Last modified by Mengting Qiu on 2024/04/02 16:44

From version 6.1
edited by Xiaoling
on 2022/06/06 15:35
Change comment: Uploaded new attachment "1654500929571-736.png", version {1}
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,7 +1,6 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
5 5  
6 6  
7 7  
... ... @@ -12,6 +12,7 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 16  
17 17  
... ... @@ -18,927 +18,786 @@
18 18  
19 19  
20 20  
21 += 1.  Introduction =
21 21  
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
22 22  
23 -1. Introduction
24 -11. ​What is LoRaWAN Soil Moisture & EC Sensor
25 +(((
26 +
25 25  
26 -The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
27 27  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
30 30  
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
31 31  
32 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +
37 +)))
33 33  
39 +[[image:1654503236291-817.png]]
34 34  
35 -LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
36 36  
42 +[[image:1657245163077-232.png]]
37 37  
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 39  
40 40  
41 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
46 +== 1.2 ​Features ==
42 42  
43 43  
44 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
45 -
46 -
47 -
48 -*
49 -*1. ​Features
50 -* LoRaWAN 1.0.3 Class A
51 -* Ultra low power consumption
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
52 52  * Monitor Soil Moisture
53 53  * Monitor Soil Temperature
54 54  * Monitor Soil Conductivity
55 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 56  * AT Commands to change parameters
57 57  * Uplink on periodically
58 58  * Downlink to change configure
59 59  * IP66 Waterproof Enclosure
60 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
61 61  
62 -1.
63 -11. Specification
62 +== 1.3  Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 -|**Range**|**0-100.00%**|(((
69 -**0-20000uS/cm**
65 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -**(25℃)(0-20.0EC)**
72 -)))|**-40.00℃~85.00℃**
73 -|**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 -|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 -|**Accuracy**|(((
76 -**±3% (0-53%)**
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
77 77  
78 -**±5% (>53%)**
79 -)))|**2%FS,**|(((
80 -**-10℃~50℃:<0.3℃**
70 +(% style="color:#037691" %)**NB-IoT Spec:**
81 81  
82 -**All other: <0.6℃**
83 -)))
84 -|(((
85 -**Measure**
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
86 86  
87 -**Method**
88 -)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
79 +(% style="color:#037691" %)**Probe Specification:**
89 89  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
90 90  
83 +[[image:image-20220708101224-1.png]]
91 91  
92 -*
93 -*1. ​Applications
94 -* Smart Agriculture
95 95  
96 -1.
97 -11. ​Firmware Change log
98 98  
99 -**LSE01 v1.0:**
87 +== 1.4  Applications ==
100 100  
101 -* Release
89 +* Smart Agriculture
102 102  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
103 103  
94 +== 1.5  Pin Definitions ==
104 104  
105 -1. Configure LSE01 to connect to LoRaWAN network
106 -11. How it works
107 107  
108 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
97 +[[image:1657246476176-652.png]]
109 109  
110 110  
111 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
112 112  
101 += 2.  Use NSE01 to communicate with IoT Server =
113 113  
103 +== 2.1  How it works ==
114 114  
115 115  
116 -1.
117 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
118 118  
119 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 120  
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
113 +)))
121 121  
122 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
115 +[[image:image-20220708101605-2.png]]
123 123  
124 -
125 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 -
127 -
128 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
129 -
130 -Each LSE01 is shipped with a sticker with the default device EUI as below:
131 -
132 -
133 -
134 -
135 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
136 -
137 -
138 -**Add APP EUI in the application**
139 -
140 -
141 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
142 -
143 -
144 -
145 -**Add APP KEY and DEV EUI**
146 -
147 -
148 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
149 -
150 -|(((
117 +(((
151 151  
152 152  )))
153 153  
154 154  
155 155  
123 +== 2.2 ​ Configure the NSE01 ==
156 156  
157 -**Step 2**: Power on LSE01
158 158  
126 +=== 2.2.1 Test Requirement ===
159 159  
160 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
161 161  
129 +To use NSE01 in your city, make sure meet below requirements:
162 162  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
163 163  
164 -|(((
165 -
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
166 166  )))
167 167  
168 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
169 169  
140 +[[image:1657249419225-449.png]]
170 170  
171 171  
172 172  
144 +=== 2.2.2 Insert SIM card ===
173 173  
174 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
146 +Insert the NB-IoT Card get from your provider.
175 175  
176 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
177 177  
178 178  
151 +[[image:1657249468462-536.png]]
179 179  
180 180  
181 -1.
182 -11. ​Uplink Payload
183 -111. MOD=0(Default Mode)
184 184  
185 -LSE01 will uplink payload via LoRaWAN with below payload format
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
186 186  
187 -
188 -Uplink payload includes in total 11 bytes.
189 -
190 -
191 -|(((
192 -**Size**
193 -
194 -**(bytes)**
195 -)))|**2**|**2**|**2**|**2**|**2**|**1**
196 -|**Value**|[[BAT>>path:#bat]]|(((
197 -Temperature
198 -
199 -(Reserve, Ignore now)
200 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
201 -MOD & Digital Interrupt
202 -
203 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
204 204  )))
205 -
206 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
207 -
208 -
209 -1.
210 -11.
211 -111. MOD=1(Original value)
212 -
213 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
214 -
215 -|(((
216 -**Size**
217 -
218 -**(bytes)**
219 -)))|**2**|**2**|**2**|**2**|**2**|**1**
220 -|**Value**|[[BAT>>path:#bat]]|(((
221 -Temperature
222 -
223 -(Reserve, Ignore now)
224 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
225 -MOD & Digital Interrupt
226 -
227 -(Optional)
228 228  )))
229 229  
230 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
231 231  
232 -1.
233 -11.
234 -111. Battery Info
164 +**Connection:**
235 235  
236 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
237 237  
238 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
239 239  
240 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
241 241  
242 242  
173 +In the PC, use below serial tool settings:
243 243  
244 -1.
245 -11.
246 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
247 247  
248 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
249 249  
250 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
251 251  
252 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
253 253  
254 254  
255 -1.
256 -11.
257 -111. Soil Temperature
258 258  
259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
260 260  
261 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
262 262  
263 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 264  
265 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
266 266  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
267 267  
268 -1.
269 -11.
270 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
271 271  
272 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
273 273  
274 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
275 275  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
276 276  
277 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
278 278  
279 -1.
280 -11.
281 -111. MOD
282 282  
283 -Firmware version at least v2.1 supports changing mode.
284 284  
285 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
288 288  
289 289  
290 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
291 291  
292 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
293 293  
294 -If** **payload =** **0x0A01, workmode=1
295 295  
225 +[[image:1657249930215-289.png]]
296 296  
297 -1.
298 -11.
299 -111. ​Decode payload in The Things Network
300 300  
301 -While using TTN network, you can add the payload format to decode the payload.
302 302  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
303 303  
304 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
305 305  
306 -The payload decoder function for TTN is here:
307 307  
308 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
309 309  
242 +[[image:1657249978444-674.png]]
310 310  
311 -1.
312 -11. Uplink Interval
313 313  
314 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
315 315  
316 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
317 317  
318 -1.
319 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
320 320  
321 -By default, LSE50 prints the downlink payload to console port.
322 322  
323 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
324 -|TDC (Transmit Time Interval)|Any|01|4
325 -|RESET|Any|04|2
326 -|AT+CFM|Any|05|4
327 -|INTMOD|Any|06|4
328 -|MOD|Any|0A|2
329 329  
330 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
331 331  
256 +This feature is supported since firmware version v110
332 332  
333 -**Set TDC**
334 334  
335 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
336 336  
337 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
338 338  
339 -Payload:    01 00 00 3C    TDC=60S
340 340  
265 +[[image:1657250255956-604.png]]
341 341  
342 -**Reset**
343 343  
344 -If payload = 0x04FF, it will reset the LSE01
345 345  
269 +=== 2.2.8 Change Update Interval ===
346 346  
347 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
348 348  
349 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
350 350  
351 -1.
352 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
353 353  
354 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
355 355  
356 356  
357 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
358 358  
359 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
360 360  
287 +In this mode, uplink payload includes in total 18 bytes
361 361  
362 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
363 363  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
364 364  
365 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
366 366  
298 +[[image:image-20220708111918-4.png]]
367 367  
368 368  
301 +The payload is ASCII string, representative same HEX:
369 369  
303 +0x72403155615900640c7817075e0a8c02f900 where:
370 370  
371 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
372 372  
373 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
374 374  
315 +== 2.4  Payload Explanation and Sensor Interface ==
375 375  
376 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
377 377  
318 +=== 2.4.1  Device ID ===
378 378  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
379 379  
380 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
381 381  
324 +**Example:**
382 382  
383 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
384 384  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
385 385  
386 386  
387 -1.
388 -11. Frequency Plans
389 389  
390 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
391 391  
392 -1.
393 -11.
394 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
395 395  
396 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
397 397  
398 -868.1 - SF7BW125 to SF12BW125
399 399  
400 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
401 401  
402 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
403 403  
404 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
405 405  
406 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
407 407  
408 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
409 409  
410 -867.7 - SF7BW125 to SF12BW125
411 411  
412 -867.9 - SF7BW125 to SF12BW125
413 413  
414 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
415 415  
358 +NB-IoT Network signal Strength.
416 416  
417 -Downlink:
360 +**Ex1: 0x1d = 29**
418 418  
419 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
420 420  
421 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
422 422  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
423 423  
424 -1.
425 -11.
426 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
427 427  
428 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
429 429  
430 -Uplink:
431 431  
432 -903.9 - SF7BW125 to SF10BW125
433 433  
434 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
435 435  
436 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
437 437  
438 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
439 439  
440 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
441 441  
442 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
443 443  
444 -905.1 - SF7BW125 to SF10BW125
445 445  
446 -905.3 - SF7BW125 to SF10BW125
447 447  
394 +=== 2.4.6  Soil Temperature ===
448 448  
449 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
450 450  
451 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
452 452  
453 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
454 454  
455 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
456 456  
457 -925.1 - SF7BW500 to SF12BW500
458 458  
459 -925.7 - SF7BW500 to SF12BW500
460 460  
461 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
462 462  
463 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
464 464  
465 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
466 466  
467 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
468 468  
428 +(((
429 +
430 +)))
469 469  
470 -1.
471 -11.
472 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
473 473  
474 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
475 475  
476 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
477 477  
478 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
479 479  
480 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
481 481  
482 -486.7 - SF7BW125 to SF12BW125
483 483  
484 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
485 485  
486 -487.1 - SF7BW125 to SF12BW125
487 487  
488 -487.3 - SF7BW125 to SF12BW125
448 +Example:
489 489  
490 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
491 491  
492 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
493 493  
494 494  
495 -Downlink:
496 496  
497 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
498 498  
499 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
500 500  
501 -507.1 - SF7BW125 to SF12BW125
502 502  
503 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
504 504  
505 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
506 506  
507 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
508 508  
509 -507.9 - SF7BW125 to SF12BW125
510 510  
511 -508.1 - SF7BW125 to SF12BW125
512 512  
513 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
514 514  
471 +By default, NSE01 prints the downlink payload to console port.
515 515  
516 -1.
517 -11.
518 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
519 519  
520 -Default use CHE=2
521 521  
522 -Uplink:
523 523  
524 -916.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
525 525  
526 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
527 527  
528 -917.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
529 529  
530 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
531 531  
532 -917.6 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
533 533  
534 -917.8 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
535 535  
536 -918.0 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
537 537  
538 -918.2 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
539 539  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
540 540  
541 -Downlink:
542 542  
543 -923.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
544 544  
545 -923.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
546 546  
547 -924.5 - SF7BW500 to SF12BW500
548 548  
549 -925.1 - SF7BW500 to SF12BW500
550 550  
551 -925.7 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
552 552  
553 -926.3 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
554 554  
555 -926.9 - SF7BW500 to SF12BW500
556 556  
557 -927.5 - SF7BW500 to SF12BW500
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
558 558  
559 -923.3 - SF12BW500(RX2 downlink only)
560 560  
561 -1.
562 -11.
563 -111. AS920-923 & AS923-925 (AS923)
564 564  
565 -**Default Uplink channel:**
566 566  
567 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
568 568  
569 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
570 570  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
571 571  
572 -**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
573 573  
574 -(OTAA mode, channel added by JoinAccept message)
575 575  
576 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
577 577  
578 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
579 579  
580 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
581 581  
582 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
583 583  
584 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
585 585  
586 -923.0 - SF7BW125 to SF10BW125
587 587  
588 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
589 589  
590 590  
591 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
592 592  
593 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
594 594  
595 -923.8 - SF7BW125 to SF10BW125
596 596  
597 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
598 598  
599 -924.2 - SF7BW125 to SF10BW125
600 600  
601 -924.4 - SF7BW125 to SF10BW125
602 602  
603 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
604 604  
577 +=== 2.9.1  ​Battery Type ===
605 605  
606 606  
607 -**Downlink:**
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
608 608  
609 -Uplink channels 1-8 (RX1)
610 610  
611 -923.2 - SF10BW125 (RX2)
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
612 612  
613 613  
614 -1.
615 -11.
616 -111. KR920-923 (KR920)
586 +The battery related documents as below:
617 617  
618 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
619 619  
620 -922.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
621 621  
622 -922.3 - SF7BW125 to SF12BW125
623 623  
624 -922.5 - SF7BW125 to SF12BW125
625 625  
598 +2.9.2 
626 626  
627 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
628 628  
629 -922.1 - SF7BW125 to SF12BW125
630 630  
631 -922.3 - SF7BW125 to SF12BW125
603 +Instruction to use as below:
632 632  
633 -922.5 - SF7BW125 to SF12BW125
634 634  
635 -922.7 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
636 636  
637 -922.9 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
638 638  
639 -923.1 - SF7BW125 to SF12BW125
640 640  
641 -923.3 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
642 642  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
643 643  
644 -Downlink:
617 +And the Life expectation in difference case will be shown on the right.
645 645  
646 -Uplink channels 1-7(RX1)
647 647  
648 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
649 649  
621 +=== 2.9.3  ​Battery Note ===
650 650  
651 -1.
652 -11.
653 -111. IN865-867 (IN865)
654 -
655 -Uplink:
656 -
657 -865.0625 - SF7BW125 to SF12BW125
658 -
659 -865.4025 - SF7BW125 to SF12BW125
660 -
661 -865.9850 - SF7BW125 to SF12BW125
662 -
663 -
664 -Downlink:
665 -
666 -Uplink channels 1-3 (RX1)
667 -
668 -866.550 - SF10BW125 (RX2)
669 -
670 -
671 -1.
672 -11. LED Indicator
673 -
674 -The LSE01 has an internal LED which is to show the status of different state.
675 -
676 -
677 -* Blink once when device power on.
678 -* Solid ON for 5 seconds once device successful Join the network.
679 -* Blink once when device transmit a packet.
680 -
681 -1.
682 -11. Installation in Soil
683 -
684 -**Measurement the soil surface**
685 -
686 -
687 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
688 -
689 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
690 -
691 -
692 -
693 -
694 -
695 -
696 -
697 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
698 -
699 -
700 -
701 -Dig a hole with diameter > 20CM.
702 -
703 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
704 -
705 -
706 -
707 -
708 -1.
709 -11. ​Firmware Change Log
710 -
711 -**Firmware download link:**
712 -
713 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
714 -
715 -
716 -**Firmware Upgrade Method:**
717 -
718 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
719 -
720 -
721 -**V1.0.**
722 -
723 -Release
724 -
725 -
726 -
727 -1.
728 -11. ​Battery Analysis
729 -111. ​Battery Type
730 -
731 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
732 -
733 -
734 -The battery is designed to last for more than 5 years for the LSN50.
735 -
736 -
737 -The battery related documents as below:
738 -
739 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
740 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
741 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
742 -
743 -
744 -|(((
745 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
746 746  )))
747 747  
748 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
749 749  
750 750  
629 +=== 2.9.4  Replace the battery ===
751 751  
752 -1.
753 -11.
754 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
755 755  
756 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
757 757  
758 758  
759 -1.
760 -11.
761 -111. ​Replace the battery
635 += 3. ​Using the AT Commands =
762 762  
763 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
637 +== 3.1 Access AT Commands ==
764 764  
765 765  
766 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
767 -
768 -
769 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
770 -
771 -
772 -
773 -
774 -
775 -
776 -1. ​Using the AT Commands
777 -11. ​Access AT Commands
778 -
779 779  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
780 780  
781 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
782 782  
783 783  
784 784  Or if you have below board, use below connection:
785 785  
786 786  
787 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
788 788  
789 789  
790 790  
791 -In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below:
652 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
792 792  
793 793  
794 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
795 795  
796 796  
797 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
798 798  
799 799  
800 -AT+<CMD>?        : Help on <CMD>
661 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
801 801  
802 -AT+<CMD>         : Run <CMD>
663 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
803 803  
804 -AT+<CMD>=<value> : Set the value
665 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
805 805  
806 -AT+<CMD>=?       : Get the value
667 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
807 807  
808 808  
809 -**General Commands**      
670 +(% style="color:#037691" %)**General Commands**(%%)      
810 810  
811 -AT                    : Attention       
672 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
812 812  
813 -AT?                            : Short Help     
674 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
814 814  
815 -ATZ                            : MCU Reset    
676 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
816 816  
817 -AT+TDC           : Application Data Transmission Interval 
678 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
818 818  
819 819  
820 -**Keys, IDs and EUIs management**
681 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
821 821  
822 -AT+APPEUI              : Application EUI      
683 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
823 823  
824 -AT+APPKEY              : Application Key     
685 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
825 825  
826 -AT+APPSKEY            : Application Session Key
687 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
827 827  
828 -AT+DADDR              : Device Address     
689 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
829 829  
830 -AT+DEUI                   : Device EUI     
691 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
831 831  
832 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
693 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
833 833  
834 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
695 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
835 835  
836 -AT+CFM          : Confirm Mode       
697 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
837 837  
838 -AT+CFS                     : Confirm Status       
699 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
839 839  
840 -AT+JOIN          : Join LoRa? Network       
701 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
841 841  
842 -AT+NJM          : LoRa? Network Join Mode    
703 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
843 843  
844 -AT+NJS                     : LoRa? Network Join Status    
705 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
845 845  
846 -AT+RECV                  : Print Last Received Data in Raw Format
707 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
847 847  
848 -AT+RECVB                : Print Last Received Data in Binary Format      
709 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
849 849  
850 -AT+SEND                  : Send Text Data      
711 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
851 851  
852 -AT+SENB                  : Send Hexadecimal Data
713 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
853 853  
854 854  
855 -**LoRa Network Management**
716 +(% style="color:#037691" %)**LoRa Network Management**
856 856  
857 -AT+ADR          : Adaptive Rate
718 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
858 858  
859 -AT+CLASS                : LoRa Class(Currently only support class A
720 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
860 860  
861 -AT+DCS           : Duty Cycle Setting 
722 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
862 862  
863 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
724 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
864 864  
865 -AT+FCD           : Frame Counter Downlink       
726 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
866 866  
867 -AT+FCU           : Frame Counter Uplink   
728 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
868 868  
869 -AT+JN1DL                : Join Accept Delay1
730 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
870 870  
871 -AT+JN2DL                : Join Accept Delay2
732 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
872 872  
873 -AT+PNM                   : Public Network Mode   
734 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
874 874  
875 -AT+RX1DL                : Receive Delay1      
736 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
876 876  
877 -AT+RX2DL                : Receive Delay2      
738 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
878 878  
879 -AT+RX2DR               : Rx2 Window Data Rate 
740 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
880 880  
881 -AT+RX2FQ               : Rx2 Window Frequency
742 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
882 882  
883 -AT+TXP           : Transmit Power
744 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
884 884  
885 -AT+ MOD                 : Set work mode
746 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
886 886  
887 887  
888 -**Information** 
749 +(% style="color:#037691" %)**Information** 
889 889  
890 -AT+RSSI           : RSSI of the Last Received Packet   
751 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
891 891  
892 -AT+SNR           : SNR of the Last Received Packet   
753 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
893 893  
894 -AT+VER           : Image Version and Frequency Band       
755 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
895 895  
896 -AT+FDR           : Factory Data Reset
757 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
897 897  
898 -AT+PORT                  : Application Port    
759 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
899 899  
900 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
761 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
901 901  
902 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
763 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
903 903  
904 904  
766 += ​4. FAQ =
905 905  
768 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
906 906  
907 -
908 -
909 -
910 -1. ​FAQ
911 -11. ​How to change the LoRa Frequency Bands/Region?
912 -
913 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
914 914  When downloading the images, choose the required image file for download. ​
773 +)))
915 915  
775 +(((
776 +
777 +)))
916 916  
779 +(((
780 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
917 917  
918 -How to set up LSE01 to work in 8 channel mode
783 +(((
784 +
785 +)))
919 919  
920 -By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
921 -
922 -
787 +(((
923 923  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
924 924  
791 +(((
792 +
793 +)))
925 925  
926 -
795 +(((
927 927  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
928 928  
799 +[[image:image-20220606154726-3.png]]
929 929  
930 -|CHE|(% colspan="9" %)US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
931 -|0|(% colspan="9" %)ENABLE Channel 0-63
932 -|1|902.3|902.5|902.7|902.9|903.1|903.3|903.5|903.7|Channel 0-7
933 -|2|903.9|904.1|904.3|904.5|904.7|904.9|905.1|905.3|Channel 8-15
934 -|3|905.5|905.7|905.9|906.1|906.3|906.5|906.7|906.9|Channel 16-23
935 -|4|907.1|907.3|907.5|907.7|907.9|908.1|908.3|908.5|Channel 24-31
936 -|5|908.7|908.9|909.1|909.3|909.5|909.7|909.9|910.1|Channel 32-39
937 -|6|910.3|910.5|910.7|910.9|911.1|911.3|911.5|911.7|Channel 40-47
938 -|7|911.9|912.1|912.3|912.5|912.7|912.9|913.1|913.3|Channel 48-55
939 -|8|913.5|913.7|913.9|914.1|914.3|914.5|914.7|914.9|Channel 56-63
940 -|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
941 -| |903|904.6|906.2|907.8|909.4|911|912.6|914.2|Channel 64-71
942 942  
943 943  When you use the TTN network, the US915 frequency bands use are:
944 944  
... ... @@ -952,65 +952,68 @@
952 952  * 905.3 - SF7BW125 to SF10BW125
953 953  * 904.6 - SF8BW500
954 954  
814 +(((
955 955  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
956 956  
957 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
819 +)))
958 958  
959 -**ATZ**
821 +(((
822 +
960 960  
961 961  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
962 962  
827 +(((
828 +
829 +)))
963 963  
831 +(((
964 964  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
965 965  
835 +[[image:image-20220606154825-4.png]]
966 966  
967 -|CHE|(% colspan="9" %)AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
968 -|0|(% colspan="9" %)ENABLE Channel 0-63
969 -|1|915.2|915.4|915.6|915.8|916|916.2|916.4|916.6|Channel 0-7
970 -|2|916.8|917|917.2|917.4|917.6|917.8|918|918.2|Channel 8-15
971 -|3|918.4|918.6|918.8|919|919.2|919.4|919.6|919.8|Channel 16-23
972 -|4|920|920.2|920.4|920.6|920.8|921|921.2|921.4|Channel 24-31
973 -|5|921.6|921.8|922|922.2|922.4|922.6|922.8|923|Channel 32-39
974 -|6|923.2|923.4|923.6|923.8|924|924.2|924.4|924.6|Channel 40-47
975 -|7|924.8|925|925.2|925.4|925.6|925.8|926|926.2|Channel 48-55
976 -|8|926.4|926.6|926.8|927|927.2|927.4|927.6|927.8|Channel 56-63
977 -|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
978 -| |915.9|917.5|919.1|920.7|922.3|923.9|925.5|927.1|Channel 64-71
979 979  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
980 980  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
981 981  
982 982  
983 -
984 984  = 5. Trouble Shooting =
985 985  
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
986 986  
987 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
988 988  
989 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
990 990  
850 +== 5.2 AT Command input doesn't work ==
991 991  
992 -== 5.2 AT Command input doesn’t work ==
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
993 993  
994 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn’t send **ENTER** while press the send key, user need to add ENTER in their string.
995 995  
996 -
997 997  == 5.3 Device rejoin in at the second uplink packet ==
998 998  
999 -**Issue describe as below:**
859 +(% style="color:#4f81bd" %)**Issue describe as below:**
1000 1000  
1001 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
861 +[[image:1654500909990-784.png]]
1002 1002  
1003 1003  
1004 -**Cause for this issue:**
864 +(% style="color:#4f81bd" %)**Cause for this issue:**
1005 1005  
866 +(((
1006 1006  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
1007 1007  
1008 1008  
1009 -**Solution: **
871 +(% style="color:#4f81bd" %)**Solution: **
1010 1010  
1011 1011  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1012 1012  
1013 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
1014 1014  
1015 1015  
1016 1016  = 6. ​Order Info =
... ... @@ -1035,11 +1035,17 @@
1035 1035  * (% style="color:red" %)**4**(%%): 4000mAh battery
1036 1036  * (% style="color:red" %)**8**(%%): 8500mAh battery
1037 1037  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
1038 1038  
1039 1039  = 7. Packing Info =
1040 1040  
1041 1041  (((
1042 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
1043 1043  )))
1044 1044  
1045 1045  * (((
... ... @@ -1048,10 +1048,8 @@
1048 1048  
1049 1049  (((
1050 1050  
1051 -)))
1052 1052  
1053 -(((
1054 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
1055 1055  )))
1056 1056  
1057 1057  * (((
... ... @@ -1065,6 +1065,8 @@
1065 1065  )))
1066 1066  * (((
1067 1067  Weight / pcs : g
934 +
935 +
1068 1068  )))
1069 1069  
1070 1070  = 8. Support =
... ... @@ -1071,5 +1071,3 @@
1071 1071  
1072 1072  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1073 1073  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1074 -
1075 -
1654501986557-872.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +767.2 KB
Content
1654502005655-729.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +915.0 KB
Content
1654502050864-459.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +174.6 KB
Content
1654503236291-817.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +685.6 KB
Content
1654503265560-120.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220606154726-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +35.1 KB
Content
image-20220606154825-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +35.3 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content