<
From version < 56.3 >
edited by Xiaoling
on 2022/07/08 11:18
To version < 90.1 >
edited by Xiaoling
on 2022/07/09 09:43
>
Change comment: Uploaded new attachment "1657331036973-987.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,26 +39,27 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
58 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -76,90 +76,112 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
76 +(% style="color:#037691" %)**Battery:**
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 +* Li/SOCI2 un-chargeable battery
79 +* Capacity: 8500mAh
80 +* Self Discharge: <1% / Year @ 25°C
81 +* Max continuously current: 130mA
82 +* Max boost current: 2A, 1 second
82 82  
83 -[[image:image-20220708101224-1.png]]
84 +(% style="color:#037691" %)**Power Consumption**
84 84  
86 +* STOP Mode: 10uA @ 3.3v
87 +* Max transmit power: 350mA@3.3v
85 85  
86 86  
90 +
87 87  == ​1.4  Applications ==
88 88  
93 +* Smart Buildings & Home Automation
94 +* Logistics and Supply Chain Management
95 +* Smart Metering
89 89  * Smart Agriculture
97 +* Smart Cities
98 +* Smart Factory
90 90  
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
103 +
104 +
94 94  == 1.5  Pin Definitions ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
108 +[[image:1657328609906-564.png]]
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
112 += 2.  Use NDDS75 to communicate with IoT Server =
102 102  
103 103  == 2.1  How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
108 108  )))
109 109  
110 110  
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
122 +The diagram below shows the working flow in default firmware of NDDS75:
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 -
117 117  (((
118 118  
119 119  )))
120 120  
129 +[[image:1657328659945-416.png]]
121 121  
131 +(((
132 +
133 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
136 +== 2.2 ​ Configure the NDDS75 ==
125 125  
138 +
126 126  === 2.2.1 Test Requirement ===
127 127  
141 +(((
142 +To use NDDS75 in your city, make sure meet below requirements:
143 +)))
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 -
131 131  * Your local operator has already distributed a NB-IoT Network there.
132 132  * The local NB-IoT network used the band that NSE01 supports.
133 133  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
154 +[[image:1657328756309-230.png]]
141 141  
142 142  
143 143  
144 144  === 2.2.2 Insert SIM card ===
145 145  
160 +(((
146 146  Insert the NB-IoT Card get from your provider.
162 +)))
147 147  
164 +(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
166 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
169 +[[image:1657328884227-504.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
156 156  
157 157  (((
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
160 160  )))
161 161  )))
162 162  
181 +[[image:image-20220709092052-2.png]]
163 163  
164 164  **Connection:**
165 165  
... ... @@ -172,19 +172,21 @@
172 172  
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
194 +* Baud:  (% style="color:green" %)**9600**
176 176  * Data bits:** (% style="color:green" %)8(%%)**
177 177  * Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
197 +* Parity:  (% style="color:green" %)**None**
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
204 +[[image:1657329814315-101.png]]
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
206 +(((
207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
208 +)))
188 188  
189 189  
190 190  
... ... @@ -199,60 +199,49 @@
199 199  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 200  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 201  
202 -
203 -
204 204  For parameter description, please refer to AT command set
205 205  
206 -[[image:1657249793983-486.png]]
225 +[[image:1657330452568-615.png]]
207 207  
208 208  
209 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
210 210  
211 -[[image:1657249831934-534.png]]
230 +[[image:1657330472797-498.png]]
212 212  
213 213  
214 214  
215 215  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216 216  
217 -This feature is supported since firmware version v1.0.1
218 218  
219 -
220 220  * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 221  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 222  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223 223  
224 224  
242 +[[image:1657330501006-241.png]]
225 225  
226 -[[image:1657249864775-321.png]]
227 227  
245 +[[image:1657330533775-472.png]]
228 228  
229 229  
230 -[[image:1657249930215-289.png]]
231 231  
232 -
233 -
234 234  === 2.2.6 Use MQTT protocol to uplink data ===
235 235  
236 -This feature is supported since firmware version v110
237 237  
238 -
239 239  * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 240  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 241  * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
255 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
258 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 246  
247 -
248 -
249 249  [[image:1657249978444-674.png]]
250 250  
251 251  
252 -[[image:1657249990869-686.png]]
263 +[[image:1657330723006-866.png]]
253 253  
254 254  
255 -
256 256  (((
257 257  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 258  )))
... ... @@ -261,18 +261,21 @@
261 261  
262 262  === 2.2.7 Use TCP protocol to uplink data ===
263 263  
264 -This feature is supported since firmware version v110
265 265  
266 -
267 267  * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 268  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269 269  
270 -[[image:1657250217799-140.png]]
271 271  
279 +[[image:image-20220709093918-1.png]]
272 272  
273 -[[image:1657250255956-604.png]]
274 274  
282 +[[image:image-20220709093918-2.png]]
275 275  
284 +
285 +
286 +
287 +
288 +
276 276  === 2.2.8 Change Update Interval ===
277 277  
278 278  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -279,7 +279,6 @@
279 279  
280 280  * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
281 281  
282 -
283 283  (((
284 284  (% style="color:red" %)**NOTE:**
285 285  )))
... ... @@ -290,59 +290,79 @@
290 290  
291 291  
292 292  
305 +== 2.3  Uplink Payload ==
293 293  
307 +In this mode, uplink payload includes in total 18 bytes
294 294  
309 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
310 +|=(% style="width: 60px;" %)(((
311 +**Size(bytes)**
312 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
313 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
295 295  
315 +(((
316 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
317 +)))
296 296  
297 -== 2.3 Uplink Payload ==
298 298  
320 +[[image:image-20220708111918-4.png]]
299 299  
300 -=== 2.3.1 MOD~=0(Default Mode) ===
301 301  
302 -LSE01 will uplink payload via LoRaWAN with below payload format
323 +The payload is ASCII string, representative same HEX:
303 303  
325 +0x72403155615900640c7817075e0a8c02f900 where:
326 +
327 +* Device ID: 0x 724031556159 = 724031556159
328 +* Version: 0x0064=100=1.0.0
329 +
330 +* BAT: 0x0c78 = 3192 mV = 3.192V
331 +* Singal: 0x17 = 23
332 +* Soil Moisture: 0x075e= 1886 = 18.86  %
333 +* Soil Temperature:0x0a8c =2700=27 °C
334 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
335 +* Interrupt: 0x00 = 0
336 +
337 +== 2.4  Payload Explanation and Sensor Interface ==
338 +
339 +
340 +=== 2.4.1  Device ID ===
341 +
304 304  (((
305 -Uplink payload includes in total 11 bytes.
343 +By default, the Device ID equal to the last 6 bytes of IMEI.
306 306  )))
307 307  
308 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
309 -|(((
310 -**Size**
346 +(((
347 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
348 +)))
311 311  
312 -**(bytes)**
313 -)))|**2**|**2**|**2**|**2**|**2**|**1**
314 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
315 -Temperature
350 +(((
351 +**Example:**
352 +)))
316 316  
317 -(Reserve, Ignore now)
318 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
319 -MOD & Digital Interrupt
354 +(((
355 +AT+DEUI=A84041F15612
356 +)))
320 320  
321 -(Optional)
358 +(((
359 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
322 322  )))
323 323  
324 -=== 2.3.2 MOD~=1(Original value) ===
325 325  
326 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
327 327  
328 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
329 -|(((
330 -**Size**
364 +=== 2.4.2  Version Info ===
331 331  
332 -**(bytes)**
333 -)))|**2**|**2**|**2**|**2**|**2**|**1**
334 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
335 -Temperature
366 +(((
367 +Specify the software version: 0x64=100, means firmware version 1.00.
368 +)))
336 336  
337 -(Reserve, Ignore now)
338 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
339 -MOD & Digital Interrupt
340 -
341 -(Optional)
370 +(((
371 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
342 342  )))
343 343  
344 -=== 2.3.3 Battery Info ===
345 345  
375 +
376 +=== 2.4.3  Battery Info ===
377 +
346 346  (((
347 347  Check the battery voltage for LSE01.
348 348  )))
... ... @@ -357,15 +357,51 @@
357 357  
358 358  
359 359  
360 -=== 2.3.4 Soil Moisture ===
392 +=== 2.4.4  Signal Strength ===
361 361  
362 362  (((
395 +NB-IoT Network signal Strength.
396 +)))
397 +
398 +(((
399 +**Ex1: 0x1d = 29**
400 +)))
401 +
402 +(((
403 +(% style="color:blue" %)**0**(%%)  -113dBm or less
404 +)))
405 +
406 +(((
407 +(% style="color:blue" %)**1**(%%)  -111dBm
408 +)))
409 +
410 +(((
411 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
412 +)))
413 +
414 +(((
415 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
416 +)))
417 +
418 +(((
419 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
420 +)))
421 +
422 +
423 +
424 +=== 2.4.5  Soil Moisture ===
425 +
426 +(((
427 +(((
363 363  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
364 364  )))
430 +)))
365 365  
366 366  (((
367 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
433 +(((
434 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
368 368  )))
436 +)))
369 369  
370 370  (((
371 371  
... ... @@ -377,10 +377,10 @@
377 377  
378 378  
379 379  
380 -=== 2.3.5 Soil Temperature ===
448 +=== 2.4. Soil Temperature ===
381 381  
382 382  (((
383 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
451 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
384 384  )))
385 385  
386 386  (((
... ... @@ -397,7 +397,7 @@
397 397  
398 398  
399 399  
400 -=== 2.3.6 Soil Conductivity (EC) ===
468 +=== 2.4. Soil Conductivity (EC) ===
401 401  
402 402  (((
403 403  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -404,7 +404,7 @@
404 404  )))
405 405  
406 406  (((
407 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
475 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
408 408  )))
409 409  
410 410  (((
... ... @@ -419,52 +419,68 @@
419 419  
420 420  )))
421 421  
422 -=== 2.3.7 MOD ===
490 +=== 2.4. Digital Interrupt ===
423 423  
424 -Firmware version at least v2.1 supports changing mode.
492 +(((
493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
494 +)))
425 425  
426 -For example, bytes[10]=90
496 +(((
497 +The command is:
498 +)))
427 427  
428 -mod=(bytes[10]>>7)&0x01=1.
500 +(((
501 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
502 +)))
429 429  
430 430  
431 -**Downlink Command:**
505 +(((
506 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
507 +)))
432 432  
433 -If payload = 0x0A00, workmode=0
434 434  
435 -If** **payload =** **0x0A01, workmode=1
510 +(((
511 +Example:
512 +)))
436 436  
514 +(((
515 +0x(00): Normal uplink packet.
516 +)))
437 437  
518 +(((
519 +0x(01): Interrupt Uplink Packet.
520 +)))
438 438  
439 -=== 2.3.8 ​Decode payload in The Things Network ===
440 440  
441 -While using TTN network, you can add the payload format to decode the payload.
442 442  
524 +=== 2.4.9  ​+5V Output ===
443 443  
444 -[[image:1654505570700-128.png]]
526 +(((
527 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 +)))
445 445  
530 +
446 446  (((
447 -The payload decoder function for TTN is here:
532 +The 5V output time can be controlled by AT Command.
448 448  )))
449 449  
450 450  (((
451 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
536 +(% style="color:blue" %)**AT+5VT=1000**
452 452  )))
453 453  
539 +(((
540 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
541 +)))
454 454  
455 -== 2.4 Uplink Interval ==
456 456  
457 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
458 458  
545 +== 2.5  Downlink Payload ==
459 459  
547 +By default, NSE01 prints the downlink payload to console port.
460 460  
461 -== 2.5 Downlink Payload ==
549 +[[image:image-20220708133731-5.png]]
462 462  
463 -By default, LSE50 prints the downlink payload to console port.
464 464  
465 -[[image:image-20220606165544-8.png]]
466 -
467 -
468 468  (((
469 469  (% style="color:blue" %)**Examples:**
470 470  )))
... ... @@ -478,7 +478,7 @@
478 478  )))
479 479  
480 480  (((
481 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
565 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
482 482  )))
483 483  
484 484  (((
... ... @@ -498,432 +498,144 @@
498 498  )))
499 499  
500 500  (((
501 -If payload = 0x04FF, it will reset the LSE01
585 +If payload = 0x04FF, it will reset the NSE01
502 502  )))
503 503  
504 504  
505 -* (% style="color:blue" %)**CFM**
589 +* (% style="color:blue" %)**INTMOD**
506 506  
507 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
591 +(((
592 +Downlink Payload: 06000003, Set AT+INTMOD=3
593 +)))
508 508  
509 509  
510 510  
511 -== 2.6 ​Show Data in DataCake IoT Server ==
597 +== 2.6 LED Indicator ==
512 512  
513 513  (((
514 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
515 -)))
600 +The NSE01 has an internal LED which is to show the status of different state.
516 516  
517 -(((
518 -
519 -)))
520 520  
521 -(((
522 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
603 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
604 +* Then the LED will be on for 1 second means device is boot normally.
605 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
606 +* For each uplink probe, LED will be on for 500ms.
523 523  )))
524 524  
525 -(((
526 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
527 -)))
528 528  
529 529  
530 -[[image:1654505857935-743.png]]
531 531  
612 +== 2.7  Installation in Soil ==
532 532  
533 -[[image:1654505874829-548.png]]
614 +__**Measurement the soil surface**__
534 534  
616 +(((
617 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
618 +)))
535 535  
536 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
620 +[[image:1657259653666-883.png]]
537 537  
538 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
539 539  
623 +(((
624 +
540 540  
541 -[[image:1654505905236-553.png]]
626 +(((
627 +Dig a hole with diameter > 20CM.
628 +)))
542 542  
630 +(((
631 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
632 +)))
633 +)))
543 543  
544 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
635 +[[image:1654506665940-119.png]]
545 545  
546 -[[image:1654505925508-181.png]]
637 +(((
638 +
639 +)))
547 547  
548 548  
642 +== 2.8  ​Firmware Change Log ==
549 549  
550 -== 2.7 Frequency Plans ==
551 551  
552 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
645 +Download URL & Firmware Change log
553 553  
647 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
554 554  
555 -=== 2.7.1 EU863-870 (EU868) ===
556 556  
557 -(% style="color:#037691" %)** Uplink:**
650 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
558 558  
559 -868.1 - SF7BW125 to SF12BW125
560 560  
561 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
562 562  
563 -868.5 - SF7BW125 to SF12BW125
654 +== 2.9  ​Battery Analysis ==
564 564  
565 -867.1 - SF7BW125 to SF12BW125
656 +=== 2.9.1  Battery Type ===
566 566  
567 -867.3 - SF7BW125 to SF12BW125
568 568  
569 -867.5 - SF7BW125 to SF12BW125
570 -
571 -867.7 - SF7BW125 to SF12BW125
572 -
573 -867.9 - SF7BW125 to SF12BW125
574 -
575 -868.8 - FSK
576 -
577 -
578 -(% style="color:#037691" %)** Downlink:**
579 -
580 -Uplink channels 1-9 (RX1)
581 -
582 -869.525 - SF9BW125 (RX2 downlink only)
583 -
584 -
585 -
586 -=== 2.7.2 US902-928(US915) ===
587 -
588 -Used in USA, Canada and South America. Default use CHE=2
589 -
590 -(% style="color:#037691" %)**Uplink:**
591 -
592 -903.9 - SF7BW125 to SF10BW125
593 -
594 -904.1 - SF7BW125 to SF10BW125
595 -
596 -904.3 - SF7BW125 to SF10BW125
597 -
598 -904.5 - SF7BW125 to SF10BW125
599 -
600 -904.7 - SF7BW125 to SF10BW125
601 -
602 -904.9 - SF7BW125 to SF10BW125
603 -
604 -905.1 - SF7BW125 to SF10BW125
605 -
606 -905.3 - SF7BW125 to SF10BW125
607 -
608 -
609 -(% style="color:#037691" %)**Downlink:**
610 -
611 -923.3 - SF7BW500 to SF12BW500
612 -
613 -923.9 - SF7BW500 to SF12BW500
614 -
615 -924.5 - SF7BW500 to SF12BW500
616 -
617 -925.1 - SF7BW500 to SF12BW500
618 -
619 -925.7 - SF7BW500 to SF12BW500
620 -
621 -926.3 - SF7BW500 to SF12BW500
622 -
623 -926.9 - SF7BW500 to SF12BW500
624 -
625 -927.5 - SF7BW500 to SF12BW500
626 -
627 -923.3 - SF12BW500(RX2 downlink only)
628 -
629 -
630 -
631 -=== 2.7.3 CN470-510 (CN470) ===
632 -
633 -Used in China, Default use CHE=1
634 -
635 -(% style="color:#037691" %)**Uplink:**
636 -
637 -486.3 - SF7BW125 to SF12BW125
638 -
639 -486.5 - SF7BW125 to SF12BW125
640 -
641 -486.7 - SF7BW125 to SF12BW125
642 -
643 -486.9 - SF7BW125 to SF12BW125
644 -
645 -487.1 - SF7BW125 to SF12BW125
646 -
647 -487.3 - SF7BW125 to SF12BW125
648 -
649 -487.5 - SF7BW125 to SF12BW125
650 -
651 -487.7 - SF7BW125 to SF12BW125
652 -
653 -
654 -(% style="color:#037691" %)**Downlink:**
655 -
656 -506.7 - SF7BW125 to SF12BW125
657 -
658 -506.9 - SF7BW125 to SF12BW125
659 -
660 -507.1 - SF7BW125 to SF12BW125
661 -
662 -507.3 - SF7BW125 to SF12BW125
663 -
664 -507.5 - SF7BW125 to SF12BW125
665 -
666 -507.7 - SF7BW125 to SF12BW125
667 -
668 -507.9 - SF7BW125 to SF12BW125
669 -
670 -508.1 - SF7BW125 to SF12BW125
671 -
672 -505.3 - SF12BW125 (RX2 downlink only)
673 -
674 -
675 -
676 -=== 2.7.4 AU915-928(AU915) ===
677 -
678 -Default use CHE=2
679 -
680 -(% style="color:#037691" %)**Uplink:**
681 -
682 -916.8 - SF7BW125 to SF12BW125
683 -
684 -917.0 - SF7BW125 to SF12BW125
685 -
686 -917.2 - SF7BW125 to SF12BW125
687 -
688 -917.4 - SF7BW125 to SF12BW125
689 -
690 -917.6 - SF7BW125 to SF12BW125
691 -
692 -917.8 - SF7BW125 to SF12BW125
693 -
694 -918.0 - SF7BW125 to SF12BW125
695 -
696 -918.2 - SF7BW125 to SF12BW125
697 -
698 -
699 -(% style="color:#037691" %)**Downlink:**
700 -
701 -923.3 - SF7BW500 to SF12BW500
702 -
703 -923.9 - SF7BW500 to SF12BW500
704 -
705 -924.5 - SF7BW500 to SF12BW500
706 -
707 -925.1 - SF7BW500 to SF12BW500
708 -
709 -925.7 - SF7BW500 to SF12BW500
710 -
711 -926.3 - SF7BW500 to SF12BW500
712 -
713 -926.9 - SF7BW500 to SF12BW500
714 -
715 -927.5 - SF7BW500 to SF12BW500
716 -
717 -923.3 - SF12BW500(RX2 downlink only)
718 -
719 -
720 -
721 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
722 -
723 -(% style="color:#037691" %)**Default Uplink channel:**
724 -
725 -923.2 - SF7BW125 to SF10BW125
726 -
727 -923.4 - SF7BW125 to SF10BW125
728 -
729 -
730 -(% style="color:#037691" %)**Additional Uplink Channel**:
731 -
732 -(OTAA mode, channel added by JoinAccept message)
733 -
734 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
735 -
736 -922.2 - SF7BW125 to SF10BW125
737 -
738 -922.4 - SF7BW125 to SF10BW125
739 -
740 -922.6 - SF7BW125 to SF10BW125
741 -
742 -922.8 - SF7BW125 to SF10BW125
743 -
744 -923.0 - SF7BW125 to SF10BW125
745 -
746 -922.0 - SF7BW125 to SF10BW125
747 -
748 -
749 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
750 -
751 -923.6 - SF7BW125 to SF10BW125
752 -
753 -923.8 - SF7BW125 to SF10BW125
754 -
755 -924.0 - SF7BW125 to SF10BW125
756 -
757 -924.2 - SF7BW125 to SF10BW125
758 -
759 -924.4 - SF7BW125 to SF10BW125
760 -
761 -924.6 - SF7BW125 to SF10BW125
762 -
763 -
764 -(% style="color:#037691" %)** Downlink:**
765 -
766 -Uplink channels 1-8 (RX1)
767 -
768 -923.2 - SF10BW125 (RX2)
769 -
770 -
771 -
772 -=== 2.7.6 KR920-923 (KR920) ===
773 -
774 -Default channel:
775 -
776 -922.1 - SF7BW125 to SF12BW125
777 -
778 -922.3 - SF7BW125 to SF12BW125
779 -
780 -922.5 - SF7BW125 to SF12BW125
781 -
782 -
783 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
784 -
785 -922.1 - SF7BW125 to SF12BW125
786 -
787 -922.3 - SF7BW125 to SF12BW125
788 -
789 -922.5 - SF7BW125 to SF12BW125
790 -
791 -922.7 - SF7BW125 to SF12BW125
792 -
793 -922.9 - SF7BW125 to SF12BW125
794 -
795 -923.1 - SF7BW125 to SF12BW125
796 -
797 -923.3 - SF7BW125 to SF12BW125
798 -
799 -
800 -(% style="color:#037691" %)**Downlink:**
801 -
802 -Uplink channels 1-7(RX1)
803 -
804 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
805 -
806 -
807 -
808 -=== 2.7.7 IN865-867 (IN865) ===
809 -
810 -(% style="color:#037691" %)** Uplink:**
811 -
812 -865.0625 - SF7BW125 to SF12BW125
813 -
814 -865.4025 - SF7BW125 to SF12BW125
815 -
816 -865.9850 - SF7BW125 to SF12BW125
817 -
818 -
819 -(% style="color:#037691" %) **Downlink:**
820 -
821 -Uplink channels 1-3 (RX1)
822 -
823 -866.550 - SF10BW125 (RX2)
824 -
825 -
826 -
827 -
828 -== 2.8 LED Indicator ==
829 -
830 -The LSE01 has an internal LED which is to show the status of different state.
831 -
832 -* Blink once when device power on.
833 -* Solid ON for 5 seconds once device successful Join the network.
834 -* Blink once when device transmit a packet.
835 -
836 -== 2.9 Installation in Soil ==
837 -
838 -**Measurement the soil surface**
839 -
840 -
841 -[[image:1654506634463-199.png]] ​
842 -
843 843  (((
844 -(((
845 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
660 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
846 846  )))
847 -)))
848 848  
849 849  
850 -
851 -[[image:1654506665940-119.png]]
852 -
853 853  (((
854 -Dig a hole with diameter > 20CM.
665 +The battery is designed to last for several years depends on the actually use environment and update interval. 
855 855  )))
856 856  
857 -(((
858 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
859 -)))
860 860  
861 -
862 -== 2.10 ​Firmware Change Log ==
863 -
864 864  (((
865 -**Firmware download link:**
670 +The battery related documents as below:
866 866  )))
867 867  
868 -(((
869 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
870 -)))
673 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
674 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
675 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
871 871  
872 872  (((
873 -
678 +[[image:image-20220708140453-6.png]]
874 874  )))
875 875  
876 -(((
877 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
878 -)))
879 879  
880 -(((
881 -
882 -)))
883 883  
884 -(((
885 -**V1.0.**
886 -)))
683 +=== 2.9.2  Power consumption Analyze ===
887 887  
888 888  (((
889 -Release
686 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
890 890  )))
891 891  
892 892  
893 -== 2.11 ​Battery Analysis ==
894 -
895 -=== 2.11.1 ​Battery Type ===
896 -
897 897  (((
898 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 +Instruction to use as below:
899 899  )))
900 900  
901 901  (((
902 -The battery is designed to last for more than 5 years for the LSN50.
695 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
903 903  )))
904 904  
698 +
905 905  (((
906 -(((
907 -The battery-related documents are as below:
700 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
908 908  )))
909 -)))
910 910  
911 911  * (((
912 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
704 +Product Model
913 913  )))
914 914  * (((
915 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
707 +Uplink Interval
916 916  )))
917 917  * (((
918 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
710 +Working Mode
919 919  )))
920 920  
921 - [[image:image-20220610172436-1.png]]
713 +(((
714 +And the Life expectation in difference case will be shown on the right.
715 +)))
922 922  
717 +[[image:image-20220708141352-7.jpeg]]
923 923  
924 924  
925 -=== 2.11.2 ​Battery Note ===
926 926  
721 +=== 2.9.3  ​Battery Note ===
722 +
927 927  (((
928 928  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
929 929  )))
... ... @@ -930,302 +930,176 @@
930 930  
931 931  
932 932  
933 -=== 2.11.3 Replace the battery ===
729 +=== 2.9. Replace the battery ===
934 934  
935 935  (((
936 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
732 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
937 937  )))
938 938  
735 +
736 +
737 += 3. ​ Access NB-IoT Module =
738 +
939 939  (((
940 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
740 +Users can directly access the AT command set of the NB-IoT module.
941 941  )))
942 942  
943 943  (((
944 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
744 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
945 945  )))
946 946  
747 +[[image:1657261278785-153.png]]
947 947  
948 948  
949 -= 3. ​Using the AT Commands =
950 950  
951 -== 3.1 Access AT Commands ==
751 += 4.  Using the AT Commands =
952 952  
753 +== 4.1  Access AT Commands ==
953 953  
954 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
755 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
955 955  
956 -[[image:1654501986557-872.png||height="391" width="800"]]
957 957  
758 +AT+<CMD>?  : Help on <CMD>
958 958  
959 -Or if you have below board, use below connection:
760 +AT+<CMD>         : Run <CMD>
960 960  
762 +AT+<CMD>=<value> : Set the value
961 961  
962 -[[image:1654502005655-729.png||height="503" width="801"]]
764 +AT+<CMD>=?  : Get the value
963 963  
964 964  
965 -
966 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
967 -
968 -
969 - [[image:1654502050864-459.png||height="564" width="806"]]
970 -
971 -
972 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
973 -
974 -
975 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
976 -
977 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
978 -
979 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
980 -
981 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
982 -
983 -
984 984  (% style="color:#037691" %)**General Commands**(%%)      
985 985  
986 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
769 +AT  : Attention       
987 987  
988 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
771 +AT?  : Short Help     
989 989  
990 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
773 +ATZ  : MCU Reset    
991 991  
992 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
775 +AT+TDC  : Application Data Transmission Interval
993 993  
777 +AT+CFG  : Print all configurations
994 994  
995 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
779 +AT+CFGMOD           : Working mode selection
996 996  
997 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
781 +AT+INTMOD            : Set the trigger interrupt mode
998 998  
999 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
783 +AT+5VT  : Set extend the time of 5V power  
1000 1000  
1001 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
785 +AT+PRO  : Choose agreement
1002 1002  
1003 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
787 +AT+WEIGRE  : Get weight or set weight to 0
1004 1004  
1005 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
789 +AT+WEIGAP  : Get or Set the GapValue of weight
1006 1006  
1007 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
791 +AT+RXDL  : Extend the sending and receiving time
1008 1008  
1009 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
793 +AT+CNTFAC  : Get or set counting parameters
1010 1010  
1011 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
795 +AT+SERVADDR  : Server Address
1012 1012  
1013 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1014 1014  
1015 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
798 +(% style="color:#037691" %)**COAP Management**      
1016 1016  
1017 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
800 +AT+URI            : Resource parameters
1018 1018  
1019 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1020 1020  
1021 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
803 +(% style="color:#037691" %)**UDP Management**
1022 1022  
1023 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
805 +AT+CFM          : Upload confirmation mode (only valid for UDP)
1024 1024  
1025 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1026 1026  
1027 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
808 +(% style="color:#037691" %)**MQTT Management**
1028 1028  
810 +AT+CLIENT               : Get or Set MQTT client
1029 1029  
1030 -(% style="color:#037691" %)**LoRa Network Management**
812 +AT+UNAME  : Get or Set MQTT Username
1031 1031  
1032 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
814 +AT+PWD                  : Get or Set MQTT password
1033 1033  
1034 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
816 +AT+PUBTOPI : Get or Set MQTT publish topic
1035 1035  
1036 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
818 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
1037 1037  
1038 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1039 1039  
1040 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
821 +(% style="color:#037691" %)**Information**          
1041 1041  
1042 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
823 +AT+FDR  : Factory Data Reset
1043 1043  
1044 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
825 +AT+PWOR : Serial Access Password
1045 1045  
1046 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1047 1047  
1048 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1049 1049  
1050 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
829 += ​5.  FAQ =
1051 1051  
1052 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
831 +== 5.1 How to Upgrade Firmware ==
1053 1053  
1054 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1055 1055  
1056 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1057 -
1058 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1059 -
1060 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1061 -
1062 -
1063 -(% style="color:#037691" %)**Information** 
1064 -
1065 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1066 -
1067 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1068 -
1069 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1070 -
1071 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1072 -
1073 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1074 -
1075 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1076 -
1077 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1078 -
1079 -
1080 -= ​4. FAQ =
1081 -
1082 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1083 -
1084 1084  (((
1085 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1086 -When downloading the images, choose the required image file for download. ​
835 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
1087 1087  )))
1088 1088  
1089 1089  (((
1090 -
839 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1091 1091  )))
1092 1092  
1093 1093  (((
1094 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
843 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1095 1095  )))
1096 1096  
1097 -(((
1098 -
1099 -)))
1100 1100  
1101 -(((
1102 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1103 -)))
1104 1104  
1105 -(((
1106 -
1107 -)))
848 +== 5.2  Can I calibrate NSE01 to different soil types? ==
1108 1108  
1109 1109  (((
1110 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
851 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1111 1111  )))
1112 1112  
1113 -[[image:image-20220606154726-3.png]]
1114 1114  
855 += 6.  Trouble Shooting =
1115 1115  
1116 -When you use the TTN network, the US915 frequency bands use are:
857 +== 6.1  ​Connection problem when uploading firmware ==
1117 1117  
1118 -* 903.9 - SF7BW125 to SF10BW125
1119 -* 904.1 - SF7BW125 to SF10BW125
1120 -* 904.3 - SF7BW125 to SF10BW125
1121 -* 904.5 - SF7BW125 to SF10BW125
1122 -* 904.7 - SF7BW125 to SF10BW125
1123 -* 904.9 - SF7BW125 to SF10BW125
1124 -* 905.1 - SF7BW125 to SF10BW125
1125 -* 905.3 - SF7BW125 to SF10BW125
1126 -* 904.6 - SF8BW500
1127 1127  
1128 1128  (((
1129 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1130 -
1131 -* (% style="color:#037691" %)**AT+CHE=2**
1132 -* (% style="color:#037691" %)**ATZ**
861 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1133 1133  )))
1134 1134  
864 +(% class="wikigeneratedid" %)
1135 1135  (((
1136 1136  
1137 -
1138 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1139 1139  )))
1140 1140  
1141 -(((
1142 -
1143 -)))
1144 1144  
1145 -(((
1146 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1147 -)))
870 +== 6.2  AT Command input doesn't work ==
1148 1148  
1149 -[[image:image-20220606154825-4.png]]
1150 -
1151 -
1152 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1153 -
1154 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1155 -
1156 -
1157 -= 5. Trouble Shooting =
1158 -
1159 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1160 -
1161 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1162 -
1163 -
1164 -== 5.2 AT Command input doesn't work ==
1165 -
1166 1166  (((
1167 1167  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1168 -)))
1169 1169  
1170 -
1171 -== 5.3 Device rejoin in at the second uplink packet ==
1172 -
1173 -(% style="color:#4f81bd" %)**Issue describe as below:**
1174 -
1175 -[[image:1654500909990-784.png]]
1176 -
1177 -
1178 -(% style="color:#4f81bd" %)**Cause for this issue:**
1179 -
1180 -(((
1181 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
875 +
1182 1182  )))
1183 1183  
1184 1184  
1185 -(% style="color:#4f81bd" %)**Solution: **
879 += 7. ​ Order Info =
1186 1186  
1187 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1188 1188  
1189 -[[image:1654500929571-736.png||height="458" width="832"]]
882 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1190 1190  
1191 1191  
1192 -= 6. ​Order Info =
1193 -
1194 -
1195 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1196 -
1197 -
1198 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1199 -
1200 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1201 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1202 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1203 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1204 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1205 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1206 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1207 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1208 -
1209 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1210 -
1211 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1212 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1213 -
1214 1214  (% class="wikigeneratedid" %)
1215 1215  (((
1216 1216  
1217 1217  )))
1218 1218  
1219 -= 7. Packing Info =
890 += 8.  Packing Info =
1220 1220  
1221 1221  (((
1222 1222  
1223 1223  
1224 1224  (% style="color:#037691" %)**Package Includes**:
1225 -)))
1226 1226  
1227 -* (((
1228 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
897 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
898 +* External antenna x 1
1229 1229  )))
1230 1230  
1231 1231  (((
... ... @@ -1232,24 +1232,19 @@
1232 1232  
1233 1233  
1234 1234  (% style="color:#037691" %)**Dimension and weight**:
1235 -)))
1236 1236  
1237 -* (((
1238 -Device Size: cm
906 +* Size: 195 x 125 x 55 mm
907 +* Weight:   420g
1239 1239  )))
1240 -* (((
1241 -Device Weight: g
1242 -)))
1243 -* (((
1244 -Package Size / pcs : cm
1245 -)))
1246 -* (((
1247 -Weight / pcs : g
1248 1248  
910 +(((
1249 1249  
912 +
913 +
914 +
1250 1250  )))
1251 1251  
1252 -= 8. Support =
917 += 9.  Support =
1253 1253  
1254 1254  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1255 1255  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0