<
From version < 57.9 >
edited by Xiaoling
on 2022/07/08 12:01
To version < 92.1 >
edited by Xiaoling
on 2022/07/09 10:00
>
Change comment: Uploaded new attachment "image-20220709100028-1.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,26 +39,27 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
58 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -76,90 +76,112 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
76 +(% style="color:#037691" %)**Battery:**
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 +* Li/SOCI2 un-chargeable battery
79 +* Capacity: 8500mAh
80 +* Self Discharge: <1% / Year @ 25°C
81 +* Max continuously current: 130mA
82 +* Max boost current: 2A, 1 second
82 82  
83 -[[image:image-20220708101224-1.png]]
84 +(% style="color:#037691" %)**Power Consumption**
84 84  
86 +* STOP Mode: 10uA @ 3.3v
87 +* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
85 85  
86 86  
90 +
87 87  == ​1.4  Applications ==
88 88  
93 +* Smart Buildings & Home Automation
94 +* Logistics and Supply Chain Management
95 +* Smart Metering
89 89  * Smart Agriculture
97 +* Smart Cities
98 +* Smart Factory
90 90  
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
103 +
104 +
94 94  == 1.5  Pin Definitions ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
108 +[[image:1657328609906-564.png]]
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
112 += 2.  Use NDDS75 to communicate with IoT Server =
102 102  
103 103  == 2.1  How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
108 108  )))
109 109  
110 110  
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
122 +The diagram below shows the working flow in default firmware of NDDS75:
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 -
117 117  (((
118 118  
119 119  )))
120 120  
129 +[[image:1657328659945-416.png]]
121 121  
131 +(((
132 +
133 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
136 +== 2.2 ​ Configure the NDDS75 ==
125 125  
138 +
126 126  === 2.2.1 Test Requirement ===
127 127  
141 +(((
142 +To use NDDS75 in your city, make sure meet below requirements:
143 +)))
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 -
131 131  * Your local operator has already distributed a NB-IoT Network there.
132 132  * The local NB-IoT network used the band that NSE01 supports.
133 133  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
154 +[[image:1657328756309-230.png]]
141 141  
142 142  
143 143  
144 144  === 2.2.2 Insert SIM card ===
145 145  
160 +(((
146 146  Insert the NB-IoT Card get from your provider.
162 +)))
147 147  
164 +(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
166 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
169 +[[image:1657328884227-504.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
156 156  
157 157  (((
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
160 160  )))
161 161  )))
162 162  
181 +[[image:image-20220709092052-2.png]]
163 163  
164 164  **Connection:**
165 165  
... ... @@ -179,12 +179,14 @@
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
204 +[[image:1657329814315-101.png]]
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
206 +(((
207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
208 +)))
188 188  
189 189  
190 190  
... ... @@ -201,48 +201,44 @@
201 201  
202 202  For parameter description, please refer to AT command set
203 203  
204 -[[image:1657249793983-486.png]]
225 +[[image:1657330452568-615.png]]
205 205  
206 206  
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
208 208  
209 -[[image:1657249831934-534.png]]
230 +[[image:1657330472797-498.png]]
210 210  
211 211  
212 212  
213 213  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 214  
215 -This feature is supported since firmware version v1.0.1
216 216  
217 -
218 218  * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 219  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 220  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 221  
222 -[[image:1657249864775-321.png]]
241 +[[image:1657330501006-241.png]]
223 223  
224 224  
225 -[[image:1657249930215-289.png]]
244 +[[image:1657330533775-472.png]]
226 226  
227 227  
228 228  
229 229  === 2.2.6 Use MQTT protocol to uplink data ===
230 230  
231 -This feature is supported since firmware version v110
232 232  
233 -
234 234  * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 235  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 236  * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 237  * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 238  * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 241  
242 242  [[image:1657249978444-674.png]]
243 243  
244 244  
245 -[[image:1657249990869-686.png]]
262 +[[image:1657330723006-866.png]]
246 246  
247 247  
248 248  (((
... ... @@ -253,16 +253,14 @@
253 253  
254 254  === 2.2.7 Use TCP protocol to uplink data ===
255 255  
256 -This feature is supported since firmware version v110
257 257  
258 -
259 259  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 260  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261 261  
262 -[[image:1657250217799-140.png]]
277 +[[image:image-20220709093918-1.png]]
263 263  
264 264  
265 -[[image:1657250255956-604.png]]
280 +[[image:image-20220709093918-2.png]]
266 266  
267 267  
268 268  
... ... @@ -284,33 +284,49 @@
284 284  
285 285  == 2.3  Uplink Payload ==
286 286  
287 -In this mode, uplink payload includes in total 18 bytes
302 +In this mode, uplink payload includes in total 14 bytes
288 288  
304 +
289 289  (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 -|=(% style="width: 50px;" %)(((
306 +|=(% style="width: 60px;" %)(((
291 291  **Size(bytes)**
292 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
294 294  
295 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
311 +(((
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
313 +)))
296 296  
297 297  
298 -[[image:image-20220708111918-4.png]]
316 +[[image:1657331036973-987.png]]
299 299  
300 -
318 +(((
301 301  The payload is ASCII string, representative same HEX:
320 +)))
302 302  
303 -0x72403155615900640c7817075e0a8c02f900 where:
322 +(((
323 +0x72403155615900640c6c19029200 where:
324 +)))
304 304  
305 -* Device ID: 0x 724031556159 = 724031556159
306 -* Version: 0x0064=100=1.0.0
326 +* (((
327 +Device ID: 0x724031556159 = 724031556159
328 +)))
329 +* (((
330 +Version: 0x0064=100=1.0.0
331 +)))
307 307  
308 -* BAT: 0x0c78 = 3192 mV = 3.192V
309 -* Singal: 0x17 = 23
310 -* Soil Moisture: 0x075e= 1886 = 18.86  %
311 -* Soil Temperature:0x0a8c =2700=27 °C
312 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 -* Interrupt: 0x00 = 0
333 +* (((
334 +BAT: 0x0c6c = 3180 mV = 3.180V
335 +)))
336 +* (((
337 +Signal: 0x19 = 25
338 +)))
339 +* (((
340 +Distance: 0x0292= 658 mm
341 +)))
342 +* (((
343 +Interrupt: 0x00 = 0
344 +)))
314 314  
315 315  
316 316  == 2.4  Payload Explanation and Sensor Interface ==
... ... @@ -318,23 +318,37 @@
318 318  
319 319  === 2.4.1  Device ID ===
320 320  
352 +(((
321 321  By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
322 322  
356 +(((
323 323  User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
358 +)))
324 324  
360 +(((
325 325  **Example:**
362 +)))
326 326  
364 +(((
327 327  AT+DEUI=A84041F15612
366 +)))
328 328  
329 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
368 +(((
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
370 +)))
330 330  
331 331  
332 332  
333 333  === 2.4.2  Version Info ===
334 334  
376 +(((
335 335  Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
336 336  
337 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
380 +(((
381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 +)))
338 338  
339 339  
340 340  
... ... @@ -356,31 +356,47 @@
356 356  
357 357  === 2.4.4  Signal Strength ===
358 358  
404 +(((
359 359  NB-IoT Network signal Strength.
406 +)))
360 360  
408 +(((
361 361  **Ex1: 0x1d = 29**
410 +)))
362 362  
412 +(((
363 363  (% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
364 364  
416 +(((
365 365  (% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
366 366  
420 +(((
367 367  (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
368 368  
424 +(((
369 369  (% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
370 370  
428 +(((
371 371  (% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
372 372  
373 373  
374 374  
375 375  === 2.4.5  Soil Moisture ===
376 376  
377 -(((
378 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 -)))
436 +Get the distance. Flat object range 280mm - 7500mm.
380 380  
438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
439 +
381 381  (((
382 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 +(((
442 +(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
383 383  )))
444 +)))
384 384  
385 385  (((
386 386  
... ... @@ -387,101 +387,71 @@
387 387  )))
388 388  
389 389  (((
390 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
451 +
391 391  )))
392 392  
454 +=== 2.4.6  Digital Interrupt ===
393 393  
394 -
395 -=== 2.4.6  Soil Temperature ===
396 -
397 397  (((
398 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
399 399  )))
400 400  
401 401  (((
402 -**Example**:
461 +The command is:
403 403  )))
404 404  
405 405  (((
406 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
407 407  )))
408 408  
409 -(((
410 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
411 -)))
412 412  
413 -
414 -
415 -=== 2.4.7  Soil Conductivity (EC) ===
416 -
417 417  (((
418 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
419 419  )))
420 420  
421 -(((
422 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
423 -)))
424 424  
425 425  (((
426 -Generally, the EC value of irrigation water is less than 800uS / cm.
475 +Example:
427 427  )))
428 428  
429 429  (((
430 -
479 +0x(00): Normal uplink packet.
431 431  )))
432 432  
433 433  (((
434 -
483 +0x(01): Interrupt Uplink Packet.
435 435  )))
436 436  
437 -=== 2.4.8  Digital Interrupt ===
438 438  
439 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
440 440  
441 -The command is:
488 +=== 2.4.7  ​+5V Output ===
442 442  
443 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
490 +(((
491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 +)))
444 444  
445 445  
446 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
447 -
448 -
449 -Example:
450 -
451 -0x(00): Normal uplink packet.
452 -
453 -0x(01): Interrupt Uplink Packet.
454 -
455 -
456 -
457 -
458 -=== 2.4.9  ​+5V Output ===
459 -
460 -
461 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
462 -
463 -
495 +(((
464 464  The 5V output time can be controlled by AT Command.
497 +)))
465 465  
499 +(((
466 466  (% style="color:blue" %)**AT+5VT=1000**
501 +)))
467 467  
503 +(((
468 468  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 +)))
469 469  
470 470  
471 471  
472 -== 2.4 Uplink Interval ==
509 +== 2. Downlink Payload ==
473 473  
474 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
511 +By default, NSE01 prints the downlink payload to console port.
475 475  
513 +[[image:image-20220708133731-5.png]]
476 476  
477 477  
478 -== 2.5 Downlink Payload ==
479 -
480 -By default, LSE50 prints the downlink payload to console port.
481 -
482 -[[image:image-20220606165544-8.png]]
483 -
484 -
485 485  (((
486 486  (% style="color:blue" %)**Examples:**
487 487  )))
... ... @@ -495,7 +495,7 @@
495 495  )))
496 496  
497 497  (((
498 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 499  )))
500 500  
501 501  (((
... ... @@ -515,432 +515,144 @@
515 515  )))
516 516  
517 517  (((
518 -If payload = 0x04FF, it will reset the LSE01
549 +If payload = 0x04FF, it will reset the NSE01
519 519  )))
520 520  
521 521  
522 -* (% style="color:blue" %)**CFM**
553 +* (% style="color:blue" %)**INTMOD**
523 523  
524 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
555 +(((
556 +Downlink Payload: 06000003, Set AT+INTMOD=3
557 +)))
525 525  
526 526  
527 527  
528 -== 2.6 ​Show Data in DataCake IoT Server ==
561 +== 2.6 LED Indicator ==
529 529  
530 530  (((
531 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
532 -)))
564 +The NSE01 has an internal LED which is to show the status of different state.
533 533  
534 -(((
535 -
536 -)))
537 537  
538 -(((
539 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 +* Then the LED will be on for 1 second means device is boot normally.
569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 +* For each uplink probe, LED will be on for 500ms.
540 540  )))
541 541  
542 -(((
543 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
544 -)))
545 545  
546 546  
547 -[[image:1654505857935-743.png]]
548 548  
576 +== 2.7  Installation in Soil ==
549 549  
550 -[[image:1654505874829-548.png]]
578 +__**Measurement the soil surface**__
551 551  
580 +(((
581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 +)))
552 552  
553 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
584 +[[image:1657259653666-883.png]]
554 554  
555 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
556 556  
587 +(((
588 +
557 557  
558 -[[image:1654505905236-553.png]]
590 +(((
591 +Dig a hole with diameter > 20CM.
592 +)))
559 559  
594 +(((
595 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 +)))
597 +)))
560 560  
561 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
599 +[[image:1654506665940-119.png]]
562 562  
563 -[[image:1654505925508-181.png]]
601 +(((
602 +
603 +)))
564 564  
565 565  
606 +== 2.8  ​Firmware Change Log ==
566 566  
567 -== 2.7 Frequency Plans ==
568 568  
569 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
609 +Download URL & Firmware Change log
570 570  
611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
571 571  
572 -=== 2.7.1 EU863-870 (EU868) ===
573 573  
574 -(% style="color:#037691" %)** Uplink:**
614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
575 575  
576 -868.1 - SF7BW125 to SF12BW125
577 577  
578 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
579 579  
580 -868.5 - SF7BW125 to SF12BW125
618 +== 2.9  ​Battery Analysis ==
581 581  
582 -867.1 - SF7BW125 to SF12BW125
620 +=== 2.9.1  Battery Type ===
583 583  
584 -867.3 - SF7BW125 to SF12BW125
585 585  
586 -867.5 - SF7BW125 to SF12BW125
587 -
588 -867.7 - SF7BW125 to SF12BW125
589 -
590 -867.9 - SF7BW125 to SF12BW125
591 -
592 -868.8 - FSK
593 -
594 -
595 -(% style="color:#037691" %)** Downlink:**
596 -
597 -Uplink channels 1-9 (RX1)
598 -
599 -869.525 - SF9BW125 (RX2 downlink only)
600 -
601 -
602 -
603 -=== 2.7.2 US902-928(US915) ===
604 -
605 -Used in USA, Canada and South America. Default use CHE=2
606 -
607 -(% style="color:#037691" %)**Uplink:**
608 -
609 -903.9 - SF7BW125 to SF10BW125
610 -
611 -904.1 - SF7BW125 to SF10BW125
612 -
613 -904.3 - SF7BW125 to SF10BW125
614 -
615 -904.5 - SF7BW125 to SF10BW125
616 -
617 -904.7 - SF7BW125 to SF10BW125
618 -
619 -904.9 - SF7BW125 to SF10BW125
620 -
621 -905.1 - SF7BW125 to SF10BW125
622 -
623 -905.3 - SF7BW125 to SF10BW125
624 -
625 -
626 -(% style="color:#037691" %)**Downlink:**
627 -
628 -923.3 - SF7BW500 to SF12BW500
629 -
630 -923.9 - SF7BW500 to SF12BW500
631 -
632 -924.5 - SF7BW500 to SF12BW500
633 -
634 -925.1 - SF7BW500 to SF12BW500
635 -
636 -925.7 - SF7BW500 to SF12BW500
637 -
638 -926.3 - SF7BW500 to SF12BW500
639 -
640 -926.9 - SF7BW500 to SF12BW500
641 -
642 -927.5 - SF7BW500 to SF12BW500
643 -
644 -923.3 - SF12BW500(RX2 downlink only)
645 -
646 -
647 -
648 -=== 2.7.3 CN470-510 (CN470) ===
649 -
650 -Used in China, Default use CHE=1
651 -
652 -(% style="color:#037691" %)**Uplink:**
653 -
654 -486.3 - SF7BW125 to SF12BW125
655 -
656 -486.5 - SF7BW125 to SF12BW125
657 -
658 -486.7 - SF7BW125 to SF12BW125
659 -
660 -486.9 - SF7BW125 to SF12BW125
661 -
662 -487.1 - SF7BW125 to SF12BW125
663 -
664 -487.3 - SF7BW125 to SF12BW125
665 -
666 -487.5 - SF7BW125 to SF12BW125
667 -
668 -487.7 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %)**Downlink:**
672 -
673 -506.7 - SF7BW125 to SF12BW125
674 -
675 -506.9 - SF7BW125 to SF12BW125
676 -
677 -507.1 - SF7BW125 to SF12BW125
678 -
679 -507.3 - SF7BW125 to SF12BW125
680 -
681 -507.5 - SF7BW125 to SF12BW125
682 -
683 -507.7 - SF7BW125 to SF12BW125
684 -
685 -507.9 - SF7BW125 to SF12BW125
686 -
687 -508.1 - SF7BW125 to SF12BW125
688 -
689 -505.3 - SF12BW125 (RX2 downlink only)
690 -
691 -
692 -
693 -=== 2.7.4 AU915-928(AU915) ===
694 -
695 -Default use CHE=2
696 -
697 -(% style="color:#037691" %)**Uplink:**
698 -
699 -916.8 - SF7BW125 to SF12BW125
700 -
701 -917.0 - SF7BW125 to SF12BW125
702 -
703 -917.2 - SF7BW125 to SF12BW125
704 -
705 -917.4 - SF7BW125 to SF12BW125
706 -
707 -917.6 - SF7BW125 to SF12BW125
708 -
709 -917.8 - SF7BW125 to SF12BW125
710 -
711 -918.0 - SF7BW125 to SF12BW125
712 -
713 -918.2 - SF7BW125 to SF12BW125
714 -
715 -
716 -(% style="color:#037691" %)**Downlink:**
717 -
718 -923.3 - SF7BW500 to SF12BW500
719 -
720 -923.9 - SF7BW500 to SF12BW500
721 -
722 -924.5 - SF7BW500 to SF12BW500
723 -
724 -925.1 - SF7BW500 to SF12BW500
725 -
726 -925.7 - SF7BW500 to SF12BW500
727 -
728 -926.3 - SF7BW500 to SF12BW500
729 -
730 -926.9 - SF7BW500 to SF12BW500
731 -
732 -927.5 - SF7BW500 to SF12BW500
733 -
734 -923.3 - SF12BW500(RX2 downlink only)
735 -
736 -
737 -
738 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
739 -
740 -(% style="color:#037691" %)**Default Uplink channel:**
741 -
742 -923.2 - SF7BW125 to SF10BW125
743 -
744 -923.4 - SF7BW125 to SF10BW125
745 -
746 -
747 -(% style="color:#037691" %)**Additional Uplink Channel**:
748 -
749 -(OTAA mode, channel added by JoinAccept message)
750 -
751 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
752 -
753 -922.2 - SF7BW125 to SF10BW125
754 -
755 -922.4 - SF7BW125 to SF10BW125
756 -
757 -922.6 - SF7BW125 to SF10BW125
758 -
759 -922.8 - SF7BW125 to SF10BW125
760 -
761 -923.0 - SF7BW125 to SF10BW125
762 -
763 -922.0 - SF7BW125 to SF10BW125
764 -
765 -
766 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
767 -
768 -923.6 - SF7BW125 to SF10BW125
769 -
770 -923.8 - SF7BW125 to SF10BW125
771 -
772 -924.0 - SF7BW125 to SF10BW125
773 -
774 -924.2 - SF7BW125 to SF10BW125
775 -
776 -924.4 - SF7BW125 to SF10BW125
777 -
778 -924.6 - SF7BW125 to SF10BW125
779 -
780 -
781 -(% style="color:#037691" %)** Downlink:**
782 -
783 -Uplink channels 1-8 (RX1)
784 -
785 -923.2 - SF10BW125 (RX2)
786 -
787 -
788 -
789 -=== 2.7.6 KR920-923 (KR920) ===
790 -
791 -Default channel:
792 -
793 -922.1 - SF7BW125 to SF12BW125
794 -
795 -922.3 - SF7BW125 to SF12BW125
796 -
797 -922.5 - SF7BW125 to SF12BW125
798 -
799 -
800 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
801 -
802 -922.1 - SF7BW125 to SF12BW125
803 -
804 -922.3 - SF7BW125 to SF12BW125
805 -
806 -922.5 - SF7BW125 to SF12BW125
807 -
808 -922.7 - SF7BW125 to SF12BW125
809 -
810 -922.9 - SF7BW125 to SF12BW125
811 -
812 -923.1 - SF7BW125 to SF12BW125
813 -
814 -923.3 - SF7BW125 to SF12BW125
815 -
816 -
817 -(% style="color:#037691" %)**Downlink:**
818 -
819 -Uplink channels 1-7(RX1)
820 -
821 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
822 -
823 -
824 -
825 -=== 2.7.7 IN865-867 (IN865) ===
826 -
827 -(% style="color:#037691" %)** Uplink:**
828 -
829 -865.0625 - SF7BW125 to SF12BW125
830 -
831 -865.4025 - SF7BW125 to SF12BW125
832 -
833 -865.9850 - SF7BW125 to SF12BW125
834 -
835 -
836 -(% style="color:#037691" %) **Downlink:**
837 -
838 -Uplink channels 1-3 (RX1)
839 -
840 -866.550 - SF10BW125 (RX2)
841 -
842 -
843 -
844 -
845 -== 2.8 LED Indicator ==
846 -
847 -The LSE01 has an internal LED which is to show the status of different state.
848 -
849 -* Blink once when device power on.
850 -* Solid ON for 5 seconds once device successful Join the network.
851 -* Blink once when device transmit a packet.
852 -
853 -== 2.9 Installation in Soil ==
854 -
855 -**Measurement the soil surface**
856 -
857 -
858 -[[image:1654506634463-199.png]] ​
859 -
860 860  (((
861 -(((
862 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
863 863  )))
864 -)))
865 865  
866 866  
867 -
868 -[[image:1654506665940-119.png]]
869 -
870 870  (((
871 -Dig a hole with diameter > 20CM.
629 +The battery is designed to last for several years depends on the actually use environment and update interval. 
872 872  )))
873 873  
874 -(((
875 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
876 -)))
877 877  
878 -
879 -== 2.10 ​Firmware Change Log ==
880 -
881 881  (((
882 -**Firmware download link:**
634 +The battery related documents as below:
883 883  )))
884 884  
885 -(((
886 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
887 -)))
637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
888 888  
889 889  (((
890 -
642 +[[image:image-20220708140453-6.png]]
891 891  )))
892 892  
893 -(((
894 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
895 -)))
896 896  
897 -(((
898 -
899 -)))
900 900  
901 -(((
902 -**V1.0.**
903 -)))
647 +=== 2.9.2  Power consumption Analyze ===
904 904  
905 905  (((
906 -Release
650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
907 907  )))
908 908  
909 909  
910 -== 2.11 ​Battery Analysis ==
911 -
912 -=== 2.11.1 ​Battery Type ===
913 -
914 914  (((
915 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
655 +Instruction to use as below:
916 916  )))
917 917  
918 918  (((
919 -The battery is designed to last for more than 5 years for the LSN50.
659 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
920 920  )))
921 921  
662 +
922 922  (((
923 -(((
924 -The battery-related documents are as below:
664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
925 925  )))
926 -)))
927 927  
928 928  * (((
929 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
668 +Product Model
930 930  )))
931 931  * (((
932 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
671 +Uplink Interval
933 933  )))
934 934  * (((
935 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
674 +Working Mode
936 936  )))
937 937  
938 - [[image:image-20220610172436-1.png]]
677 +(((
678 +And the Life expectation in difference case will be shown on the right.
679 +)))
939 939  
681 +[[image:image-20220708141352-7.jpeg]]
940 940  
941 941  
942 -=== 2.11.2 ​Battery Note ===
943 943  
685 +=== 2.9.3  ​Battery Note ===
686 +
944 944  (((
945 945  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
946 946  )))
... ... @@ -947,302 +947,176 @@
947 947  
948 948  
949 949  
950 -=== 2.11.3 Replace the battery ===
693 +=== 2.9. Replace the battery ===
951 951  
952 952  (((
953 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
954 954  )))
955 955  
699 +
700 +
701 += 3. ​ Access NB-IoT Module =
702 +
956 956  (((
957 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 +Users can directly access the AT command set of the NB-IoT module.
958 958  )))
959 959  
960 960  (((
961 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
962 962  )))
963 963  
711 +[[image:1657261278785-153.png]]
964 964  
965 965  
966 -= 3. ​Using the AT Commands =
967 967  
968 -== 3.1 Access AT Commands ==
715 += 4.  Using the AT Commands =
969 969  
717 +== 4.1  Access AT Commands ==
970 970  
971 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
972 972  
973 -[[image:1654501986557-872.png||height="391" width="800"]]
974 974  
722 +AT+<CMD>?  : Help on <CMD>
975 975  
976 -Or if you have below board, use below connection:
724 +AT+<CMD>         : Run <CMD>
977 977  
726 +AT+<CMD>=<value> : Set the value
978 978  
979 -[[image:1654502005655-729.png||height="503" width="801"]]
728 +AT+<CMD>=?  : Get the value
980 980  
981 981  
982 -
983 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
984 -
985 -
986 - [[image:1654502050864-459.png||height="564" width="806"]]
987 -
988 -
989 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
990 -
991 -
992 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
993 -
994 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
995 -
996 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
997 -
998 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
999 -
1000 -
1001 1001  (% style="color:#037691" %)**General Commands**(%%)      
1002 1002  
1003 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 +AT  : Attention       
1004 1004  
1005 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 +AT?  : Short Help     
1006 1006  
1007 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 +ATZ  : MCU Reset    
1008 1008  
1009 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 +AT+TDC  : Application Data Transmission Interval
1010 1010  
741 +AT+CFG  : Print all configurations
1011 1011  
1012 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 +AT+CFGMOD           : Working mode selection
1013 1013  
1014 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 +AT+INTMOD            : Set the trigger interrupt mode
1015 1015  
1016 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 +AT+5VT  : Set extend the time of 5V power  
1017 1017  
1018 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 +AT+PRO  : Choose agreement
1019 1019  
1020 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 +AT+WEIGRE  : Get weight or set weight to 0
1021 1021  
1022 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 +AT+WEIGAP  : Get or Set the GapValue of weight
1023 1023  
1024 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
755 +AT+RXDL  : Extend the sending and receiving time
1025 1025  
1026 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 +AT+CNTFAC  : Get or set counting parameters
1027 1027  
1028 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 +AT+SERVADDR  : Server Address
1029 1029  
1030 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1031 1031  
1032 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 +(% style="color:#037691" %)**COAP Management**      
1033 1033  
1034 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 +AT+URI            : Resource parameters
1035 1035  
1036 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1037 1037  
1038 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 +(% style="color:#037691" %)**UDP Management**
1039 1039  
1040 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 +AT+CFM          : Upload confirmation mode (only valid for UDP)
1041 1041  
1042 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1043 1043  
1044 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 +(% style="color:#037691" %)**MQTT Management**
1045 1045  
774 +AT+CLIENT               : Get or Set MQTT client
1046 1046  
1047 -(% style="color:#037691" %)**LoRa Network Management**
776 +AT+UNAME  : Get or Set MQTT Username
1048 1048  
1049 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 +AT+PWD                  : Get or Set MQTT password
1050 1050  
1051 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 +AT+PUBTOPI : Get or Set MQTT publish topic
1052 1052  
1053 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
1054 1054  
1055 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1056 1056  
1057 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 +(% style="color:#037691" %)**Information**          
1058 1058  
1059 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 +AT+FDR  : Factory Data Reset
1060 1060  
1061 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 +AT+PWOR : Serial Access Password
1062 1062  
1063 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1064 1064  
1065 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1066 1066  
1067 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 += ​5.  FAQ =
1068 1068  
1069 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 +== 5.1 How to Upgrade Firmware ==
1070 1070  
1071 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1072 1072  
1073 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1074 -
1075 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1076 -
1077 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1078 -
1079 -
1080 -(% style="color:#037691" %)**Information** 
1081 -
1082 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1083 -
1084 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1085 -
1086 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1087 -
1088 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1089 -
1090 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1091 -
1092 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1093 -
1094 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1095 -
1096 -
1097 -= ​4. FAQ =
1098 -
1099 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1100 -
1101 1101  (((
1102 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1103 -When downloading the images, choose the required image file for download. ​
799 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
1104 1104  )))
1105 1105  
1106 1106  (((
1107 -
803 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1108 1108  )))
1109 1109  
1110 1110  (((
1111 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1112 1112  )))
1113 1113  
1114 -(((
1115 -
1116 -)))
1117 1117  
1118 -(((
1119 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1120 -)))
1121 1121  
1122 -(((
1123 -
1124 -)))
812 +== 5.2  Can I calibrate NSE01 to different soil types? ==
1125 1125  
1126 1126  (((
1127 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1128 1128  )))
1129 1129  
1130 -[[image:image-20220606154726-3.png]]
1131 1131  
819 += 6.  Trouble Shooting =
1132 1132  
1133 -When you use the TTN network, the US915 frequency bands use are:
821 +== 6.1  ​Connection problem when uploading firmware ==
1134 1134  
1135 -* 903.9 - SF7BW125 to SF10BW125
1136 -* 904.1 - SF7BW125 to SF10BW125
1137 -* 904.3 - SF7BW125 to SF10BW125
1138 -* 904.5 - SF7BW125 to SF10BW125
1139 -* 904.7 - SF7BW125 to SF10BW125
1140 -* 904.9 - SF7BW125 to SF10BW125
1141 -* 905.1 - SF7BW125 to SF10BW125
1142 -* 905.3 - SF7BW125 to SF10BW125
1143 -* 904.6 - SF8BW500
1144 1144  
1145 1145  (((
1146 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1147 -
1148 -* (% style="color:#037691" %)**AT+CHE=2**
1149 -* (% style="color:#037691" %)**ATZ**
825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1150 1150  )))
1151 1151  
828 +(% class="wikigeneratedid" %)
1152 1152  (((
1153 1153  
1154 -
1155 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1156 1156  )))
1157 1157  
1158 -(((
1159 -
1160 -)))
1161 1161  
1162 -(((
1163 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1164 -)))
834 +== 6.2  AT Command input doesn't work ==
1165 1165  
1166 -[[image:image-20220606154825-4.png]]
1167 -
1168 -
1169 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1170 -
1171 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1172 -
1173 -
1174 -= 5. Trouble Shooting =
1175 -
1176 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1177 -
1178 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1179 -
1180 -
1181 -== 5.2 AT Command input doesn't work ==
1182 -
1183 1183  (((
1184 1184  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1185 -)))
1186 1186  
1187 -
1188 -== 5.3 Device rejoin in at the second uplink packet ==
1189 -
1190 -(% style="color:#4f81bd" %)**Issue describe as below:**
1191 -
1192 -[[image:1654500909990-784.png]]
1193 -
1194 -
1195 -(% style="color:#4f81bd" %)**Cause for this issue:**
1196 -
1197 -(((
1198 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
839 +
1199 1199  )))
1200 1200  
1201 1201  
1202 -(% style="color:#4f81bd" %)**Solution: **
843 += 7. ​ Order Info =
1203 1203  
1204 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1205 1205  
1206 -[[image:1654500929571-736.png||height="458" width="832"]]
846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1207 1207  
1208 1208  
1209 -= 6. ​Order Info =
1210 -
1211 -
1212 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1213 -
1214 -
1215 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1216 -
1217 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1218 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1219 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1220 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1221 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1222 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1223 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1224 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1225 -
1226 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1227 -
1228 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1229 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1230 -
1231 1231  (% class="wikigeneratedid" %)
1232 1232  (((
1233 1233  
1234 1234  )))
1235 1235  
1236 -= 7. Packing Info =
854 += 8.  Packing Info =
1237 1237  
1238 1238  (((
1239 1239  
1240 1240  
1241 1241  (% style="color:#037691" %)**Package Includes**:
1242 -)))
1243 1243  
1244 -* (((
1245 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 +* External antenna x 1
1246 1246  )))
1247 1247  
1248 1248  (((
... ... @@ -1249,24 +1249,19 @@
1249 1249  
1250 1250  
1251 1251  (% style="color:#037691" %)**Dimension and weight**:
1252 -)))
1253 1253  
1254 -* (((
1255 -Device Size: cm
870 +* Size: 195 x 125 x 55 mm
871 +* Weight:   420g
1256 1256  )))
1257 -* (((
1258 -Device Weight: g
1259 -)))
1260 -* (((
1261 -Package Size / pcs : cm
1262 -)))
1263 -* (((
1264 -Weight / pcs : g
1265 1265  
874 +(((
1266 1266  
876 +
877 +
878 +
1267 1267  )))
1268 1268  
1269 -= 8. Support =
881 += 9.  Support =
1270 1270  
1271 1271  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1272 1272  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0