<
From version < 52.2 >
edited by Xiaoling
on 2022/07/08 11:12
To version < 83.1 >
edited by Xiaoling
on 2022/07/09 09:34
>
Change comment: Uploaded new attachment "1657330452568-615.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,26 +39,28 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
58 +
59 +
62 62  == 1.3  Specification ==
63 63  
64 64  
... ... @@ -76,90 +76,116 @@
76 76  * - B20 @H-FDD: 800MHz
77 77  * - B28 @H-FDD: 700MHz
78 78  
79 -(% style="color:#037691" %)**Probe Specification:**
80 80  
81 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 +(% style="color:#037691" %)**Battery:**
82 82  
83 -[[image:image-20220708101224-1.png]]
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
84 84  
85 85  
87 +(% style="color:#037691" %)**Power Consumption**
86 86  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
91 +
92 +
93 +
94 +
87 87  == ​1.4  Applications ==
88 88  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
89 89  * Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
90 90  
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
107 +
108 +
94 94  == 1.5  Pin Definitions ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
112 +[[image:1657328609906-564.png]]
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
102 102  
117 += 2.  Use NDDS75 to communicate with IoT Server =
118 +
103 103  == 2.1  How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
108 108  )))
109 109  
110 110  
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
127 +The diagram below shows the working flow in default firmware of NDDS75:
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 -
117 117  (((
118 118  
119 119  )))
120 120  
134 +[[image:1657328659945-416.png]]
121 121  
136 +(((
137 +
138 +)))
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
141 +== 2.2 ​ Configure the NDDS75 ==
125 125  
143 +
126 126  === 2.2.1 Test Requirement ===
127 127  
146 +(((
147 +To use NDDS75 in your city, make sure meet below requirements:
148 +)))
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 -
131 131  * Your local operator has already distributed a NB-IoT Network there.
132 132  * The local NB-IoT network used the band that NSE01 supports.
133 133  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 135  (((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
155 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 137  )))
138 138  
139 139  
140 -[[image:1657249419225-449.png]]
159 +[[image:1657328756309-230.png]]
141 141  
142 142  
143 143  
144 144  === 2.2.2 Insert SIM card ===
145 145  
165 +(((
146 146  Insert the NB-IoT Card get from your provider.
167 +)))
147 147  
169 +(((
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
171 +)))
149 149  
150 150  
151 -[[image:1657249468462-536.png]]
174 +[[image:1657328884227-504.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
178 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
156 156  
157 157  (((
158 158  (((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
182 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
160 160  )))
161 161  )))
162 162  
186 +[[image:image-20220709092052-2.png]]
163 163  
164 164  **Connection:**
165 165  
... ... @@ -172,25 +172,27 @@
172 172  
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
199 +* Baud:  (% style="color:green" %)**9600**
176 176  * Data bits:** (% style="color:green" %)8(%%)**
177 177  * Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
202 +* Parity:  (% style="color:green" %)**None**
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 183  )))
184 184  
185 -[[image:image-20220708110657-3.png]]
209 +[[image:1657329814315-101.png]]
186 186  
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
211 +(((
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
213 +)))
188 188  
189 189  
190 190  
191 191  === 2.2.4 Use CoAP protocol to uplink data ===
192 192  
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 194  
195 195  
196 196  **Use below commands:**
... ... @@ -199,8 +199,6 @@
199 199  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 200  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 201  
202 -
203 -
204 204  For parameter description, please refer to AT command set
205 205  
206 206  [[image:1657249793983-486.png]]
... ... @@ -221,51 +221,51 @@
221 221  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 222  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223 223  
224 -
225 -
226 226  [[image:1657249864775-321.png]]
227 227  
228 228  
229 -
230 230  [[image:1657249930215-289.png]]
231 231  
232 232  
254 +
233 233  === 2.2.6 Use MQTT protocol to uplink data ===
234 234  
235 -
236 236  This feature is supported since firmware version v110
237 237  
238 238  
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 246  
247 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
268 +[[image:1657249978444-674.png]]
248 248  
249 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
250 250  
271 +[[image:1657249990869-686.png]]
251 251  
273 +
274 +(((
252 252  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 +)))
253 253  
254 254  
279 +
255 255  === 2.2.7 Use TCP protocol to uplink data ===
256 256  
257 -
258 258  This feature is supported since firmware version v110
259 259  
260 260  
261 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 262  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
263 263  
264 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
288 +[[image:1657250217799-140.png]]
265 265  
266 266  
291 +[[image:1657250255956-604.png]]
267 267  
268 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
269 269  
270 270  
271 271  === 2.2.8 Change Update Interval ===
... ... @@ -272,68 +272,91 @@
272 272  
273 273  User can use below command to change the (% style="color:green" %)**uplink interval**.
274 274  
275 -**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
276 276  
277 -
301 +(((
278 278  (% style="color:red" %)**NOTE:**
303 +)))
279 279  
305 +(((
280 280  (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
281 281  
282 282  
283 283  
311 +== 2.3  Uplink Payload ==
284 284  
313 +In this mode, uplink payload includes in total 18 bytes
285 285  
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
286 286  
321 +(((
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
287 287  
288 -== 2.3 Uplink Payload ==
289 289  
326 +[[image:image-20220708111918-4.png]]
290 290  
291 -=== 2.3.1 MOD~=0(Default Mode) ===
292 292  
293 -LSE01 will uplink payload via LoRaWAN with below payload format
329 +The payload is ASCII string, representative same HEX:
294 294  
331 +0x72403155615900640c7817075e0a8c02f900 where:
332 +
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
335 +
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
342 +
343 +== 2.4  Payload Explanation and Sensor Interface ==
344 +
345 +
346 +=== 2.4.1  Device ID ===
347 +
295 295  (((
296 -Uplink payload includes in total 11 bytes.
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
297 297  )))
298 298  
299 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
300 -|(((
301 -**Size**
352 +(((
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
302 302  
303 -**(bytes)**
304 -)))|**2**|**2**|**2**|**2**|**2**|**1**
305 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
306 -Temperature
356 +(((
357 +**Example:**
358 +)))
307 307  
308 -(Reserve, Ignore now)
309 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
310 -MOD & Digital Interrupt
360 +(((
361 +AT+DEUI=A84041F15612
362 +)))
311 311  
312 -(Optional)
364 +(((
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
313 313  )))
314 314  
315 -=== 2.3.2 MOD~=1(Original value) ===
316 316  
317 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
318 318  
319 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
320 -|(((
321 -**Size**
370 +=== 2.4.2  Version Info ===
322 322  
323 -**(bytes)**
324 -)))|**2**|**2**|**2**|**2**|**2**|**1**
325 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
326 -Temperature
372 +(((
373 +Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
327 327  
328 -(Reserve, Ignore now)
329 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
330 -MOD & Digital Interrupt
331 -
332 -(Optional)
376 +(((
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
333 333  )))
334 334  
335 -=== 2.3.3 Battery Info ===
336 336  
381 +
382 +=== 2.4.3  Battery Info ===
383 +
337 337  (((
338 338  Check the battery voltage for LSE01.
339 339  )))
... ... @@ -348,15 +348,51 @@
348 348  
349 349  
350 350  
351 -=== 2.3.4 Soil Moisture ===
398 +=== 2.4.4  Signal Strength ===
352 352  
353 353  (((
401 +NB-IoT Network signal Strength.
402 +)))
403 +
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
407 +
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
411 +
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
415 +
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
419 +
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
423 +
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
427 +
428 +
429 +
430 +=== 2.4.5  Soil Moisture ===
431 +
432 +(((
433 +(((
354 354  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
355 355  )))
436 +)))
356 356  
357 357  (((
358 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
359 359  )))
442 +)))
360 360  
361 361  (((
362 362  
... ... @@ -368,10 +368,10 @@
368 368  
369 369  
370 370  
371 -=== 2.3.5 Soil Temperature ===
454 +=== 2.4. Soil Temperature ===
372 372  
373 373  (((
374 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
375 375  )))
376 376  
377 377  (((
... ... @@ -388,7 +388,7 @@
388 388  
389 389  
390 390  
391 -=== 2.3.6 Soil Conductivity (EC) ===
474 +=== 2.4. Soil Conductivity (EC) ===
392 392  
393 393  (((
394 394  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -395,7 +395,7 @@
395 395  )))
396 396  
397 397  (((
398 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
399 399  )))
400 400  
401 401  (((
... ... @@ -410,52 +410,68 @@
410 410  
411 411  )))
412 412  
413 -=== 2.3.7 MOD ===
496 +=== 2.4. Digital Interrupt ===
414 414  
415 -Firmware version at least v2.1 supports changing mode.
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
416 416  
417 -For example, bytes[10]=90
502 +(((
503 +The command is:
504 +)))
418 418  
419 -mod=(bytes[10]>>7)&0x01=1.
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
420 420  
421 421  
422 -**Downlink Command:**
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
423 423  
424 -If payload = 0x0A00, workmode=0
425 425  
426 -If** **payload =** **0x0A01, workmode=1
516 +(((
517 +Example:
518 +)))
427 427  
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
428 428  
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
429 429  
430 -=== 2.3.8 ​Decode payload in The Things Network ===
431 431  
432 -While using TTN network, you can add the payload format to decode the payload.
433 433  
530 +=== 2.4.9  ​+5V Output ===
434 434  
435 -[[image:1654505570700-128.png]]
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
436 436  
536 +
437 437  (((
438 -The payload decoder function for TTN is here:
538 +The 5V output time can be controlled by AT Command.
439 439  )))
440 440  
441 441  (((
442 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
542 +(% style="color:blue" %)**AT+5VT=1000**
443 443  )))
444 444  
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
445 445  
446 -== 2.4 Uplink Interval ==
447 447  
448 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
449 449  
551 +== 2.5  Downlink Payload ==
450 450  
553 +By default, NSE01 prints the downlink payload to console port.
451 451  
452 -== 2.5 Downlink Payload ==
555 +[[image:image-20220708133731-5.png]]
453 453  
454 -By default, LSE50 prints the downlink payload to console port.
455 455  
456 -[[image:image-20220606165544-8.png]]
457 -
458 -
459 459  (((
460 460  (% style="color:blue" %)**Examples:**
461 461  )))
... ... @@ -469,7 +469,7 @@
469 469  )))
470 470  
471 471  (((
472 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
473 473  )))
474 474  
475 475  (((
... ... @@ -489,432 +489,144 @@
489 489  )))
490 490  
491 491  (((
492 -If payload = 0x04FF, it will reset the LSE01
591 +If payload = 0x04FF, it will reset the NSE01
493 493  )))
494 494  
495 495  
496 -* (% style="color:blue" %)**CFM**
595 +* (% style="color:blue" %)**INTMOD**
497 497  
498 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
499 499  
500 500  
501 501  
502 -== 2.6 ​Show Data in DataCake IoT Server ==
603 +== 2.6 LED Indicator ==
503 503  
504 504  (((
505 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
506 -)))
606 +The NSE01 has an internal LED which is to show the status of different state.
507 507  
508 -(((
509 -
510 -)))
511 511  
512 -(((
513 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
514 514  )))
515 515  
516 -(((
517 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518 -)))
519 519  
520 520  
521 -[[image:1654505857935-743.png]]
522 522  
618 +== 2.7  Installation in Soil ==
523 523  
524 -[[image:1654505874829-548.png]]
620 +__**Measurement the soil surface**__
525 525  
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
526 526  
527 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
626 +[[image:1657259653666-883.png]]
528 528  
529 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
530 530  
629 +(((
630 +
531 531  
532 -[[image:1654505905236-553.png]]
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
533 533  
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
534 534  
535 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
641 +[[image:1654506665940-119.png]]
536 536  
537 -[[image:1654505925508-181.png]]
643 +(((
644 +
645 +)))
538 538  
539 539  
648 +== 2.8  ​Firmware Change Log ==
540 540  
541 -== 2.7 Frequency Plans ==
542 542  
543 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
651 +Download URL & Firmware Change log
544 544  
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
545 545  
546 -=== 2.7.1 EU863-870 (EU868) ===
547 547  
548 -(% style="color:#037691" %)** Uplink:**
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
549 549  
550 -868.1 - SF7BW125 to SF12BW125
551 551  
552 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
553 553  
554 -868.5 - SF7BW125 to SF12BW125
660 +== 2.9  ​Battery Analysis ==
555 555  
556 -867.1 - SF7BW125 to SF12BW125
662 +=== 2.9.1  Battery Type ===
557 557  
558 -867.3 - SF7BW125 to SF12BW125
559 559  
560 -867.5 - SF7BW125 to SF12BW125
561 -
562 -867.7 - SF7BW125 to SF12BW125
563 -
564 -867.9 - SF7BW125 to SF12BW125
565 -
566 -868.8 - FSK
567 -
568 -
569 -(% style="color:#037691" %)** Downlink:**
570 -
571 -Uplink channels 1-9 (RX1)
572 -
573 -869.525 - SF9BW125 (RX2 downlink only)
574 -
575 -
576 -
577 -=== 2.7.2 US902-928(US915) ===
578 -
579 -Used in USA, Canada and South America. Default use CHE=2
580 -
581 -(% style="color:#037691" %)**Uplink:**
582 -
583 -903.9 - SF7BW125 to SF10BW125
584 -
585 -904.1 - SF7BW125 to SF10BW125
586 -
587 -904.3 - SF7BW125 to SF10BW125
588 -
589 -904.5 - SF7BW125 to SF10BW125
590 -
591 -904.7 - SF7BW125 to SF10BW125
592 -
593 -904.9 - SF7BW125 to SF10BW125
594 -
595 -905.1 - SF7BW125 to SF10BW125
596 -
597 -905.3 - SF7BW125 to SF10BW125
598 -
599 -
600 -(% style="color:#037691" %)**Downlink:**
601 -
602 -923.3 - SF7BW500 to SF12BW500
603 -
604 -923.9 - SF7BW500 to SF12BW500
605 -
606 -924.5 - SF7BW500 to SF12BW500
607 -
608 -925.1 - SF7BW500 to SF12BW500
609 -
610 -925.7 - SF7BW500 to SF12BW500
611 -
612 -926.3 - SF7BW500 to SF12BW500
613 -
614 -926.9 - SF7BW500 to SF12BW500
615 -
616 -927.5 - SF7BW500 to SF12BW500
617 -
618 -923.3 - SF12BW500(RX2 downlink only)
619 -
620 -
621 -
622 -=== 2.7.3 CN470-510 (CN470) ===
623 -
624 -Used in China, Default use CHE=1
625 -
626 -(% style="color:#037691" %)**Uplink:**
627 -
628 -486.3 - SF7BW125 to SF12BW125
629 -
630 -486.5 - SF7BW125 to SF12BW125
631 -
632 -486.7 - SF7BW125 to SF12BW125
633 -
634 -486.9 - SF7BW125 to SF12BW125
635 -
636 -487.1 - SF7BW125 to SF12BW125
637 -
638 -487.3 - SF7BW125 to SF12BW125
639 -
640 -487.5 - SF7BW125 to SF12BW125
641 -
642 -487.7 - SF7BW125 to SF12BW125
643 -
644 -
645 -(% style="color:#037691" %)**Downlink:**
646 -
647 -506.7 - SF7BW125 to SF12BW125
648 -
649 -506.9 - SF7BW125 to SF12BW125
650 -
651 -507.1 - SF7BW125 to SF12BW125
652 -
653 -507.3 - SF7BW125 to SF12BW125
654 -
655 -507.5 - SF7BW125 to SF12BW125
656 -
657 -507.7 - SF7BW125 to SF12BW125
658 -
659 -507.9 - SF7BW125 to SF12BW125
660 -
661 -508.1 - SF7BW125 to SF12BW125
662 -
663 -505.3 - SF12BW125 (RX2 downlink only)
664 -
665 -
666 -
667 -=== 2.7.4 AU915-928(AU915) ===
668 -
669 -Default use CHE=2
670 -
671 -(% style="color:#037691" %)**Uplink:**
672 -
673 -916.8 - SF7BW125 to SF12BW125
674 -
675 -917.0 - SF7BW125 to SF12BW125
676 -
677 -917.2 - SF7BW125 to SF12BW125
678 -
679 -917.4 - SF7BW125 to SF12BW125
680 -
681 -917.6 - SF7BW125 to SF12BW125
682 -
683 -917.8 - SF7BW125 to SF12BW125
684 -
685 -918.0 - SF7BW125 to SF12BW125
686 -
687 -918.2 - SF7BW125 to SF12BW125
688 -
689 -
690 -(% style="color:#037691" %)**Downlink:**
691 -
692 -923.3 - SF7BW500 to SF12BW500
693 -
694 -923.9 - SF7BW500 to SF12BW500
695 -
696 -924.5 - SF7BW500 to SF12BW500
697 -
698 -925.1 - SF7BW500 to SF12BW500
699 -
700 -925.7 - SF7BW500 to SF12BW500
701 -
702 -926.3 - SF7BW500 to SF12BW500
703 -
704 -926.9 - SF7BW500 to SF12BW500
705 -
706 -927.5 - SF7BW500 to SF12BW500
707 -
708 -923.3 - SF12BW500(RX2 downlink only)
709 -
710 -
711 -
712 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
713 -
714 -(% style="color:#037691" %)**Default Uplink channel:**
715 -
716 -923.2 - SF7BW125 to SF10BW125
717 -
718 -923.4 - SF7BW125 to SF10BW125
719 -
720 -
721 -(% style="color:#037691" %)**Additional Uplink Channel**:
722 -
723 -(OTAA mode, channel added by JoinAccept message)
724 -
725 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
726 -
727 -922.2 - SF7BW125 to SF10BW125
728 -
729 -922.4 - SF7BW125 to SF10BW125
730 -
731 -922.6 - SF7BW125 to SF10BW125
732 -
733 -922.8 - SF7BW125 to SF10BW125
734 -
735 -923.0 - SF7BW125 to SF10BW125
736 -
737 -922.0 - SF7BW125 to SF10BW125
738 -
739 -
740 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
741 -
742 -923.6 - SF7BW125 to SF10BW125
743 -
744 -923.8 - SF7BW125 to SF10BW125
745 -
746 -924.0 - SF7BW125 to SF10BW125
747 -
748 -924.2 - SF7BW125 to SF10BW125
749 -
750 -924.4 - SF7BW125 to SF10BW125
751 -
752 -924.6 - SF7BW125 to SF10BW125
753 -
754 -
755 -(% style="color:#037691" %)** Downlink:**
756 -
757 -Uplink channels 1-8 (RX1)
758 -
759 -923.2 - SF10BW125 (RX2)
760 -
761 -
762 -
763 -=== 2.7.6 KR920-923 (KR920) ===
764 -
765 -Default channel:
766 -
767 -922.1 - SF7BW125 to SF12BW125
768 -
769 -922.3 - SF7BW125 to SF12BW125
770 -
771 -922.5 - SF7BW125 to SF12BW125
772 -
773 -
774 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
775 -
776 -922.1 - SF7BW125 to SF12BW125
777 -
778 -922.3 - SF7BW125 to SF12BW125
779 -
780 -922.5 - SF7BW125 to SF12BW125
781 -
782 -922.7 - SF7BW125 to SF12BW125
783 -
784 -922.9 - SF7BW125 to SF12BW125
785 -
786 -923.1 - SF7BW125 to SF12BW125
787 -
788 -923.3 - SF7BW125 to SF12BW125
789 -
790 -
791 -(% style="color:#037691" %)**Downlink:**
792 -
793 -Uplink channels 1-7(RX1)
794 -
795 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
796 -
797 -
798 -
799 -=== 2.7.7 IN865-867 (IN865) ===
800 -
801 -(% style="color:#037691" %)** Uplink:**
802 -
803 -865.0625 - SF7BW125 to SF12BW125
804 -
805 -865.4025 - SF7BW125 to SF12BW125
806 -
807 -865.9850 - SF7BW125 to SF12BW125
808 -
809 -
810 -(% style="color:#037691" %) **Downlink:**
811 -
812 -Uplink channels 1-3 (RX1)
813 -
814 -866.550 - SF10BW125 (RX2)
815 -
816 -
817 -
818 -
819 -== 2.8 LED Indicator ==
820 -
821 -The LSE01 has an internal LED which is to show the status of different state.
822 -
823 -* Blink once when device power on.
824 -* Solid ON for 5 seconds once device successful Join the network.
825 -* Blink once when device transmit a packet.
826 -
827 -== 2.9 Installation in Soil ==
828 -
829 -**Measurement the soil surface**
830 -
831 -
832 -[[image:1654506634463-199.png]] ​
833 -
834 834  (((
835 -(((
836 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
837 837  )))
838 -)))
839 839  
840 840  
841 -
842 -[[image:1654506665940-119.png]]
843 -
844 844  (((
845 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
846 846  )))
847 847  
848 -(((
849 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
850 -)))
851 851  
852 -
853 -== 2.10 ​Firmware Change Log ==
854 -
855 855  (((
856 -**Firmware download link:**
676 +The battery related documents as below:
857 857  )))
858 858  
859 -(((
860 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
861 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
862 862  
863 863  (((
864 -
684 +[[image:image-20220708140453-6.png]]
865 865  )))
866 866  
867 -(((
868 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
869 -)))
870 870  
871 -(((
872 -
873 -)))
874 874  
875 -(((
876 -**V1.0.**
877 -)))
689 +=== 2.9.2  Power consumption Analyze ===
878 878  
879 879  (((
880 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
881 881  )))
882 882  
883 883  
884 -== 2.11 ​Battery Analysis ==
885 -
886 -=== 2.11.1 ​Battery Type ===
887 -
888 888  (((
889 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
890 890  )))
891 891  
892 892  (((
893 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
894 894  )))
895 895  
704 +
896 896  (((
897 -(((
898 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
899 899  )))
900 -)))
901 901  
902 902  * (((
903 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +Product Model
904 904  )))
905 905  * (((
906 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +Uplink Interval
907 907  )))
908 908  * (((
909 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +Working Mode
910 910  )))
911 911  
912 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
913 913  
723 +[[image:image-20220708141352-7.jpeg]]
914 914  
915 915  
916 -=== 2.11.2 ​Battery Note ===
917 917  
727 +=== 2.9.3  ​Battery Note ===
728 +
918 918  (((
919 919  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
920 920  )))
... ... @@ -921,302 +921,176 @@
921 921  
922 922  
923 923  
924 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
925 925  
926 926  (((
927 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
928 928  )))
929 929  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
930 930  (((
931 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
932 932  )))
933 933  
934 934  (((
935 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
936 936  )))
937 937  
753 +[[image:1657261278785-153.png]]
938 938  
939 939  
940 -= 3. ​Using the AT Commands =
941 941  
942 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
943 943  
759 +== 4.1  Access AT Commands ==
944 944  
945 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
946 946  
947 -[[image:1654501986557-872.png||height="391" width="800"]]
948 948  
764 +AT+<CMD>?  : Help on <CMD>
949 949  
950 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
951 951  
768 +AT+<CMD>=<value> : Set the value
952 952  
953 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
954 954  
955 955  
956 -
957 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
958 -
959 -
960 - [[image:1654502050864-459.png||height="564" width="806"]]
961 -
962 -
963 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
964 -
965 -
966 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
967 -
968 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
969 -
970 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
971 -
972 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
973 -
974 -
975 975  (% style="color:#037691" %)**General Commands**(%%)      
976 976  
977 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
978 978  
979 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
980 980  
981 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
982 982  
983 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
984 984  
783 +AT+CFG  : Print all configurations
985 985  
986 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
987 987  
988 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
989 989  
990 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
991 991  
992 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
993 993  
994 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
995 995  
996 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
997 997  
998 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
999 999  
1000 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
1001 1001  
1002 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
1003 1003  
1004 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1005 1005  
1006 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
1007 1007  
1008 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
1009 1009  
1010 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1011 1011  
1012 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
1013 1013  
1014 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
1015 1015  
1016 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1017 1017  
1018 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
1019 1019  
816 +AT+CLIENT               : Get or Set MQTT client
1020 1020  
1021 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
1022 1022  
1023 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
1024 1024  
1025 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
1026 1026  
1027 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
1028 1028  
1029 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1030 1030  
1031 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
1032 1032  
1033 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
1034 1034  
1035 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
1036 1036  
1037 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1038 1038  
1039 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1040 1040  
1041 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
1042 1042  
1043 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
1044 1044  
1045 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1046 1046  
1047 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1048 -
1049 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1050 -
1051 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1052 -
1053 -
1054 -(% style="color:#037691" %)**Information** 
1055 -
1056 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1057 -
1058 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1059 -
1060 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1061 -
1062 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1063 -
1064 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1065 -
1066 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1067 -
1068 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1069 -
1070 -
1071 -= ​4. FAQ =
1072 -
1073 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1074 -
1075 1075  (((
1076 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1077 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
1078 1078  )))
1079 1079  
1080 1080  (((
1081 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1082 1082  )))
1083 1083  
1084 1084  (((
1085 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1086 1086  )))
1087 1087  
1088 -(((
1089 -
1090 -)))
1091 1091  
1092 -(((
1093 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1094 -)))
1095 1095  
1096 -(((
1097 -
1098 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
1099 1099  
1100 1100  (((
1101 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1102 1102  )))
1103 1103  
1104 -[[image:image-20220606154726-3.png]]
1105 1105  
861 += 6.  Trouble Shooting =
1106 1106  
1107 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
1108 1108  
1109 -* 903.9 - SF7BW125 to SF10BW125
1110 -* 904.1 - SF7BW125 to SF10BW125
1111 -* 904.3 - SF7BW125 to SF10BW125
1112 -* 904.5 - SF7BW125 to SF10BW125
1113 -* 904.7 - SF7BW125 to SF10BW125
1114 -* 904.9 - SF7BW125 to SF10BW125
1115 -* 905.1 - SF7BW125 to SF10BW125
1116 -* 905.3 - SF7BW125 to SF10BW125
1117 -* 904.6 - SF8BW500
1118 1118  
1119 1119  (((
1120 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1121 -
1122 -* (% style="color:#037691" %)**AT+CHE=2**
1123 -* (% style="color:#037691" %)**ATZ**
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1124 1124  )))
1125 1125  
870 +(% class="wikigeneratedid" %)
1126 1126  (((
1127 1127  
1128 -
1129 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1130 1130  )))
1131 1131  
1132 -(((
1133 -
1134 -)))
1135 1135  
1136 -(((
1137 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1138 -)))
876 +== 6.2  AT Command input doesn't work ==
1139 1139  
1140 -[[image:image-20220606154825-4.png]]
1141 -
1142 -
1143 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1144 -
1145 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1146 -
1147 -
1148 -= 5. Trouble Shooting =
1149 -
1150 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1151 -
1152 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1153 -
1154 -
1155 -== 5.2 AT Command input doesn't work ==
1156 -
1157 1157  (((
1158 1158  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1159 -)))
1160 1160  
1161 -
1162 -== 5.3 Device rejoin in at the second uplink packet ==
1163 -
1164 -(% style="color:#4f81bd" %)**Issue describe as below:**
1165 -
1166 -[[image:1654500909990-784.png]]
1167 -
1168 -
1169 -(% style="color:#4f81bd" %)**Cause for this issue:**
1170 -
1171 -(((
1172 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1173 1173  )))
1174 1174  
1175 1175  
1176 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1177 1177  
1178 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1179 1179  
1180 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1181 1181  
1182 1182  
1183 -= 6. ​Order Info =
1184 -
1185 -
1186 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1187 -
1188 -
1189 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1190 -
1191 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1192 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1193 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1194 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1195 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1196 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1197 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1198 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1199 -
1200 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1201 -
1202 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1203 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1204 -
1205 1205  (% class="wikigeneratedid" %)
1206 1206  (((
1207 1207  
1208 1208  )))
1209 1209  
1210 -= 7. Packing Info =
896 += 8.  Packing Info =
1211 1211  
1212 1212  (((
1213 1213  
1214 1214  
1215 1215  (% style="color:#037691" %)**Package Includes**:
1216 -)))
1217 1217  
1218 -* (((
1219 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1220 1220  )))
1221 1221  
1222 1222  (((
... ... @@ -1223,24 +1223,19 @@
1223 1223  
1224 1224  
1225 1225  (% style="color:#037691" %)**Dimension and weight**:
1226 -)))
1227 1227  
1228 -* (((
1229 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1230 1230  )))
1231 -* (((
1232 -Device Weight: g
1233 -)))
1234 -* (((
1235 -Package Size / pcs : cm
1236 -)))
1237 -* (((
1238 -Weight / pcs : g
1239 1239  
916 +(((
1240 1240  
918 +
919 +
920 +
1241 1241  )))
1242 1242  
1243 -= 8. Support =
923 += 9.  Support =
1244 1244  
1245 1245  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1246 1246  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0