<
From version < 57.5 >
edited by Xiaoling
on 2022/07/08 11:42
To version < 83.1 >
edited by Xiaoling
on 2022/07/09 09:34
>
Change comment: Uploaded new attachment "1657330452568-615.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,26 +39,28 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
58 +
59 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -76,90 +76,116 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 +(% style="color:#037691" %)**Battery:**
82 82  
83 -[[image:image-20220708101224-1.png]]
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
84 84  
85 85  
87 +(% style="color:#037691" %)**Power Consumption**
86 86  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
91 +
92 +
93 +
94 +
87 87  == ​1.4  Applications ==
88 88  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
89 89  * Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
90 90  
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
107 +
108 +
94 94  == 1.5  Pin Definitions ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
112 +[[image:1657328609906-564.png]]
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
102 102  
117 += 2.  Use NDDS75 to communicate with IoT Server =
118 +
103 103  == 2.1  How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
108 108  )))
109 109  
110 110  
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
127 +The diagram below shows the working flow in default firmware of NDDS75:
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 -
117 117  (((
118 118  
119 119  )))
120 120  
134 +[[image:1657328659945-416.png]]
121 121  
136 +(((
137 +
138 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
141 +== 2.2 ​ Configure the NDDS75 ==
125 125  
143 +
126 126  === 2.2.1 Test Requirement ===
127 127  
146 +(((
147 +To use NDDS75 in your city, make sure meet below requirements:
148 +)))
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 -
131 131  * Your local operator has already distributed a NB-IoT Network there.
132 132  * The local NB-IoT network used the band that NSE01 supports.
133 133  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
155 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
159 +[[image:1657328756309-230.png]]
141 141  
142 142  
143 143  
144 144  === 2.2.2 Insert SIM card ===
145 145  
165 +(((
146 146  Insert the NB-IoT Card get from your provider.
167 +)))
147 147  
169 +(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
171 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
174 +[[image:1657328884227-504.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
178 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
156 156  
157 157  (((
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
182 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
160 160  )))
161 161  )))
162 162  
186 +[[image:image-20220709092052-2.png]]
163 163  
164 164  **Connection:**
165 165  
... ... @@ -179,12 +179,14 @@
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
209 +[[image:1657329814315-101.png]]
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
211 +(((
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
213 +)))
188 188  
189 189  
190 190  
... ... @@ -199,8 +199,6 @@
199 199  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 200  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 201  
202 -
203 -
204 204  For parameter description, please refer to AT command set
205 205  
206 206  [[image:1657249793983-486.png]]
... ... @@ -267,6 +267,7 @@
267 267  [[image:1657250255956-604.png]]
268 268  
269 269  
294 +
270 270  === 2.2.8 Change Update Interval ===
271 271  
272 272  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -288,12 +288,14 @@
288 288  In this mode, uplink payload includes in total 18 bytes
289 289  
290 290  (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
291 -|=(% style="width: 50px;" %)(((
316 +|=(% style="width: 60px;" %)(((
292 292  **Size(bytes)**
293 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
294 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
295 295  
321 +(((
296 296  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
297 297  
298 298  
299 299  [[image:image-20220708111918-4.png]]
... ... @@ -313,30 +313,42 @@
313 313  * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
314 314  * Interrupt: 0x00 = 0
315 315  
316 -
317 -
318 -
319 319  == 2.4  Payload Explanation and Sensor Interface ==
320 320  
345 +
321 321  === 2.4.1  Device ID ===
322 322  
348 +(((
323 323  By default, the Device ID equal to the last 6 bytes of IMEI.
350 +)))
324 324  
352 +(((
325 325  User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
326 326  
356 +(((
327 327  **Example:**
358 +)))
328 328  
360 +(((
329 329  AT+DEUI=A84041F15612
362 +)))
330 330  
364 +(((
331 331  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 +)))
332 332  
333 333  
334 334  
335 335  === 2.4.2  Version Info ===
336 336  
372 +(((
337 337  Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
338 338  
376 +(((
339 339  For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 +)))
340 340  
341 341  
342 342  
... ... @@ -356,15 +356,51 @@
356 356  
357 357  
358 358  
359 -=== 2.3.4 Soil Moisture ===
398 +=== 2.4.4  Signal Strength ===
360 360  
361 361  (((
401 +NB-IoT Network signal Strength.
402 +)))
403 +
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
407 +
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
411 +
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
415 +
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
419 +
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
423 +
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
427 +
428 +
429 +
430 +=== 2.4.5  Soil Moisture ===
431 +
432 +(((
433 +(((
362 362  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
363 363  )))
436 +)))
364 364  
365 365  (((
366 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
367 367  )))
442 +)))
368 368  
369 369  (((
370 370  
... ... @@ -376,10 +376,10 @@
376 376  
377 377  
378 378  
379 -=== 2.3.5 Soil Temperature ===
454 +=== 2.4. Soil Temperature ===
380 380  
381 381  (((
382 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
383 383  )))
384 384  
385 385  (((
... ... @@ -396,7 +396,7 @@
396 396  
397 397  
398 398  
399 -=== 2.3.6 Soil Conductivity (EC) ===
474 +=== 2.4. Soil Conductivity (EC) ===
400 400  
401 401  (((
402 402  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -403,7 +403,7 @@
403 403  )))
404 404  
405 405  (((
406 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
407 407  )))
408 408  
409 409  (((
... ... @@ -418,52 +418,68 @@
418 418  
419 419  )))
420 420  
421 -=== 2.3.7 MOD ===
496 +=== 2.4. Digital Interrupt ===
422 422  
423 -Firmware version at least v2.1 supports changing mode.
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
424 424  
425 -For example, bytes[10]=90
502 +(((
503 +The command is:
504 +)))
426 426  
427 -mod=(bytes[10]>>7)&0x01=1.
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
428 428  
429 429  
430 -**Downlink Command:**
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
431 431  
432 -If payload = 0x0A00, workmode=0
433 433  
434 -If** **payload =** **0x0A01, workmode=1
516 +(((
517 +Example:
518 +)))
435 435  
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
436 436  
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
437 437  
438 -=== 2.3.8 ​Decode payload in The Things Network ===
439 439  
440 -While using TTN network, you can add the payload format to decode the payload.
441 441  
530 +=== 2.4.9  ​+5V Output ===
442 442  
443 -[[image:1654505570700-128.png]]
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
444 444  
536 +
445 445  (((
446 -The payload decoder function for TTN is here:
538 +The 5V output time can be controlled by AT Command.
447 447  )))
448 448  
449 449  (((
450 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
542 +(% style="color:blue" %)**AT+5VT=1000**
451 451  )))
452 452  
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
453 453  
454 -== 2.4 Uplink Interval ==
455 455  
456 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
457 457  
551 +== 2.5  Downlink Payload ==
458 458  
553 +By default, NSE01 prints the downlink payload to console port.
459 459  
460 -== 2.5 Downlink Payload ==
555 +[[image:image-20220708133731-5.png]]
461 461  
462 -By default, LSE50 prints the downlink payload to console port.
463 463  
464 -[[image:image-20220606165544-8.png]]
465 -
466 -
467 467  (((
468 468  (% style="color:blue" %)**Examples:**
469 469  )))
... ... @@ -477,7 +477,7 @@
477 477  )))
478 478  
479 479  (((
480 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
481 481  )))
482 482  
483 483  (((
... ... @@ -497,432 +497,144 @@
497 497  )))
498 498  
499 499  (((
500 -If payload = 0x04FF, it will reset the LSE01
591 +If payload = 0x04FF, it will reset the NSE01
501 501  )))
502 502  
503 503  
504 -* (% style="color:blue" %)**CFM**
595 +* (% style="color:blue" %)**INTMOD**
505 505  
506 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
507 507  
508 508  
509 509  
510 -== 2.6 ​Show Data in DataCake IoT Server ==
603 +== 2.6 LED Indicator ==
511 511  
512 512  (((
513 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
514 -)))
606 +The NSE01 has an internal LED which is to show the status of different state.
515 515  
516 -(((
517 -
518 -)))
519 519  
520 -(((
521 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
522 522  )))
523 523  
524 -(((
525 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
526 -)))
527 527  
528 528  
529 -[[image:1654505857935-743.png]]
530 530  
618 +== 2.7  Installation in Soil ==
531 531  
532 -[[image:1654505874829-548.png]]
620 +__**Measurement the soil surface**__
533 533  
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
534 534  
535 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
626 +[[image:1657259653666-883.png]]
536 536  
537 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
538 538  
629 +(((
630 +
539 539  
540 -[[image:1654505905236-553.png]]
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
541 541  
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
542 542  
543 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
641 +[[image:1654506665940-119.png]]
544 544  
545 -[[image:1654505925508-181.png]]
643 +(((
644 +
645 +)))
546 546  
547 547  
648 +== 2.8  ​Firmware Change Log ==
548 548  
549 -== 2.7 Frequency Plans ==
550 550  
551 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
651 +Download URL & Firmware Change log
552 552  
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
553 553  
554 -=== 2.7.1 EU863-870 (EU868) ===
555 555  
556 -(% style="color:#037691" %)** Uplink:**
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
557 557  
558 -868.1 - SF7BW125 to SF12BW125
559 559  
560 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
561 561  
562 -868.5 - SF7BW125 to SF12BW125
660 +== 2.9  ​Battery Analysis ==
563 563  
564 -867.1 - SF7BW125 to SF12BW125
662 +=== 2.9.1  Battery Type ===
565 565  
566 -867.3 - SF7BW125 to SF12BW125
567 567  
568 -867.5 - SF7BW125 to SF12BW125
569 -
570 -867.7 - SF7BW125 to SF12BW125
571 -
572 -867.9 - SF7BW125 to SF12BW125
573 -
574 -868.8 - FSK
575 -
576 -
577 -(% style="color:#037691" %)** Downlink:**
578 -
579 -Uplink channels 1-9 (RX1)
580 -
581 -869.525 - SF9BW125 (RX2 downlink only)
582 -
583 -
584 -
585 -=== 2.7.2 US902-928(US915) ===
586 -
587 -Used in USA, Canada and South America. Default use CHE=2
588 -
589 -(% style="color:#037691" %)**Uplink:**
590 -
591 -903.9 - SF7BW125 to SF10BW125
592 -
593 -904.1 - SF7BW125 to SF10BW125
594 -
595 -904.3 - SF7BW125 to SF10BW125
596 -
597 -904.5 - SF7BW125 to SF10BW125
598 -
599 -904.7 - SF7BW125 to SF10BW125
600 -
601 -904.9 - SF7BW125 to SF10BW125
602 -
603 -905.1 - SF7BW125 to SF10BW125
604 -
605 -905.3 - SF7BW125 to SF10BW125
606 -
607 -
608 -(% style="color:#037691" %)**Downlink:**
609 -
610 -923.3 - SF7BW500 to SF12BW500
611 -
612 -923.9 - SF7BW500 to SF12BW500
613 -
614 -924.5 - SF7BW500 to SF12BW500
615 -
616 -925.1 - SF7BW500 to SF12BW500
617 -
618 -925.7 - SF7BW500 to SF12BW500
619 -
620 -926.3 - SF7BW500 to SF12BW500
621 -
622 -926.9 - SF7BW500 to SF12BW500
623 -
624 -927.5 - SF7BW500 to SF12BW500
625 -
626 -923.3 - SF12BW500(RX2 downlink only)
627 -
628 -
629 -
630 -=== 2.7.3 CN470-510 (CN470) ===
631 -
632 -Used in China, Default use CHE=1
633 -
634 -(% style="color:#037691" %)**Uplink:**
635 -
636 -486.3 - SF7BW125 to SF12BW125
637 -
638 -486.5 - SF7BW125 to SF12BW125
639 -
640 -486.7 - SF7BW125 to SF12BW125
641 -
642 -486.9 - SF7BW125 to SF12BW125
643 -
644 -487.1 - SF7BW125 to SF12BW125
645 -
646 -487.3 - SF7BW125 to SF12BW125
647 -
648 -487.5 - SF7BW125 to SF12BW125
649 -
650 -487.7 - SF7BW125 to SF12BW125
651 -
652 -
653 -(% style="color:#037691" %)**Downlink:**
654 -
655 -506.7 - SF7BW125 to SF12BW125
656 -
657 -506.9 - SF7BW125 to SF12BW125
658 -
659 -507.1 - SF7BW125 to SF12BW125
660 -
661 -507.3 - SF7BW125 to SF12BW125
662 -
663 -507.5 - SF7BW125 to SF12BW125
664 -
665 -507.7 - SF7BW125 to SF12BW125
666 -
667 -507.9 - SF7BW125 to SF12BW125
668 -
669 -508.1 - SF7BW125 to SF12BW125
670 -
671 -505.3 - SF12BW125 (RX2 downlink only)
672 -
673 -
674 -
675 -=== 2.7.4 AU915-928(AU915) ===
676 -
677 -Default use CHE=2
678 -
679 -(% style="color:#037691" %)**Uplink:**
680 -
681 -916.8 - SF7BW125 to SF12BW125
682 -
683 -917.0 - SF7BW125 to SF12BW125
684 -
685 -917.2 - SF7BW125 to SF12BW125
686 -
687 -917.4 - SF7BW125 to SF12BW125
688 -
689 -917.6 - SF7BW125 to SF12BW125
690 -
691 -917.8 - SF7BW125 to SF12BW125
692 -
693 -918.0 - SF7BW125 to SF12BW125
694 -
695 -918.2 - SF7BW125 to SF12BW125
696 -
697 -
698 -(% style="color:#037691" %)**Downlink:**
699 -
700 -923.3 - SF7BW500 to SF12BW500
701 -
702 -923.9 - SF7BW500 to SF12BW500
703 -
704 -924.5 - SF7BW500 to SF12BW500
705 -
706 -925.1 - SF7BW500 to SF12BW500
707 -
708 -925.7 - SF7BW500 to SF12BW500
709 -
710 -926.3 - SF7BW500 to SF12BW500
711 -
712 -926.9 - SF7BW500 to SF12BW500
713 -
714 -927.5 - SF7BW500 to SF12BW500
715 -
716 -923.3 - SF12BW500(RX2 downlink only)
717 -
718 -
719 -
720 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
721 -
722 -(% style="color:#037691" %)**Default Uplink channel:**
723 -
724 -923.2 - SF7BW125 to SF10BW125
725 -
726 -923.4 - SF7BW125 to SF10BW125
727 -
728 -
729 -(% style="color:#037691" %)**Additional Uplink Channel**:
730 -
731 -(OTAA mode, channel added by JoinAccept message)
732 -
733 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
734 -
735 -922.2 - SF7BW125 to SF10BW125
736 -
737 -922.4 - SF7BW125 to SF10BW125
738 -
739 -922.6 - SF7BW125 to SF10BW125
740 -
741 -922.8 - SF7BW125 to SF10BW125
742 -
743 -923.0 - SF7BW125 to SF10BW125
744 -
745 -922.0 - SF7BW125 to SF10BW125
746 -
747 -
748 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
749 -
750 -923.6 - SF7BW125 to SF10BW125
751 -
752 -923.8 - SF7BW125 to SF10BW125
753 -
754 -924.0 - SF7BW125 to SF10BW125
755 -
756 -924.2 - SF7BW125 to SF10BW125
757 -
758 -924.4 - SF7BW125 to SF10BW125
759 -
760 -924.6 - SF7BW125 to SF10BW125
761 -
762 -
763 -(% style="color:#037691" %)** Downlink:**
764 -
765 -Uplink channels 1-8 (RX1)
766 -
767 -923.2 - SF10BW125 (RX2)
768 -
769 -
770 -
771 -=== 2.7.6 KR920-923 (KR920) ===
772 -
773 -Default channel:
774 -
775 -922.1 - SF7BW125 to SF12BW125
776 -
777 -922.3 - SF7BW125 to SF12BW125
778 -
779 -922.5 - SF7BW125 to SF12BW125
780 -
781 -
782 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
783 -
784 -922.1 - SF7BW125 to SF12BW125
785 -
786 -922.3 - SF7BW125 to SF12BW125
787 -
788 -922.5 - SF7BW125 to SF12BW125
789 -
790 -922.7 - SF7BW125 to SF12BW125
791 -
792 -922.9 - SF7BW125 to SF12BW125
793 -
794 -923.1 - SF7BW125 to SF12BW125
795 -
796 -923.3 - SF7BW125 to SF12BW125
797 -
798 -
799 -(% style="color:#037691" %)**Downlink:**
800 -
801 -Uplink channels 1-7(RX1)
802 -
803 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
804 -
805 -
806 -
807 -=== 2.7.7 IN865-867 (IN865) ===
808 -
809 -(% style="color:#037691" %)** Uplink:**
810 -
811 -865.0625 - SF7BW125 to SF12BW125
812 -
813 -865.4025 - SF7BW125 to SF12BW125
814 -
815 -865.9850 - SF7BW125 to SF12BW125
816 -
817 -
818 -(% style="color:#037691" %) **Downlink:**
819 -
820 -Uplink channels 1-3 (RX1)
821 -
822 -866.550 - SF10BW125 (RX2)
823 -
824 -
825 -
826 -
827 -== 2.8 LED Indicator ==
828 -
829 -The LSE01 has an internal LED which is to show the status of different state.
830 -
831 -* Blink once when device power on.
832 -* Solid ON for 5 seconds once device successful Join the network.
833 -* Blink once when device transmit a packet.
834 -
835 -== 2.9 Installation in Soil ==
836 -
837 -**Measurement the soil surface**
838 -
839 -
840 -[[image:1654506634463-199.png]] ​
841 -
842 842  (((
843 -(((
844 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
845 845  )))
846 -)))
847 847  
848 848  
849 -
850 -[[image:1654506665940-119.png]]
851 -
852 852  (((
853 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
854 854  )))
855 855  
856 -(((
857 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
858 -)))
859 859  
860 -
861 -== 2.10 ​Firmware Change Log ==
862 -
863 863  (((
864 -**Firmware download link:**
676 +The battery related documents as below:
865 865  )))
866 866  
867 -(((
868 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
869 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
870 870  
871 871  (((
872 -
684 +[[image:image-20220708140453-6.png]]
873 873  )))
874 874  
875 -(((
876 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
877 -)))
878 878  
879 -(((
880 -
881 -)))
882 882  
883 -(((
884 -**V1.0.**
885 -)))
689 +=== 2.9.2  Power consumption Analyze ===
886 886  
887 887  (((
888 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
889 889  )))
890 890  
891 891  
892 -== 2.11 ​Battery Analysis ==
893 -
894 -=== 2.11.1 ​Battery Type ===
895 -
896 896  (((
897 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
898 898  )))
899 899  
900 900  (((
901 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
902 902  )))
903 903  
704 +
904 904  (((
905 -(((
906 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
907 907  )))
908 -)))
909 909  
910 910  * (((
911 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +Product Model
912 912  )))
913 913  * (((
914 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +Uplink Interval
915 915  )))
916 916  * (((
917 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +Working Mode
918 918  )))
919 919  
920 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
921 921  
723 +[[image:image-20220708141352-7.jpeg]]
922 922  
923 923  
924 -=== 2.11.2 ​Battery Note ===
925 925  
727 +=== 2.9.3  ​Battery Note ===
728 +
926 926  (((
927 927  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
928 928  )))
... ... @@ -929,302 +929,176 @@
929 929  
930 930  
931 931  
932 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
933 933  
934 934  (((
935 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
936 936  )))
937 937  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
938 938  (((
939 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
940 940  )))
941 941  
942 942  (((
943 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
944 944  )))
945 945  
753 +[[image:1657261278785-153.png]]
946 946  
947 947  
948 -= 3. ​Using the AT Commands =
949 949  
950 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
951 951  
759 +== 4.1  Access AT Commands ==
952 952  
953 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
954 954  
955 -[[image:1654501986557-872.png||height="391" width="800"]]
956 956  
764 +AT+<CMD>?  : Help on <CMD>
957 957  
958 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
959 959  
768 +AT+<CMD>=<value> : Set the value
960 960  
961 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
962 962  
963 963  
964 -
965 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
966 -
967 -
968 - [[image:1654502050864-459.png||height="564" width="806"]]
969 -
970 -
971 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
972 -
973 -
974 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
975 -
976 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
977 -
978 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
979 -
980 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
981 -
982 -
983 983  (% style="color:#037691" %)**General Commands**(%%)      
984 984  
985 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
986 986  
987 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
988 988  
989 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
990 990  
991 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
992 992  
783 +AT+CFG  : Print all configurations
993 993  
994 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
995 995  
996 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
997 997  
998 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
999 999  
1000 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
1001 1001  
1002 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
1003 1003  
1004 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
1005 1005  
1006 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
1007 1007  
1008 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
1009 1009  
1010 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
1011 1011  
1012 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1013 1013  
1014 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
1015 1015  
1016 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
1017 1017  
1018 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1019 1019  
1020 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
1021 1021  
1022 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
1023 1023  
1024 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1025 1025  
1026 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
1027 1027  
816 +AT+CLIENT               : Get or Set MQTT client
1028 1028  
1029 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
1030 1030  
1031 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
1032 1032  
1033 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
1034 1034  
1035 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
1036 1036  
1037 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1038 1038  
1039 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
1040 1040  
1041 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
1042 1042  
1043 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
1044 1044  
1045 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1046 1046  
1047 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1048 1048  
1049 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
1050 1050  
1051 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
1052 1052  
1053 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1054 1054  
1055 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1056 -
1057 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1058 -
1059 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1060 -
1061 -
1062 -(% style="color:#037691" %)**Information** 
1063 -
1064 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1065 -
1066 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1067 -
1068 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1069 -
1070 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1071 -
1072 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1073 -
1074 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1075 -
1076 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1077 -
1078 -
1079 -= ​4. FAQ =
1080 -
1081 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1082 -
1083 1083  (((
1084 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1085 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
1086 1086  )))
1087 1087  
1088 1088  (((
1089 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1090 1090  )))
1091 1091  
1092 1092  (((
1093 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1094 1094  )))
1095 1095  
1096 -(((
1097 -
1098 -)))
1099 1099  
1100 -(((
1101 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1102 -)))
1103 1103  
1104 -(((
1105 -
1106 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
1107 1107  
1108 1108  (((
1109 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1110 1110  )))
1111 1111  
1112 -[[image:image-20220606154726-3.png]]
1113 1113  
861 += 6.  Trouble Shooting =
1114 1114  
1115 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
1116 1116  
1117 -* 903.9 - SF7BW125 to SF10BW125
1118 -* 904.1 - SF7BW125 to SF10BW125
1119 -* 904.3 - SF7BW125 to SF10BW125
1120 -* 904.5 - SF7BW125 to SF10BW125
1121 -* 904.7 - SF7BW125 to SF10BW125
1122 -* 904.9 - SF7BW125 to SF10BW125
1123 -* 905.1 - SF7BW125 to SF10BW125
1124 -* 905.3 - SF7BW125 to SF10BW125
1125 -* 904.6 - SF8BW500
1126 1126  
1127 1127  (((
1128 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1129 -
1130 -* (% style="color:#037691" %)**AT+CHE=2**
1131 -* (% style="color:#037691" %)**ATZ**
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1132 1132  )))
1133 1133  
870 +(% class="wikigeneratedid" %)
1134 1134  (((
1135 1135  
1136 -
1137 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1138 1138  )))
1139 1139  
1140 -(((
1141 -
1142 -)))
1143 1143  
1144 -(((
1145 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1146 -)))
876 +== 6.2  AT Command input doesn't work ==
1147 1147  
1148 -[[image:image-20220606154825-4.png]]
1149 -
1150 -
1151 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1152 -
1153 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1154 -
1155 -
1156 -= 5. Trouble Shooting =
1157 -
1158 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1159 -
1160 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1161 -
1162 -
1163 -== 5.2 AT Command input doesn't work ==
1164 -
1165 1165  (((
1166 1166  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1167 -)))
1168 1168  
1169 -
1170 -== 5.3 Device rejoin in at the second uplink packet ==
1171 -
1172 -(% style="color:#4f81bd" %)**Issue describe as below:**
1173 -
1174 -[[image:1654500909990-784.png]]
1175 -
1176 -
1177 -(% style="color:#4f81bd" %)**Cause for this issue:**
1178 -
1179 -(((
1180 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1181 1181  )))
1182 1182  
1183 1183  
1184 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1185 1185  
1186 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1187 1187  
1188 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1189 1189  
1190 1190  
1191 -= 6. ​Order Info =
1192 -
1193 -
1194 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1195 -
1196 -
1197 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1198 -
1199 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1200 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1201 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1202 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1203 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1204 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1205 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1206 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1207 -
1208 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1209 -
1210 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1211 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1212 -
1213 1213  (% class="wikigeneratedid" %)
1214 1214  (((
1215 1215  
1216 1216  )))
1217 1217  
1218 -= 7. Packing Info =
896 += 8.  Packing Info =
1219 1219  
1220 1220  (((
1221 1221  
1222 1222  
1223 1223  (% style="color:#037691" %)**Package Includes**:
1224 -)))
1225 1225  
1226 -* (((
1227 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1228 1228  )))
1229 1229  
1230 1230  (((
... ... @@ -1231,24 +1231,19 @@
1231 1231  
1232 1232  
1233 1233  (% style="color:#037691" %)**Dimension and weight**:
1234 -)))
1235 1235  
1236 -* (((
1237 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1238 1238  )))
1239 -* (((
1240 -Device Weight: g
1241 -)))
1242 -* (((
1243 -Package Size / pcs : cm
1244 -)))
1245 -* (((
1246 -Weight / pcs : g
1247 1247  
916 +(((
1248 1248  
918 +
919 +
920 +
1249 1249  )))
1250 1250  
1251 -= 8. Support =
923 += 9.  Support =
1252 1252  
1253 1253  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1254 1254  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0