% style="color:#037691" %)**Downlink:**
651 +
652 +506.7 - SF7BW125 to SF12BW125
653 +
654 +506.9 - SF7BW125 to SF12BW125
655 +
656 +507.1 - SF7BW125 to SF12BW125
657 +
658 +507.3 - SF7BW125 to SF12BW125
659 +
660 +507.5 - SF7BW125 to SF12BW125
661 +
662 +507.7 - SF7BW125 to SF12BW125
663 +
664 +507.9 - SF7BW125 to SF12BW125
665 +
666 +508.1 - SF7BW125 to SF12BW125
667 +
668 +505.3 - SF12BW125 (RX2 downlink only)
669 +
670 +
671 +
672 +=== 2.7.4 AU915-928(AU915) ===
673 +
674 +Default use CHE=2
675 +
676 +(% style="color:#037691" %)**Uplink:**
677 +
678 +916.8 - SF7BW125 to SF12BW125
679 +
680 +917.0 - SF7BW125 to SF12BW125
681 +
682 +917.2 - SF7BW125 to SF12BW125
683 +
684 +917.4 - SF7BW125 to SF12BW125
685 +
686 +917.6 - SF7BW125 to SF12BW125
687 +
688 +917.8 - SF7BW125 to SF12BW125
689 +
690 +918.0 - SF7BW125 to SF12BW125
691 +
692 +918.2 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %)**Downlink:**
696 +
697 +923.3 - SF7BW500 to SF12BW500
698 +
699 +923.9 - SF7BW500 to SF12BW500
700 +
701 +924.5 - SF7BW500 to SF12BW500
702 +
703 +925.1 - SF7BW500 to SF12BW500
704 +
705 +925.7 - SF7BW500 to SF12BW500
706 +
707 +926.3 - SF7BW500 to SF12BW500
708 +
709 +926.9 - SF7BW500 to SF12BW500
710 +
711 +927.5 - SF7BW500 to SF12BW500
712 +
713 +923.3 - SF12BW500(RX2 downlink only)
714 +
715 +
716 +
717 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
718 +
719 +(% style="color:#037691" %)**Default Uplink channel:**
720 +
721 +923.2 - SF7BW125 to SF10BW125
722 +
723 +923.4 - SF7BW125 to SF10BW125
724 +
725 +
726 +(% style="color:#037691" %)**Additional Uplink Channel**:
727 +
728 +(OTAA mode, channel added by JoinAccept message)
729 +
730 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +
732 +922.2 - SF7BW125 to SF10BW125
733 +
734 +922.4 - SF7BW125 to SF10BW125
735 +
736 +922.6 - SF7BW125 to SF10BW125
737 +
738 +922.8 - SF7BW125 to SF10BW125
739 +
740 +923.0 - SF7BW125 to SF10BW125
741 +
742 +922.0 - SF7BW125 to SF10BW125
743 +
744 +
745 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +
747 +923.6 - SF7BW125 to SF10BW125
748 +
749 +923.8 - SF7BW125 to SF10BW125
750 +
751 +924.0 - SF7BW125 to SF10BW125
752 +
753 +924.2 - SF7BW125 to SF10BW125
754 +
755 +924.4 - SF7BW125 to SF10BW125
756 +
757 +924.6 - SF7BW125 to SF10BW125
758 +
759 +
760 +(% style="color:#037691" %)** Downlink:**
761 +
762 +Uplink channels 1-8 (RX1)
763 +
764 +923.2 - SF10BW125 (RX2)
765 +
766 +
767 +
768 +=== 2.7.6 KR920-923 (KR920) ===
769 +
770 +Default channel:
771 +
772 +922.1 - SF7BW125 to SF12BW125
773 +
774 +922.3 - SF7BW125 to SF12BW125
775 +
776 +922.5 - SF7BW125 to SF12BW125
777 +
778 +
779 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780 +
781 +922.1 - SF7BW125 to SF12BW125
782 +
783 +922.3 - SF7BW125 to SF12BW125
784 +
785 +922.5 - SF7BW125 to SF12BW125
786 +
787 +922.7 - SF7BW125 to SF12BW125
788 +
789 +922.9 - SF7BW125 to SF12BW125
790 +
791 +923.1 - SF7BW125 to SF12BW125
792 +
793 +923.3 - SF7BW125 to SF12BW125
794 +
795 +
796 +(% style="color:#037691" %)**Downlink:**
797 +
798 +Uplink channels 1-7(RX1)
799 +
800 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801 +
802 +
803 +
804 +=== 2.7.7 IN865-867 (IN865) ===
805 +
806 +(% style="color:#037691" %)** Uplink:**
807 +
808 +865.0625 - SF7BW125 to SF12BW125
809 +
810 +865.4025 - SF7BW125 to SF12BW125
811 +
812 +865.9850 - SF7BW125 to SF12BW125
813 +
814 +
815 +(% style="color:#037691" %) **Downlink:**
816 +
817 +Uplink channels 1-3 (RX1)
818 +
819 +866.550 - SF10BW125 (RX2)
820 +
821 +
822 +
823 +
824 +== 2.8 LED Indicator ==
825 +
826 +The LSE01 has an internal LED which is to show the status of different state.
827 +
828 +* Blink once when device power on.
829 +* Solid ON for 5 seconds once device successful Join the network.
830 +* Blink once when device transmit a packet.
831 +
832 +== 2.9 Installation in Soil ==
833 +
834 +**Measurement the soil surface**
835 +
836 +
837 +[[image:1654506634463-199.png]] ​
838 +
642 642  (((
643 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 +(((
841 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
644 644  )))
843 +)))
645 645  
646 646  
846 +
847 +[[image:1654506665940-119.png]]
848 +
647 647  (((
648 -The battery is designed to last for several years depends on the actually use environment and update interval. 
850 +Dig a hole with diameter > 20CM.
649 649  )))
650 650  
853 +(((
854 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
855 +)))
651 651  
857 +
858 +== 2.10 ​Firmware Change Log ==
859 +
652 652  (((
653 -The battery related documents as below:
861 +**Firmware download link:**
654 654  )))
655 655  
656 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
657 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
864 +(((
865 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 +)))
659 659  
660 660  (((
661 -[[image:image-20220708140453-6.png]]
869 +
662 662  )))
663 663  
872 +(((
873 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 +)))
664 664  
876 +(((
877 +
878 +)))
665 665  
666 -=== 2.9.2  Power consumption Analyze ===
880 +(((
881 +**V1.0.**
882 +)))
667 667  
668 668  (((
669 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
885 +Release
670 670  )))
671 671  
672 672  
889 +== 2.11 ​Battery Analysis ==
890 +
891 +=== 2.11.1 ​Battery Type ===
892 +
673 673  (((
674 -Instruction to use as below:
894 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
675 675  )))
676 676  
677 677  (((
678 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
898 +The battery is designed to last for more than 5 years for the LSN50.
679 679  )))
680 680  
681 -
682 682  (((
683 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 +(((
903 +The battery-related documents are as below:
684 684  )))
905 +)))
685 685  
686 686  * (((
687 -Product Model
908 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
688 688  )))
689 689  * (((
690 -Uplink Interval
911 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
691 691  )))
692 692  * (((
693 -Working Mode
914 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
694 694  )))
695 695  
696 -(((
697 -And the Life expectation in difference case will be shown on the right.
698 -)))
917 + [[image:image-20220610172436-1.png]]
699 699  
700 -[[image:image-20220708141352-7.jpeg]]
701 701  
702 702  
921 +=== 2.11.2 ​Battery Note ===
703 703  
704 -=== 2.9.3  ​Battery Note ===
705 -
706 706  (((
707 707  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
708 708  )))
... ... @@ -709,176 +709,302 @@
709 709  
710 710  
711 711  
712 -=== 2.9. Replace the battery ===
929 +=== 2.11.3 Replace the battery ===
713 713  
714 714  (((
715 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
932 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
716 716  )))
717 717  
718 -
719 -
720 -= 3. ​ Access NB-IoT Module =
721 -
722 722  (((
723 -Users can directly access the AT command set of the NB-IoT module.
936 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
724 724  )))
725 725  
726 726  (((
727 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
940 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
728 728  )))
729 729  
730 -[[image:1657261278785-153.png]]
731 731  
732 732  
945 += 3. ​Using the AT Commands =
733 733  
734 -= 4.  Using the AT Commands =
947 +== 3.1 Access AT Commands ==
735 735  
736 -== 4.1  Access AT Commands ==
737 737  
738 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
950 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
739 739  
952 +[[image:1654501986557-872.png||height="391" width="800"]]
740 740  
741 -AT+<CMD>?  : Help on <CMD>
742 742  
743 -AT+<CMD>         : Run <CMD>
955 +Or if you have below board, use below connection:
744 744  
745 -AT+<CMD>=<value> : Set the value
746 746  
747 -AT+<CMD>=?  : Get the value
958 +[[image:1654502005655-729.png||height="503" width="801"]]
748 748  
749 749  
961 +
962 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
963 +
964 +
965 + [[image:1654502050864-459.png||height="564" width="806"]]
966 +
967 +
968 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
969 +
970 +
971 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
972 +
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978 +
979 +
750 750  (% style="color:#037691" %)**General Commands**(%%)      
751 751  
752 -AT  : Attention       
982 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
753 753  
754 -AT?  : Short Help     
984 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
755 755  
756 -ATZ  : MCU Reset    
986 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
757 757  
758 -AT+TDC  : Application Data Transmission Interval
988 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
759 759  
760 -AT+CFG  : Print all configurations
761 761  
762 -AT+CFGMOD           : Working mode selection
991 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
763 763  
764 -AT+INTMOD            : Set the trigger interrupt mode
993 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
765 765  
766 -AT+5VT  : Set extend the time of 5V power  
995 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
767 767  
768 -AT+PRO  : Choose agreement
997 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
769 769  
770 -AT+WEIGRE  : Get weight or set weight to 0
999 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
771 771  
772 -AT+WEIGAP  : Get or Set the GapValue of weight
1001 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
773 773  
774 -AT+RXDL  : Extend the sending and receiving time
1003 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
775 775  
776 -AT+CNTFAC  : Get or set counting parameters
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
777 777  
778 -AT+SERVADDR  : Server Address
1007 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
779 779  
1009 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
780 780  
781 -(% style="color:#037691" %)**COAP Management**      
1011 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
782 782  
783 -AT+URI            : Resource parameters
1013 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
784 784  
1015 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
785 785  
786 -(% style="color:#037691" %)**UDP Management**
1017 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787 787  
788 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1019 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789 789  
1021 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
790 790  
791 -(% style="color:#037691" %)**MQTT Management**
1023 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
792 792  
793 -AT+CLIENT               : Get or Set MQTT client
794 794  
795 -AT+UNAME  : Get or Set MQTT Username
1026 +(% style="color:#037691" %)**LoRa Network Management**
796 796  
797 -AT+PWD                  : Get or Set MQTT password
1028 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798 798  
799 -AT+PUBTOPI : Get or Set MQTT publish topic
1030 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800 800  
801 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1032 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
802 802  
1034 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
803 803  
804 -(% style="color:#037691" %)**Information**          
1036 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
805 805  
806 -AT+FDR  : Factory Data Reset
1038 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
807 807  
808 -AT+PWOR : Serial Access Password
1040 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
809 809  
1042 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
810 810  
1044 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
811 811  
812 -= ​5.  FAQ =
1046 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
813 813  
814 -== 5.1 How to Upgrade Firmware ==
1048 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
815 815  
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
816 816  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1053 +
1054 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1057 +
1058 +
1059 +(% style="color:#037691" %)**Information** 
1060 +
1061 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072 +
1073 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074 +
1075 +
1076 += ​4. FAQ =
1077 +
1078 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079 +
817 817  (((
818 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 +When downloading the images, choose the required image file for download. ​
819 819  )))
820 820  
821 821  (((
822 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1086 +
823 823  )))
824 824  
825 825  (((
826 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1090 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
827 827  )))
828 828  
1093 +(((
1094 +
1095 +)))
829 829  
1097 +(((
1098 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 +)))
830 830  
831 -== 5.2  Can I calibrate NSE01 to different soil types? ==
1101 +(((
1102 +
1103 +)))
832 832  
833 833  (((
834 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1106 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
835 835  )))
836 836  
1109 +[[image:image-20220606154726-3.png]]
837 837  
838 -= 6.  Trouble Shooting =
839 839  
840 -== 6.1  ​Connection problem when uploading firmware ==
1112 +When you use the TTN network, the US915 frequency bands use are:
841 841  
1114 +* 903.9 - SF7BW125 to SF10BW125
1115 +* 904.1 - SF7BW125 to SF10BW125
1116 +* 904.3 - SF7BW125 to SF10BW125
1117 +* 904.5 - SF7BW125 to SF10BW125
1118 +* 904.7 - SF7BW125 to SF10BW125
1119 +* 904.9 - SF7BW125 to SF10BW125
1120 +* 905.1 - SF7BW125 to SF10BW125
1121 +* 905.3 - SF7BW125 to SF10BW125
1122 +* 904.6 - SF8BW500
842 842  
843 843  (((
844 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1125 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126 +
1127 +* (% style="color:#037691" %)**AT+CHE=2**
1128 +* (% style="color:#037691" %)**ATZ**
845 845  )))
846 846  
847 -(% class="wikigeneratedid" %)
848 848  (((
849 849  
1133 +
1134 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
850 850  )))
851 851  
1137 +(((
1138 +
1139 +)))
852 852  
853 -== 6.2  AT Command input doesn't work ==
1141 +(((
1142 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 +)))
854 854  
1145 +[[image:image-20220606154825-4.png]]
1146 +
1147 +
1148 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149 +
1150 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151 +
1152 +
1153 += 5. Trouble Shooting =
1154 +
1155 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156 +
1157 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158 +
1159 +
1160 +== 5.2 AT Command input doesn't work ==
1161 +
855 855  (((
856 856  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 +)))
857 857  
858 -
1166 +
1167 +== 5.3 Device rejoin in at the second uplink packet ==
1168 +
1169 +(% style="color:#4f81bd" %)**Issue describe as below:**
1170 +
1171 +[[image:1654500909990-784.png]]
1172 +
1173 +
1174 +(% style="color:#4f81bd" %)**Cause for this issue:**
1175 +
1176 +(((
1177 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
859 859  )))
860 860  
861 861  
862 -= 7. ​ Order Info =
1181 +(% style="color:#4f81bd" %)**Solution: **
863 863  
1183 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
864 864  
865 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1185 +[[image:1654500929571-736.png||height="458" width="832"]]
866 866  
867 867  
1188 += 6. ​Order Info =
1189 +
1190 +
1191 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192 +
1193 +
1194 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195 +
1196 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204 +
1205 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206 +
1207 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1208 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1209 +
868 868  (% class="wikigeneratedid" %)
869 869  (((
870 870  
871 871  )))
872 872  
873 -= 8.  Packing Info =
1215 += 7. Packing Info =
874 874  
875 875  (((
876 876  
877 877  
878 878  (% style="color:#037691" %)**Package Includes**:
1221 +)))
879 879  
880 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
881 -* External antenna x 1
1223 +* (((
1224 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
882 882  )))
883 883  
884 884  (((
... ... @@ -885,19 +885,24 @@
885 885  
886 886  
887 887  (% style="color:#037691" %)**Dimension and weight**:
1231 +)))
888 888  
889 -* Size: 195 x 125 x 55 mm
890 -* Weight:   420g
1233 +* (((
1234 +Device Size: cm
891 891  )))
1236 +* (((
1237 +Device Weight: g
1238 +)))
1239 +* (((
1240 +Package Size / pcs : cm
1241 +)))
1242 +* (((
1243 +Weight / pcs : g
892 892  
893 -(((
894 894  
895 -
896 -
897 -
898 898  )))
899 899  
900 -= 9.  Support =
1248 += 8. Support =
901 901  
902 902  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
903 903  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0