<
From version < 65.11 >
edited by Xiaoling
on 2022/07/08 15:44
To version < 90.2 >
edited by Xiaoling
on 2022/07/09 09:45
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,19 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,30 +20,22 @@
20 20  
21 21  
22 22  
23 -
24 24  = 1.  Introduction =
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
27 27  
28 28  (((
29 29  
30 30  
31 31  (((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
37 -)))
38 -
39 -(((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
41 -)))
42 -
43 -(((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
45 -)))
46 -
47 47  
48 48  )))
49 49  
... ... @@ -50,26 +50,26 @@
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​ Features ==
58 58  
44 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 -* Monitor Soil Moisture
61 -* Monitor Soil Temperature
62 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 69  * Micro SIM card slot for NB-IoT SIM
70 70  * 8500mAh Battery for long term use
71 71  
72 -
73 73  == 1.3  Specification ==
74 74  
75 75  
... ... @@ -87,58 +87,72 @@
87 87  * - B20 @H-FDD: 800MHz
88 88  * - B28 @H-FDD: 700MHz
89 89  
90 -Probe(% style="color:#037691" %)** Specification:**
75 +(% style="color:#037691" %)**Battery:**
91 91  
92 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
93 93  
94 -[[image:image-20220708101224-1.png]]
83 +(% style="color:#037691" %)**Power Consumption**
95 95  
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
96 96  
97 97  
98 98  == ​1.4  Applications ==
99 99  
91 +* Smart Buildings & Home Automation
92 +* Logistics and Supply Chain Management
93 +* Smart Metering
100 100  * Smart Agriculture
95 +* Smart Cities
96 +* Smart Factory
101 101  
102 102  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 103  ​
104 104  
101 +
102 +
105 105  == 1.5  Pin Definitions ==
106 106  
107 107  
108 -[[image:1657246476176-652.png]]
106 +[[image:1657328609906-564.png]]
109 109  
110 110  
111 111  
112 -= 2.  Use NSE01 to communicate with IoT Server =
110 += 2.  Use NDDS75 to communicate with IoT Server =
113 113  
114 114  == 2.1  How it works ==
115 115  
116 -
117 117  (((
118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
119 119  )))
120 120  
121 121  
122 122  (((
123 -The diagram below shows the working flow in default firmware of NSE01:
120 +The diagram below shows the working flow in default firmware of NDDS75:
124 124  )))
125 125  
126 -[[image:image-20220708101605-2.png]]
127 -
128 128  (((
129 129  
130 130  )))
131 131  
127 +[[image:1657328659945-416.png]]
132 132  
129 +(((
130 +
131 +)))
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
135 135  
134 +== 2.2 ​ Configure the NDDS75 ==
136 136  
136 +
137 137  === 2.2.1 Test Requirement ===
138 138  
139 -
140 140  (((
141 -To use NSE01 in your city, make sure meet below requirements:
140 +To use NDDS75 in your city, make sure meet below requirements:
142 142  )))
143 143  
144 144  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -146,11 +146,11 @@
146 146  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
147 147  
148 148  (((
149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 150  )))
151 151  
152 152  
153 -[[image:1657249419225-449.png]]
152 +[[image:1657328756309-230.png]]
154 154  
155 155  
156 156  
... ... @@ -165,18 +165,19 @@
165 165  )))
166 166  
167 167  
168 -[[image:1657249468462-536.png]]
167 +[[image:1657328884227-504.png]]
169 169  
170 170  
171 171  
172 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
173 173  
174 174  (((
175 175  (((
176 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
177 177  )))
178 178  )))
179 179  
179 +[[image:image-20220709092052-2.png]]
180 180  
181 181  **Connection:**
182 182  
... ... @@ -196,12 +196,14 @@
196 196  * Flow Control: (% style="color:green" %)**None**
197 197  
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 200  )))
201 201  
202 -[[image:image-20220708110657-3.png]]
202 +[[image:1657329814315-101.png]]
203 203  
204 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
204 +(((
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
206 +)))
205 205  
206 206  
207 207  
... ... @@ -218,48 +218,44 @@
218 218  
219 219  For parameter description, please refer to AT command set
220 220  
221 -[[image:1657249793983-486.png]]
223 +[[image:1657330452568-615.png]]
222 222  
223 223  
224 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
225 225  
226 -[[image:1657249831934-534.png]]
228 +[[image:1657330472797-498.png]]
227 227  
228 228  
229 229  
230 230  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
231 231  
232 -This feature is supported since firmware version v1.0.1
233 233  
234 -
235 235  * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 236  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 237  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
238 238  
239 -[[image:1657249864775-321.png]]
239 +[[image:1657330501006-241.png]]
240 240  
241 241  
242 -[[image:1657249930215-289.png]]
242 +[[image:1657330533775-472.png]]
243 243  
244 244  
245 245  
246 246  === 2.2.6 Use MQTT protocol to uplink data ===
247 247  
248 -This feature is supported since firmware version v110
249 249  
250 -
251 251  * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 252  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 253  * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 254  * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 255  * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 258  
259 259  [[image:1657249978444-674.png]]
260 260  
261 261  
262 -[[image:1657249990869-686.png]]
260 +[[image:1657330723006-866.png]]
263 263  
264 264  
265 265  (((
... ... @@ -270,16 +270,14 @@
270 270  
271 271  === 2.2.7 Use TCP protocol to uplink data ===
272 272  
273 -This feature is supported since firmware version v110
274 274  
275 -
276 276  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 277  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
278 278  
279 -[[image:1657250217799-140.png]]
275 +[[image:image-20220709093918-1.png]]
280 280  
281 281  
282 -[[image:1657250255956-604.png]]
278 +[[image:image-20220709093918-2.png]]
283 283  
284 284  
285 285  
... ... @@ -301,57 +301,89 @@
301 301  
302 302  == 2.3  Uplink Payload ==
303 303  
304 -In this mode, uplink payload includes in total 18 bytes
300 +In this mode, uplink payload includes in total 14 bytes
305 305  
302 +
306 306  (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 -|=(% style="width: 50px;" %)(((
304 +|=(% style="width: 60px;" %)(((
308 308  **Size(bytes)**
309 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
311 311  
312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
309 +(((
310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 +)))
313 313  
314 314  
315 -[[image:image-20220708111918-4.png]]
314 +[[image:1657331036973-987.png]]
316 316  
317 -
316 +(((
318 318  The payload is ASCII string, representative same HEX:
318 +)))
319 319  
320 -0x72403155615900640c7817075e0a8c02f900 where:
320 +(((
321 +0x72403155615900640c6c19029200 where:
322 +)))
321 321  
322 -* Device ID: 0x 724031556159 = 724031556159
323 -* Version: 0x0064=100=1.0.0
324 +* (((
325 +Device ID: 0x724031556159 = 724031556159
326 +)))
327 +* (((
328 +Version: 0x0064=100=1.0.0
329 +)))
324 324  
325 -* BAT: 0x0c78 = 3192 mV = 3.192V
326 -* Singal: 0x17 = 23
327 -* Soil Moisture: 0x075e= 1886 = 18.86  %
328 -* Soil Temperature:0x0a8c =2700=27 °C
329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 -* Interrupt: 0x00 = 0
331 +* (((
332 +BAT: 0x0c6c = 3180 mV = 3.180V
333 +)))
334 +* (((
335 +Signal: 0x19 = 25
336 +)))
337 +* (((
338 +Distance: 0x0292= 658 mm
339 +)))
340 +* (((
341 +Interrupt: 0x00 = 0
342 +)))
331 331  
332 332  
345 +
346 +
333 333  == 2.4  Payload Explanation and Sensor Interface ==
334 334  
335 335  
336 336  === 2.4.1  Device ID ===
337 337  
352 +(((
338 338  By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
339 339  
356 +(((
340 340  User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
358 +)))
341 341  
360 +(((
342 342  **Example:**
362 +)))
343 343  
364 +(((
344 344  AT+DEUI=A84041F15612
366 +)))
345 345  
368 +(((
346 346  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
370 +)))
347 347  
348 348  
349 349  
350 350  === 2.4.2  Version Info ===
351 351  
376 +(((
352 352  Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
353 353  
380 +(((
354 354  For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
382 +)))
355 355  
356 356  
357 357  
... ... @@ -373,19 +373,33 @@
373 373  
374 374  === 2.4.4  Signal Strength ===
375 375  
404 +(((
376 376  NB-IoT Network signal Strength.
406 +)))
377 377  
408 +(((
378 378  **Ex1: 0x1d = 29**
410 +)))
379 379  
412 +(((
380 380  (% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
381 381  
416 +(((
382 382  (% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
383 383  
420 +(((
384 384  (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
385 385  
424 +(((
386 386  (% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
387 387  
428 +(((
388 388  (% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
389 389  
390 390  
391 391  
... ... @@ -392,12 +392,16 @@
392 392  === 2.4.5  Soil Moisture ===
393 393  
394 394  (((
437 +(((
395 395  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 396  )))
440 +)))
397 397  
398 398  (((
443 +(((
399 399  For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 400  )))
446 +)))
401 401  
402 402  (((
403 403  
... ... @@ -412,7 +412,7 @@
412 412  === 2.4.6  Soil Temperature ===
413 413  
414 414  (((
415 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
461 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 416  )))
417 417  
418 418  (((
... ... @@ -453,34 +453,56 @@
453 453  
454 454  === 2.4.8  Digital Interrupt ===
455 455  
502 +(((
456 456  Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
504 +)))
457 457  
506 +(((
458 458  The command is:
508 +)))
459 459  
510 +(((
460 460  (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
512 +)))
461 461  
462 462  
515 +(((
463 463  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
517 +)))
464 464  
465 465  
520 +(((
466 466  Example:
522 +)))
467 467  
524 +(((
468 468  0x(00): Normal uplink packet.
526 +)))
469 469  
528 +(((
470 470  0x(01): Interrupt Uplink Packet.
530 +)))
471 471  
472 472  
473 473  
474 474  === 2.4.9  ​+5V Output ===
475 475  
536 +(((
476 476  NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 +)))
477 477  
478 478  
541 +(((
479 479  The 5V output time can be controlled by AT Command.
543 +)))
480 480  
545 +(((
481 481  (% style="color:blue" %)**AT+5VT=1000**
547 +)))
482 482  
549 +(((
483 483  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
551 +)))
484 484  
485 485  
486 486  
... ... @@ -530,7 +530,9 @@
530 530  
531 531  * (% style="color:blue" %)**INTMOD**
532 532  
601 +(((
533 533  Downlink Payload: 06000003, Set AT+INTMOD=3
603 +)))
534 534  
535 535  
536 536  
... ... @@ -553,7 +553,9 @@
553 553  
554 554  __**Measurement the soil surface**__
555 555  
626 +(((
556 556  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
628 +)))
557 557  
558 558  [[image:1657259653666-883.png]] ​
559 559  
... ... @@ -594,13 +594,19 @@
594 594  === 2.9.1  ​Battery Type ===
595 595  
596 596  
669 +(((
597 597  The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
671 +)))
598 598  
599 599  
674 +(((
600 600  The battery is designed to last for several years depends on the actually use environment and update interval. 
676 +)))
601 601  
602 602  
679 +(((
603 603  The battery related documents as below:
681 +)))
604 604  
605 605  * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 606  * [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
... ... @@ -777,26 +777,37 @@
777 777  
778 778  
779 779  
858 +== 5.2  Can I calibrate NSE01 to different soil types? ==
859 +
860 +(((
861 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
862 +)))
863 +
864 +
780 780  = 6.  Trouble Shooting =
781 781  
782 782  == 6.1  ​Connection problem when uploading firmware ==
783 783  
784 784  
870 +(((
871 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
872 +)))
873 +
785 785  (% class="wikigeneratedid" %)
786 786  (((
787 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
876 +
788 788  )))
789 789  
790 790  
791 -
792 792  == 6.2  AT Command input doesn't work ==
793 793  
794 794  (((
795 795  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
884 +
885 +
796 796  )))
797 797  
798 798  
799 -
800 800  = 7. ​ Order Info =
801 801  
802 802  
... ... @@ -815,7 +815,6 @@
815 815  
816 816  (% style="color:#037691" %)**Package Includes**:
817 817  
818 -
819 819  * NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 820  * External antenna x 1
821 821  )))
... ... @@ -825,7 +825,6 @@
825 825  
826 826  (% style="color:#037691" %)**Dimension and weight**:
827 827  
828 -
829 829  * Size: 195 x 125 x 55 mm
830 830  * Weight:   420g
831 831  )))
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0