<
From version < 54.2 >
edited by Xiaoling
on 2022/07/08 11:13
To version < 81.3 >
edited by Xiaoling
on 2022/07/09 09:32
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,26 +39,28 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
58 +
59 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -76,90 +76,116 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 +(% style="color:#037691" %)**Battery:**
82 82  
83 -[[image:image-20220708101224-1.png]]
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
84 84  
85 85  
87 +(% style="color:#037691" %)**Power Consumption**
86 86  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
91 +
92 +
93 +
94 +
87 87  == ​1.4  Applications ==
88 88  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
89 89  * Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
90 90  
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
107 +
108 +
94 94  == 1.5  Pin Definitions ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
112 +[[image:1657328609906-564.png]]
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
102 102  
117 += 2.  Use NDDS75 to communicate with IoT Server =
118 +
103 103  == 2.1  How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
108 108  )))
109 109  
110 110  
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
127 +The diagram below shows the working flow in default firmware of NDDS75:
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 -
117 117  (((
118 118  
119 119  )))
120 120  
134 +[[image:1657328659945-416.png]]
121 121  
136 +(((
137 +
138 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
141 +== 2.2 ​ Configure the NDDS75 ==
125 125  
143 +
126 126  === 2.2.1 Test Requirement ===
127 127  
146 +(((
147 +To use NDDS75 in your city, make sure meet below requirements:
148 +)))
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 -
131 131  * Your local operator has already distributed a NB-IoT Network there.
132 132  * The local NB-IoT network used the band that NSE01 supports.
133 133  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
155 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
159 +[[image:1657328756309-230.png]]
141 141  
142 142  
143 143  
144 144  === 2.2.2 Insert SIM card ===
145 145  
165 +(((
146 146  Insert the NB-IoT Card get from your provider.
167 +)))
147 147  
169 +(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
171 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
174 +[[image:1657328884227-504.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
178 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
156 156  
157 157  (((
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
182 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
160 160  )))
161 161  )))
162 162  
186 +[[image:image-20220709092052-2.png]]
163 163  
164 164  **Connection:**
165 165  
... ... @@ -172,25 +172,27 @@
172 172  
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
199 +* Baud:  (% style="color:green" %)**9600**
176 176  * Data bits:** (% style="color:green" %)8(%%)**
177 177  * Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
202 +* Parity:  (% style="color:green" %)**None**
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
209 +[[image:1657329814315-101.png]]
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
211 +(((
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
213 +)))
188 188  
189 189  
190 190  
191 191  === 2.2.4 Use CoAP protocol to uplink data ===
192 192  
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 194  
195 195  
196 196  **Use below commands:**
... ... @@ -199,8 +199,6 @@
199 199  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 200  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 201  
202 -
203 -
204 204  For parameter description, please refer to AT command set
205 205  
206 206  [[image:1657249793983-486.png]]
... ... @@ -221,12 +221,9 @@
221 221  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 222  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223 223  
224 -
225 -
226 226  [[image:1657249864775-321.png]]
227 227  
228 228  
229 -
230 230  [[image:1657249930215-289.png]]
231 231  
232 232  
... ... @@ -236,13 +236,13 @@
236 236  This feature is supported since firmware version v110
237 237  
238 238  
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 246  
247 247  [[image:1657249978444-674.png]]
248 248  
... ... @@ -249,26 +249,26 @@
249 249  
250 250  [[image:1657249990869-686.png]]
251 251  
252 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
253 253  
254 -
274 +(((
255 255  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 +)))
256 256  
257 257  
279 +
258 258  === 2.2.7 Use TCP protocol to uplink data ===
259 259  
260 -
261 261  This feature is supported since firmware version v110
262 262  
263 263  
264 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 265  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
266 266  
267 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
288 +[[image:1657250217799-140.png]]
268 268  
269 269  
291 +[[image:1657250255956-604.png]]
270 270  
271 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
272 272  
273 273  
274 274  === 2.2.8 Change Update Interval ===
... ... @@ -275,68 +275,91 @@
275 275  
276 276  User can use below command to change the (% style="color:green" %)**uplink interval**.
277 277  
278 -**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
279 279  
280 -
301 +(((
281 281  (% style="color:red" %)**NOTE:**
303 +)))
282 282  
305 +(((
283 283  (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
284 284  
285 285  
286 286  
311 +== 2.3  Uplink Payload ==
287 287  
313 +In this mode, uplink payload includes in total 18 bytes
288 288  
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
289 289  
321 +(((
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
290 290  
291 -== 2.3 Uplink Payload ==
292 292  
326 +[[image:image-20220708111918-4.png]]
293 293  
294 -=== 2.3.1 MOD~=0(Default Mode) ===
295 295  
296 -LSE01 will uplink payload via LoRaWAN with below payload format
329 +The payload is ASCII string, representative same HEX:
297 297  
331 +0x72403155615900640c7817075e0a8c02f900 where:
332 +
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
335 +
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
342 +
343 +== 2.4  Payload Explanation and Sensor Interface ==
344 +
345 +
346 +=== 2.4.1  Device ID ===
347 +
298 298  (((
299 -Uplink payload includes in total 11 bytes.
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
300 300  )))
301 301  
302 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
303 -|(((
304 -**Size**
352 +(((
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
305 305  
306 -**(bytes)**
307 -)))|**2**|**2**|**2**|**2**|**2**|**1**
308 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
309 -Temperature
356 +(((
357 +**Example:**
358 +)))
310 310  
311 -(Reserve, Ignore now)
312 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
313 -MOD & Digital Interrupt
360 +(((
361 +AT+DEUI=A84041F15612
362 +)))
314 314  
315 -(Optional)
364 +(((
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
316 316  )))
317 317  
318 -=== 2.3.2 MOD~=1(Original value) ===
319 319  
320 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
321 321  
322 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
323 -|(((
324 -**Size**
370 +=== 2.4.2  Version Info ===
325 325  
326 -**(bytes)**
327 -)))|**2**|**2**|**2**|**2**|**2**|**1**
328 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
329 -Temperature
372 +(((
373 +Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
330 330  
331 -(Reserve, Ignore now)
332 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
333 -MOD & Digital Interrupt
334 -
335 -(Optional)
376 +(((
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
336 336  )))
337 337  
338 -=== 2.3.3 Battery Info ===
339 339  
381 +
382 +=== 2.4.3  Battery Info ===
383 +
340 340  (((
341 341  Check the battery voltage for LSE01.
342 342  )))
... ... @@ -351,15 +351,51 @@
351 351  
352 352  
353 353  
354 -=== 2.3.4 Soil Moisture ===
398 +=== 2.4.4  Signal Strength ===
355 355  
356 356  (((
401 +NB-IoT Network signal Strength.
402 +)))
403 +
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
407 +
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
411 +
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
415 +
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
419 +
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
423 +
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
427 +
428 +
429 +
430 +=== 2.4.5  Soil Moisture ===
431 +
432 +(((
433 +(((
357 357  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
358 358  )))
436 +)))
359 359  
360 360  (((
361 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
362 362  )))
442 +)))
363 363  
364 364  (((
365 365  
... ... @@ -371,10 +371,10 @@
371 371  
372 372  
373 373  
374 -=== 2.3.5 Soil Temperature ===
454 +=== 2.4. Soil Temperature ===
375 375  
376 376  (((
377 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
378 378  )))
379 379  
380 380  (((
... ... @@ -391,7 +391,7 @@
391 391  
392 392  
393 393  
394 -=== 2.3.6 Soil Conductivity (EC) ===
474 +=== 2.4. Soil Conductivity (EC) ===
395 395  
396 396  (((
397 397  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -398,7 +398,7 @@
398 398  )))
399 399  
400 400  (((
401 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
402 402  )))
403 403  
404 404  (((
... ... @@ -413,52 +413,68 @@
413 413  
414 414  )))
415 415  
416 -=== 2.3.7 MOD ===
496 +=== 2.4. Digital Interrupt ===
417 417  
418 -Firmware version at least v2.1 supports changing mode.
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
419 419  
420 -For example, bytes[10]=90
502 +(((
503 +The command is:
504 +)))
421 421  
422 -mod=(bytes[10]>>7)&0x01=1.
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
423 423  
424 424  
425 -**Downlink Command:**
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
426 426  
427 -If payload = 0x0A00, workmode=0
428 428  
429 -If** **payload =** **0x0A01, workmode=1
516 +(((
517 +Example:
518 +)))
430 430  
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
431 431  
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
432 432  
433 -=== 2.3.8 ​Decode payload in The Things Network ===
434 434  
435 -While using TTN network, you can add the payload format to decode the payload.
436 436  
530 +=== 2.4.9  ​+5V Output ===
437 437  
438 -[[image:1654505570700-128.png]]
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
439 439  
536 +
440 440  (((
441 -The payload decoder function for TTN is here:
538 +The 5V output time can be controlled by AT Command.
442 442  )))
443 443  
444 444  (((
445 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
542 +(% style="color:blue" %)**AT+5VT=1000**
446 446  )))
447 447  
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
448 448  
449 -== 2.4 Uplink Interval ==
450 450  
451 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
452 452  
551 +== 2.5  Downlink Payload ==
453 453  
553 +By default, NSE01 prints the downlink payload to console port.
454 454  
455 -== 2.5 Downlink Payload ==
555 +[[image:image-20220708133731-5.png]]
456 456  
457 -By default, LSE50 prints the downlink payload to console port.
458 458  
459 -[[image:image-20220606165544-8.png]]
460 -
461 -
462 462  (((
463 463  (% style="color:blue" %)**Examples:**
464 464  )))
... ... @@ -472,7 +472,7 @@
472 472  )))
473 473  
474 474  (((
475 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
476 476  )))
477 477  
478 478  (((
... ... @@ -492,432 +492,144 @@
492 492  )))
493 493  
494 494  (((
495 -If payload = 0x04FF, it will reset the LSE01
591 +If payload = 0x04FF, it will reset the NSE01
496 496  )))
497 497  
498 498  
499 -* (% style="color:blue" %)**CFM**
595 +* (% style="color:blue" %)**INTMOD**
500 500  
501 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
502 502  
503 503  
504 504  
505 -== 2.6 ​Show Data in DataCake IoT Server ==
603 +== 2.6 LED Indicator ==
506 506  
507 507  (((
508 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509 -)))
606 +The NSE01 has an internal LED which is to show the status of different state.
510 510  
511 -(((
512 -
513 -)))
514 514  
515 -(((
516 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
517 517  )))
518 518  
519 -(((
520 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521 -)))
522 522  
523 523  
524 -[[image:1654505857935-743.png]]
525 525  
618 +== 2.7  Installation in Soil ==
526 526  
527 -[[image:1654505874829-548.png]]
620 +__**Measurement the soil surface**__
528 528  
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
529 529  
530 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
626 +[[image:1657259653666-883.png]]
531 531  
532 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
533 533  
629 +(((
630 +
534 534  
535 -[[image:1654505905236-553.png]]
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
536 536  
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
537 537  
538 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
641 +[[image:1654506665940-119.png]]
539 539  
540 -[[image:1654505925508-181.png]]
643 +(((
644 +
645 +)))
541 541  
542 542  
648 +== 2.8  ​Firmware Change Log ==
543 543  
544 -== 2.7 Frequency Plans ==
545 545  
546 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
651 +Download URL & Firmware Change log
547 547  
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
548 548  
549 -=== 2.7.1 EU863-870 (EU868) ===
550 550  
551 -(% style="color:#037691" %)** Uplink:**
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
552 552  
553 -868.1 - SF7BW125 to SF12BW125
554 554  
555 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
556 556  
557 -868.5 - SF7BW125 to SF12BW125
660 +== 2.9  ​Battery Analysis ==
558 558  
559 -867.1 - SF7BW125 to SF12BW125
662 +=== 2.9.1  Battery Type ===
560 560  
561 -867.3 - SF7BW125 to SF12BW125
562 562  
563 -867.5 - SF7BW125 to SF12BW125
564 -
565 -867.7 - SF7BW125 to SF12BW125
566 -
567 -867.9 - SF7BW125 to SF12BW125
568 -
569 -868.8 - FSK
570 -
571 -
572 -(% style="color:#037691" %)** Downlink:**
573 -
574 -Uplink channels 1-9 (RX1)
575 -
576 -869.525 - SF9BW125 (RX2 downlink only)
577 -
578 -
579 -
580 -=== 2.7.2 US902-928(US915) ===
581 -
582 -Used in USA, Canada and South America. Default use CHE=2
583 -
584 -(% style="color:#037691" %)**Uplink:**
585 -
586 -903.9 - SF7BW125 to SF10BW125
587 -
588 -904.1 - SF7BW125 to SF10BW125
589 -
590 -904.3 - SF7BW125 to SF10BW125
591 -
592 -904.5 - SF7BW125 to SF10BW125
593 -
594 -904.7 - SF7BW125 to SF10BW125
595 -
596 -904.9 - SF7BW125 to SF10BW125
597 -
598 -905.1 - SF7BW125 to SF10BW125
599 -
600 -905.3 - SF7BW125 to SF10BW125
601 -
602 -
603 -(% style="color:#037691" %)**Downlink:**
604 -
605 -923.3 - SF7BW500 to SF12BW500
606 -
607 -923.9 - SF7BW500 to SF12BW500
608 -
609 -924.5 - SF7BW500 to SF12BW500
610 -
611 -925.1 - SF7BW500 to SF12BW500
612 -
613 -925.7 - SF7BW500 to SF12BW500
614 -
615 -926.3 - SF7BW500 to SF12BW500
616 -
617 -926.9 - SF7BW500 to SF12BW500
618 -
619 -927.5 - SF7BW500 to SF12BW500
620 -
621 -923.3 - SF12BW500(RX2 downlink only)
622 -
623 -
624 -
625 -=== 2.7.3 CN470-510 (CN470) ===
626 -
627 -Used in China, Default use CHE=1
628 -
629 -(% style="color:#037691" %)**Uplink:**
630 -
631 -486.3 - SF7BW125 to SF12BW125
632 -
633 -486.5 - SF7BW125 to SF12BW125
634 -
635 -486.7 - SF7BW125 to SF12BW125
636 -
637 -486.9 - SF7BW125 to SF12BW125
638 -
639 -487.1 - SF7BW125 to SF12BW125
640 -
641 -487.3 - SF7BW125 to SF12BW125
642 -
643 -487.5 - SF7BW125 to SF12BW125
644 -
645 -487.7 - SF7BW125 to SF12BW125
646 -
647 -
648 -(% style="color:#037691" %)**Downlink:**
649 -
650 -506.7 - SF7BW125 to SF12BW125
651 -
652 -506.9 - SF7BW125 to SF12BW125
653 -
654 -507.1 - SF7BW125 to SF12BW125
655 -
656 -507.3 - SF7BW125 to SF12BW125
657 -
658 -507.5 - SF7BW125 to SF12BW125
659 -
660 -507.7 - SF7BW125 to SF12BW125
661 -
662 -507.9 - SF7BW125 to SF12BW125
663 -
664 -508.1 - SF7BW125 to SF12BW125
665 -
666 -505.3 - SF12BW125 (RX2 downlink only)
667 -
668 -
669 -
670 -=== 2.7.4 AU915-928(AU915) ===
671 -
672 -Default use CHE=2
673 -
674 -(% style="color:#037691" %)**Uplink:**
675 -
676 -916.8 - SF7BW125 to SF12BW125
677 -
678 -917.0 - SF7BW125 to SF12BW125
679 -
680 -917.2 - SF7BW125 to SF12BW125
681 -
682 -917.4 - SF7BW125 to SF12BW125
683 -
684 -917.6 - SF7BW125 to SF12BW125
685 -
686 -917.8 - SF7BW125 to SF12BW125
687 -
688 -918.0 - SF7BW125 to SF12BW125
689 -
690 -918.2 - SF7BW125 to SF12BW125
691 -
692 -
693 -(% style="color:#037691" %)**Downlink:**
694 -
695 -923.3 - SF7BW500 to SF12BW500
696 -
697 -923.9 - SF7BW500 to SF12BW500
698 -
699 -924.5 - SF7BW500 to SF12BW500
700 -
701 -925.1 - SF7BW500 to SF12BW500
702 -
703 -925.7 - SF7BW500 to SF12BW500
704 -
705 -926.3 - SF7BW500 to SF12BW500
706 -
707 -926.9 - SF7BW500 to SF12BW500
708 -
709 -927.5 - SF7BW500 to SF12BW500
710 -
711 -923.3 - SF12BW500(RX2 downlink only)
712 -
713 -
714 -
715 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
716 -
717 -(% style="color:#037691" %)**Default Uplink channel:**
718 -
719 -923.2 - SF7BW125 to SF10BW125
720 -
721 -923.4 - SF7BW125 to SF10BW125
722 -
723 -
724 -(% style="color:#037691" %)**Additional Uplink Channel**:
725 -
726 -(OTAA mode, channel added by JoinAccept message)
727 -
728 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
729 -
730 -922.2 - SF7BW125 to SF10BW125
731 -
732 -922.4 - SF7BW125 to SF10BW125
733 -
734 -922.6 - SF7BW125 to SF10BW125
735 -
736 -922.8 - SF7BW125 to SF10BW125
737 -
738 -923.0 - SF7BW125 to SF10BW125
739 -
740 -922.0 - SF7BW125 to SF10BW125
741 -
742 -
743 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
744 -
745 -923.6 - SF7BW125 to SF10BW125
746 -
747 -923.8 - SF7BW125 to SF10BW125
748 -
749 -924.0 - SF7BW125 to SF10BW125
750 -
751 -924.2 - SF7BW125 to SF10BW125
752 -
753 -924.4 - SF7BW125 to SF10BW125
754 -
755 -924.6 - SF7BW125 to SF10BW125
756 -
757 -
758 -(% style="color:#037691" %)** Downlink:**
759 -
760 -Uplink channels 1-8 (RX1)
761 -
762 -923.2 - SF10BW125 (RX2)
763 -
764 -
765 -
766 -=== 2.7.6 KR920-923 (KR920) ===
767 -
768 -Default channel:
769 -
770 -922.1 - SF7BW125 to SF12BW125
771 -
772 -922.3 - SF7BW125 to SF12BW125
773 -
774 -922.5 - SF7BW125 to SF12BW125
775 -
776 -
777 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
778 -
779 -922.1 - SF7BW125 to SF12BW125
780 -
781 -922.3 - SF7BW125 to SF12BW125
782 -
783 -922.5 - SF7BW125 to SF12BW125
784 -
785 -922.7 - SF7BW125 to SF12BW125
786 -
787 -922.9 - SF7BW125 to SF12BW125
788 -
789 -923.1 - SF7BW125 to SF12BW125
790 -
791 -923.3 - SF7BW125 to SF12BW125
792 -
793 -
794 -(% style="color:#037691" %)**Downlink:**
795 -
796 -Uplink channels 1-7(RX1)
797 -
798 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
799 -
800 -
801 -
802 -=== 2.7.7 IN865-867 (IN865) ===
803 -
804 -(% style="color:#037691" %)** Uplink:**
805 -
806 -865.0625 - SF7BW125 to SF12BW125
807 -
808 -865.4025 - SF7BW125 to SF12BW125
809 -
810 -865.9850 - SF7BW125 to SF12BW125
811 -
812 -
813 -(% style="color:#037691" %) **Downlink:**
814 -
815 -Uplink channels 1-3 (RX1)
816 -
817 -866.550 - SF10BW125 (RX2)
818 -
819 -
820 -
821 -
822 -== 2.8 LED Indicator ==
823 -
824 -The LSE01 has an internal LED which is to show the status of different state.
825 -
826 -* Blink once when device power on.
827 -* Solid ON for 5 seconds once device successful Join the network.
828 -* Blink once when device transmit a packet.
829 -
830 -== 2.9 Installation in Soil ==
831 -
832 -**Measurement the soil surface**
833 -
834 -
835 -[[image:1654506634463-199.png]] ​
836 -
837 837  (((
838 -(((
839 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840 840  )))
841 -)))
842 842  
843 843  
844 -
845 -[[image:1654506665940-119.png]]
846 -
847 847  (((
848 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
849 849  )))
850 850  
851 -(((
852 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
853 -)))
854 854  
855 -
856 -== 2.10 ​Firmware Change Log ==
857 -
858 858  (((
859 -**Firmware download link:**
676 +The battery related documents as below:
860 860  )))
861 861  
862 -(((
863 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
864 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
865 865  
866 866  (((
867 -
684 +[[image:image-20220708140453-6.png]]
868 868  )))
869 869  
870 -(((
871 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
872 -)))
873 873  
874 -(((
875 -
876 -)))
877 877  
878 -(((
879 -**V1.0.**
880 -)))
689 +=== 2.9.2  Power consumption Analyze ===
881 881  
882 882  (((
883 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
884 884  )))
885 885  
886 886  
887 -== 2.11 ​Battery Analysis ==
888 -
889 -=== 2.11.1 ​Battery Type ===
890 -
891 891  (((
892 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
893 893  )))
894 894  
895 895  (((
896 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
897 897  )))
898 898  
704 +
899 899  (((
900 -(((
901 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
902 902  )))
903 -)))
904 904  
905 905  * (((
906 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +Product Model
907 907  )))
908 908  * (((
909 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +Uplink Interval
910 910  )))
911 911  * (((
912 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +Working Mode
913 913  )))
914 914  
915 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
916 916  
723 +[[image:image-20220708141352-7.jpeg]]
917 917  
918 918  
919 -=== 2.11.2 ​Battery Note ===
920 920  
727 +=== 2.9.3  ​Battery Note ===
728 +
921 921  (((
922 922  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
923 923  )))
... ... @@ -924,302 +924,176 @@
924 924  
925 925  
926 926  
927 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
928 928  
929 929  (((
930 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
931 931  )))
932 932  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
933 933  (((
934 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
935 935  )))
936 936  
937 937  (((
938 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
939 939  )))
940 940  
753 +[[image:1657261278785-153.png]]
941 941  
942 942  
943 -= 3. ​Using the AT Commands =
944 944  
945 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
946 946  
759 +== 4.1  Access AT Commands ==
947 947  
948 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
949 949  
950 -[[image:1654501986557-872.png||height="391" width="800"]]
951 951  
764 +AT+<CMD>?  : Help on <CMD>
952 952  
953 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
954 954  
768 +AT+<CMD>=<value> : Set the value
955 955  
956 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
957 957  
958 958  
959 -
960 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
961 -
962 -
963 - [[image:1654502050864-459.png||height="564" width="806"]]
964 -
965 -
966 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
967 -
968 -
969 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
970 -
971 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
972 -
973 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
974 -
975 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
976 -
977 -
978 978  (% style="color:#037691" %)**General Commands**(%%)      
979 979  
980 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
981 981  
982 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
983 983  
984 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
985 985  
986 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
987 987  
783 +AT+CFG  : Print all configurations
988 988  
989 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
990 990  
991 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
992 992  
993 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
994 994  
995 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
996 996  
997 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
998 998  
999 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
1000 1000  
1001 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
1002 1002  
1003 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
1004 1004  
1005 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
1006 1006  
1007 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1008 1008  
1009 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
1010 1010  
1011 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
1012 1012  
1013 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1014 1014  
1015 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
1016 1016  
1017 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
1018 1018  
1019 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1020 1020  
1021 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
1022 1022  
816 +AT+CLIENT               : Get or Set MQTT client
1023 1023  
1024 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
1025 1025  
1026 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
1027 1027  
1028 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
1029 1029  
1030 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
1031 1031  
1032 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1033 1033  
1034 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
1035 1035  
1036 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
1037 1037  
1038 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
1039 1039  
1040 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1041 1041  
1042 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1043 1043  
1044 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
1045 1045  
1046 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
1047 1047  
1048 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1049 1049  
1050 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1051 -
1052 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1053 -
1054 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1055 -
1056 -
1057 -(% style="color:#037691" %)**Information** 
1058 -
1059 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1060 -
1061 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1062 -
1063 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1064 -
1065 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1066 -
1067 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1068 -
1069 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1070 -
1071 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1072 -
1073 -
1074 -= ​4. FAQ =
1075 -
1076 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1077 -
1078 1078  (((
1079 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1080 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
1081 1081  )))
1082 1082  
1083 1083  (((
1084 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1085 1085  )))
1086 1086  
1087 1087  (((
1088 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1089 1089  )))
1090 1090  
1091 -(((
1092 -
1093 -)))
1094 1094  
1095 -(((
1096 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1097 -)))
1098 1098  
1099 -(((
1100 -
1101 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
1102 1102  
1103 1103  (((
1104 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1105 1105  )))
1106 1106  
1107 -[[image:image-20220606154726-3.png]]
1108 1108  
861 += 6.  Trouble Shooting =
1109 1109  
1110 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
1111 1111  
1112 -* 903.9 - SF7BW125 to SF10BW125
1113 -* 904.1 - SF7BW125 to SF10BW125
1114 -* 904.3 - SF7BW125 to SF10BW125
1115 -* 904.5 - SF7BW125 to SF10BW125
1116 -* 904.7 - SF7BW125 to SF10BW125
1117 -* 904.9 - SF7BW125 to SF10BW125
1118 -* 905.1 - SF7BW125 to SF10BW125
1119 -* 905.3 - SF7BW125 to SF10BW125
1120 -* 904.6 - SF8BW500
1121 1121  
1122 1122  (((
1123 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1124 -
1125 -* (% style="color:#037691" %)**AT+CHE=2**
1126 -* (% style="color:#037691" %)**ATZ**
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1127 1127  )))
1128 1128  
870 +(% class="wikigeneratedid" %)
1129 1129  (((
1130 1130  
1131 -
1132 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1133 1133  )))
1134 1134  
1135 -(((
1136 -
1137 -)))
1138 1138  
1139 -(((
1140 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1141 -)))
876 +== 6.2  AT Command input doesn't work ==
1142 1142  
1143 -[[image:image-20220606154825-4.png]]
1144 -
1145 -
1146 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1147 -
1148 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1149 -
1150 -
1151 -= 5. Trouble Shooting =
1152 -
1153 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1154 -
1155 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1156 -
1157 -
1158 -== 5.2 AT Command input doesn't work ==
1159 -
1160 1160  (((
1161 1161  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1162 -)))
1163 1163  
1164 -
1165 -== 5.3 Device rejoin in at the second uplink packet ==
1166 -
1167 -(% style="color:#4f81bd" %)**Issue describe as below:**
1168 -
1169 -[[image:1654500909990-784.png]]
1170 -
1171 -
1172 -(% style="color:#4f81bd" %)**Cause for this issue:**
1173 -
1174 -(((
1175 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1176 1176  )))
1177 1177  
1178 1178  
1179 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1180 1180  
1181 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1182 1182  
1183 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1184 1184  
1185 1185  
1186 -= 6. ​Order Info =
1187 -
1188 -
1189 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1190 -
1191 -
1192 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1193 -
1194 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1195 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1196 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1197 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1198 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1199 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1200 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1201 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1202 -
1203 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1204 -
1205 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1206 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1207 -
1208 1208  (% class="wikigeneratedid" %)
1209 1209  (((
1210 1210  
1211 1211  )))
1212 1212  
1213 -= 7. Packing Info =
896 += 8.  Packing Info =
1214 1214  
1215 1215  (((
1216 1216  
1217 1217  
1218 1218  (% style="color:#037691" %)**Package Includes**:
1219 -)))
1220 1220  
1221 -* (((
1222 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1223 1223  )))
1224 1224  
1225 1225  (((
... ... @@ -1226,24 +1226,19 @@
1226 1226  
1227 1227  
1228 1228  (% style="color:#037691" %)**Dimension and weight**:
1229 -)))
1230 1230  
1231 -* (((
1232 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1233 1233  )))
1234 -* (((
1235 -Device Weight: g
1236 -)))
1237 -* (((
1238 -Package Size / pcs : cm
1239 -)))
1240 -* (((
1241 -Weight / pcs : g
1242 1242  
916 +(((
1243 1243  
918 +
919 +
920 +
1244 1244  )))
1245 1245  
1246 -= 8. Support =
923 += 9.  Support =
1247 1247  
1248 1248  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1249 1249  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0